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ON f-NONEXPANSIVE MAPS

By SEHIE PARK

1. Introduction

Let (X, d) be a metric space and f a continuous selfmap of X. A self
map g of X is said to be f-nonexpansive (e-f-nonexpansive for some e>O)

if
(1) d(gx,gy) sd(fx,/y)

for all x,yEX (with d(fx,/y) <e). If d(gx,gy) <d(fx,/y) for any x,yEX,
gX=l=gy (for any x,yEX with gX=Fgy, d(fx,fy)<e for some e>O), then g

is said to be f-contractive (e-f-contractive) [9J. A sel£map g of X is called
an f-contraction if there exists an aE[O, 1) such that d(gx,gy) sad(fx,fy)
for any x, yEX. When f=lx, the identity map of X, those are reduced
to usual nonexpansive maps, contractive maps, or contractions (cf. [5J, [6J,
etc. )

Let g be a sel£map of X such that, for some xE X, the sequence {gnx }

of iterates has a subsequence which converges to a point yE X. Then y is
fixed if g is contrative, periodic if g is e-contractive [5J. There are also cor
responding generalizations for nonexpansive and e-nonexpansive maps [6].

Our first purpose in this paper is to extend those important results of M.
Edelstein to (e-)f-nonexpansive or (e-)f-contractive maps in Sections 2 and
3. In the proofs of main theorems, we make use of Edelstein's methods.
Consequently, theorems on fixed points and periodic points are obtained,
and some of main results in [9J is also extended.

In recent works of Dotson [3J, [4J, of Guseman and Peters [7J, and of
Talman [13J, results concerning the existence of fixed points of nonexpansi
ve maps on certain classes of compact nonconvex sets of metric (linear)
spaces are obtained.

Our second purpose of this paper is to extend those results to f-nonexpan
sive maps. Our main tools are fixed point criteria for compact Hausdorff
spaces in [l3J and for metric spaces in [7J. In Section 4, f-nonexpansive
maps on compact metric spaces are considered. Section 5 deals on weakly
compact subsets of Banach spaces, and Section 6 on starshaped compact
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:subsets of metric linear spaces.
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2. f -nonexpansive maps

Let f be a continuous selfmap of X. Given a point XoEX and a map
g: X-X an l-iteratwn of Xo under g is sequence {Ix,,} :=0 given recursively
by the rule IX,.=gX"-l for n~ 1. If gXclX then every point of X has an

f-iteration under g (not necessarily unique).
Given a selfmap g of X, a point yE X is said to belong to the g-closure

of X, yEXj
g

, if there is a point 7JoEX and an I-iteration {/7J,,}:=0 of '1)0

.such that a subsequence of {/7],,} converges to y (cf. [6J).
A sequence {x,,}:'o in X is said to be ismnetric (s-isometric) if d(xm, x,,)

=d(xm+A, X,,+k) for all m, n, k=O, 1, 2, •.. (with d(xm, X,.) <s) [5J. A point
.xoEX is said to generate an f-isometric (s-I-isometric) sequence under g if
there is an isometric (s-isometric) I-iteration {Ix,.} of Xo (cf. [6J).

Using those concepts we extend Edelstein's results in [6J as follows:

PROPOSITION 2.1. 11 g:X-X is s-I-nonexpansive and XoEX with IxoE
X j6, then there exists an I-iteration {fx,.} of Xo such that a subsequence

{/xmA 1=1 converges to Ixo

Proof. Since IxoE X f
6 , there exists a point '1)oE X and an/.:..iteration {/7],,}

-of '1)0 such that Ixo=lim;-ool7J,., for some {ni}' If 17]m=lxo for some m, we
nave d(g'1jm,gxO) ::;: d(l7Jm'/xo) =0 and, hence, g1}m=gxO· Hence, {/'1),.} "";,11<

is an I-iteration of Xo, by putting 7]m+1e=Xi, k~ 1, and {mj} = {ni-m},
ni>m, is a sequence satisfying limj_,,,,/xmj-Ixo. Otherwise, let 0 be a
-fixed number such that 0 <o<s. Then an i=i(O) exists so that

(2) d(lxo, 17],.,+j)<0/4 (j=0,1,2,···).
For such an i and for arbitrary k(k=l, 2, ...) we have

d(/7]"" 17]",+1;) ::;:d(lxo, 1'1),.,) +d(lxo, /'1)",+1;) <0/2.

Now for any I-iteration {fx,,} of xo, we obtain from (2) for j=O and (1)

0/4>d(fxo,I7],.,) ":2d(gxo, g'1j,.,) =d(lxb /7]n,+I)

Hence

d(lxo,lx"i+C"') sd(lxo, 17]",) +d(/7]""I7]"i+1) +d(/7]lIi+l' IX"i+C",)

<0/4 +0/2+0/4=0.

We put ml=ni+l-ni' Suppose that ml<m2<"'<mj-l are already defined
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and that

d(jxo,f1Jm) :::;;1/2 min {d(fx o,f1Jm) Im=l, 2, "', mi-l} , i=2, 3, "',j-I.

Then we choose mj =nl+l-nl where 1 is chosen as to satisfy (2) with 0
replaced by 1/2 min {d(fxo,f1Jm) Im=1,2, ···,mj-l}. Now the sequence {mA
so defined satisfies the requirements of the proposition.

THEOREM 2.2. If g:X-X is e-/-1Wnexpansive then each xoEX with fXoE
X f

g generates an e-f-isometric sequence under g.

Proof. Choose an f-iteration {fxn} of Xo satisfying Proposition 2. l.
Suppose there exist indices m, nand k such that d(fxm, fXn) <e and

o=d(fxm, fXn) -d(!Xm+k' fXn+k) *0.
Then we have

(3)

for

?c.d(fxm+l, fXn+l).

Also from (1) and Proposition 2. 1 it follows that for some {nj} and all 1

limj-oo f(Xl) nj=!imj-<X> fXnj+l=!Xl.

Hence positive integer i exists such that j?c.i implies

d(jxm+nj, !xm) <0/2 and d(fxn+nj, fXn) <0/2.

However,

d(fxm, fXn) ~d(jxm, fXm+n) +d(jxm+np fxn+n) +d(fxn+nj, fx,,)

<0/2 +d(fxm+nj, fXn+,,) +0/2,

which contadicts to (3) for nj?c.max(ni, k). This shows that 0=0 and our
proof is complete.

AB an immediate consequence of Theorem 2.2, we obtain the correspon
ding statement concerning f-nonexpansive maps.

THEOREM 2.3. If g:X-X is f-1Wnexpansive then each xEX with fXE
X f

g generates an f-isometric sequence under g.

In case f = Ix Theorems 2. 2 and 2. 3 are reduced to results of Edelstein
[6].
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3. f-contractive maps

In this section, we consider some applications to f-contractive maps. We
need the following.

LEMMA 3.1. ([9J, Lemma 2. 1) Let f and g be commuting selfmaps of a
metric space X. If gN is f-contractive for some integer N>O and f, gN have"
a coincidence (EX, then f( is the unique common fixed point of f and g.

LEMMA 3. 2. Let f be a continuous selfmap of a metric space X, g: X-X,
and gN be f-contractive for some integer N>O. Then f and gN have a
coincidence xoE X iff Xo generates an f-isometric sequence under gN.

Proof. Suppose fxO=gNxo for some xoEX. Then there is an f-iteration
{fxn} ;;':0 of Xo under gN such that xn=xo for all n. It is readily seen that
{fxn} is an f-isometric sequence.

Conversely, if xoEX generates an f-isometric sequence {fxn} ;:0, then d:
(fxo, fXl) =d(fxh fxz). Suppose gNxo=fx(=tfx2=gNxl' Then

dUxh fxz) =d(gNxo, gNX1) <d(fxo, fXl) ,

which is a contradiction. Hence we have fXl = fxz, which implies fxo=
gNxO'

THEOREM 3. 3. A continuous selfmap f 0/ a metric space X has a fixed point
iff there is a map g:X -> X commuting with f such that gN is f-contractive for
some N>O and there is a point xoEX generating an I-isometric sequence under
gN. Indeed, I and g have a unique common fixed point Ixo.

Proof. Suppose that ft;=7j for some 7jEX. Define g:X->X by gX=7j for
all x EX. Then the necessity follows trivially. The converse follows from
Lemmas 3. 1 and 3. 2.

From Theorems 2.3 and 3.3, we have

COROLLARY 3. 4. A continuous sel/map I 01 X has a fixed point iff there is
a map g:X-X commuting with / such that gN is I-contractive lor some N>O,
and XfgN"*if>. Indeed, 7jEX/

N
is a unique common fixed point 0/ f and g.

In case f=lx, Corollary 3.4 implies that a point of xg=X1/ is fixed un
der g if g is contractive [5]. Furthermore, Theorem 3.5 and Corollaries.
3. 6, 3. 7, 3. 8 of [9J follow from Corollary 3.4. Note that Corollary 3. 8 of
[9J generalizes results of Rakotch [10J, of Boyd-Wong [2J, and of Jungck
[8J.

Suppose gNX cfX in Corollary 3.4. Since X/N "* if> for a compact space.
X, we have
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COROLLARY 3. 5 A continMUS selfmap f of a compact metric space X has a
.fixed point zjf there is a map g: X~X commuting with f such that gN is f
.contractive for some N>O and gNXcfX. Indeed, f and g have a unique
..common fixed point.

Theorem 3. 4 of [9J is a consequence of Corollary 3. 5.

Note that Corollaries 3.4 and 3. 5 also follow from Theorem 2. 2 and
'Corollary 2. 3 of [9J.

For an e:-f-contractive map we have the following.

THEOREM 3.6. Let f be a continuous selfmap of X. If g: X-'>X is e:-f
.l:ontractive, then for any xoEX with fxoEXfg there exists an f-iteration
{fxnl.;~o of Xo and an integer j>O such that fxo= fXj'

Proof. Since g is e:-f-nonexpansive, by Proposition 2.1, Xo has an f
iteration {fxnl such that there exist i, j>O satisfying dCfxo, fx;) <c/2,
d(fxo, fXi+j) <e:/2. Note that Uxnl is e:-f-isometric from the proof of
Theorem 2. 2. Since

we have

dCfxi, fXi+j) =d(jXi+l, f Xi+j+l)'

'Suppose fxi::f=.fXi+j' Since g is e:-f-contractive, we have

d(fxi+l' fX;+j+l) =d(gxi' gXi+j) <d(fxi' fXi+j),

which is a contradiction. Therefore we have d(/x., fXi+j) =O<e: and,
hence, d(fxo, fXj) =d(fxi' fXi+j) =0.

Theorem 3.6 generalizes the fact that if g is e:-contractive and xE xg
then x is a periodic point of g [5J.

4. f-nonexpansive maps of eompact metric spaces

We adopt the following modification of the main theorem of Talman
[13].

THEOREM 4. 1. A continuous selfmap g of a compact Hausdoff space X has
4 fixed point iff there is a family a of selfmaps of X satisfying

(i) Ix is in the uniform closure of a, and
(ii) gh or hg has a fixed point in x for each h in a.
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Proof. If g has a fixed point, then;:]= {Ix} satisfies [(i) and (ii). For
the converse, simply follow the proof of Theorem 1 of [13J.

COROLLARY 4. 2. A continuous selfmap g of a compact Hausdorff space X has
a fixed point ijf there is an equicontinuous family :;} of selfmaps 0/ X satisfying

(i) Ix is in the pointwise closure of;:], and
(ii) gh or hg has a fixed point in X for each h in ;:].

Note that Guseman and Peters [7] essentially obtained Theorem 4. 1 and
Corollary 4. 2 for compact metric spaces and also gave examples which show
that certain hypothesis of 4. 1 and 4. 2 can not be relaxed.

They also obtained the following result [7J as a generalization of Smart's.
result [12J.

COROLLARY 4. 3. If the identity map of a compact metric space X is the
Paintwise limit of contractive selfmaps of X, then each nonexpansive selfmap.
of X has a fixed point point.

Now we have the following main result in this section.

THEOREM 4.4. Let X be a compact metric space and f a continuous selfmap
of X. If Ix is the pointwise limt of contractive selfmaps of X commuting with
f, then each f-nonexpansive sel/map g of X commuting with / has a fixeil
point.

Proof. Let {hn} be a sequence of contractive selfmaps X which commute
with f. By a result of Edeltein [5J or Corollary 3. 4, each hn has a unique
fixed point X n in X. Moreover, hxn=xn implies fhnX fxn=hnfxm and he
nce we have fxn=xn. Therefore the set F of fixed points of / in X is no
nempty, and by the continuity of f, also compact. If g is f-nonexpansive
and commutes with f, it is immediate that g maps F into itself and g is
nonexpansive on F. New by applying Corollary 4. 3 to F we obtain our
result.

In case / = Ix theorem 4. 4 is reduced to Corollary 4. 3, and hence they
are equivalent.

COROLLARY 4. 5. Let X be a compact metric space and f a continuouS'
sel/map of X. Suppose there is a map F:XX[O, 1J ~ X which satisfies

(1) limt_l F(x, t) =x for any xEX,
(2) d(F(x,t), F(y,t»<d(x,y) for any x,yEX, X=FY, andanytE[O,l),.

and
(3) F(jx, t) -fF(x, t) for each xEX, tE[O,l).

Then each f-nonexpansive sel/map of X commuting with / has a fixed point.
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Proof. By (1), Ix is in the pointwise closure of :J= {htl where tE[O, 1)'
and ht=F( . ,t). By (2) ht is contractive for any tE[O, 1), and by (3) h~

commutes with f. Therefore, by Theorem 4. 4 our proof is complete.

Note that in case f=l x , Corollary 4.5 is reduced. to a result of Guseman
-Peters [7J and extend results in Talman [I3J and Dotson [3J, [4J.

A metric space X is called an S-spaee if there exists an Xo E X such that
for every tE (0, 1) there is a contractive selfmap ht of X satisfying

d(h::x, x) c::;; (l-t)d(xo,x)

for every xEX [lJ.

THEOREM 4.6. Let f be a continuous selfmap of a compact S-space X such
that htf=fht • Then any f-nonexpansive selfmp of X which commutes with f
has a fixed point.

Proof. Note that 'J = tilt ItE (0, 1)1 is a net which converges to Ix when
(0,1) is equipped with its usual order. Now our result follows from Theorem
4.4.

In case f = Ix Theorem4. 6 is reduced to a result of Baron and Matkowski
[lJ.

5. f -nonexpansive maps on weakly compact sets

In this section we consider f-nonexpansive maps on weakly compact su
bsets of a Banach space. We need the following result of Jungck [8J Or

Corollary 3. 4.

LEMMA 5. 1. A continuous selfmap f of a complete metric space X has a
fixed point if[ there is an f-contraction g: X ~ X commuting with f such that g
X cfX. Indeed, f and g have a unigue common fixed point.

THEOREM 5.2. Let X be a weakly compact subset of a Banach space, and f
a continuous selfmap of X. Suppose there is a map F:XX[O, IJ ~ X which
satisfies

(1) limt-l F (x, t) =x for each x EX,
(2) there is a selfmap if> of (0, 1) such that for every x, y E X and for

every tE (0,1), we have

lIF(x, t) -F(y, t) 11 C::;;if>(t) \lx-y\l, and

(3) F(jx, t)=fF(x,t)!oreveryxEX, tE(O,I).
Then each f-nonexpansive map g;X----"X commuting with f such that gXcfX
has a fixed point.
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Proof. For each n=l, 2, .", let t,,=n/ (n+ 1) and define hn=F(·, t).
Then h,. converges uniformly to Ix. In view of Theorem 4.1, it suffices to
-show that gh,. has a fixed point for any n. For any x, yE X, we have

Ilg(hnx) - g(hny) 1/:::;; Ilf(h,..T) - f(h"y) 1/ = IIh"(jx) -h,,(!y) 1I~~(t,,) Ilfx-hl/.
Since ~ (t,,) <1 for every n, ghn is an f-contraction on X relative to the
norm. But X is weakly compact, hence norm closed, and hence norm com
plete. Since gh" commutes with f and gh"XcfX, gh" has a fixed point by
Lemma 5.1.

In case /=Ix, 5.2 is reduced to results of Dotson [3J, [4J and of
Talman [13J.

6. f-nonexpansive maps on starshaped sets

Let E be a metric linear space with translation invariant metric d [l1J.
A subset X of E is said to be starshaped if there exists xoE X such that
.tx+ (I-t)xoEX for every tE[O, 1J, xEX. Let f) denote the zero element
of E. A metric d for E is said to be strictly monotone if d(O, tx) <d(O, x)
for every X=FO and tE[O, 1).

THEOREM 6. 1. Let E he a metric linear space with strictly monotone metric
·d. Let X he a compact subset of E starshaped at xoE X and f a continuous
.selfmap of X satisfying f(tx+ (l-t)xo) =t/x+ (l-t)xo for any xEX and
tE[O, 1). Then every f-nonexpansive selfmap of X which commutes with / has
·a fixed polnt.

Proof. Define a map F:XX[O, 1]~ X by F(x, t) =tx+ (l-t)xo. Then for
each XEX, limt-l F(x, t) =x and Fefx, t) =tfx+ (l-t)xo=fF(x, t) for each
.xEX, tE[O, 1). Given x,yEX, X=FY, and tE[O, 1), we have

d(F(x,t), F(Y,t»=d(tx, ty)=d«(), t(x-y»

<d(O, x-y) =d(x, y).

Therefore, from Corollary 4. 5 our proof is complete.

A p-norm (OspSl) on a linear space E is a nonnegative function 11 11

·on XX X which satisfies IIxll =0 iff x=(), IIx+YII s IIxll + IIYII, I/}.xll = IAIPllxl!
for each x, yE X and each scalar J.. Since each p-norm generates a trans
lation invariant metric d(x,y) =lIx-y/l which is strictly monotone, we have
the following from 6. 1.

COROLLARY 6.2. Let E be a p-normed space, X a compact subset of E
.starshaped at xoE X, and f a continuous selfmap of X satisfying
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f(tx+ (l-t)xo) =tfx+ (l-t)xo
for any xEX and tE[O, 1). Then every f-nonexpansive selfmap of X which
commutes with f has a fixed point.

In case where d is not strictly monotone, we have the following.

THEOREM 6.3. Let E be a metric linear space, and suppose that d(O, tx) :::;
d(O,x) whenever It I:::;1. Let X be a compact subset of E starshaped at xoE
X and f a continuous selfmap of X satisfying f(tx+ (l-t)xo) =tfx+ Cl -t)xo
for any xEX and t E[O, 1). If a selfmap g of X commutes with f on X
and satisfies d(tgx, tgy) :::;d(tfx, tfy) for any x,yEX and tE[O,lJ, then
g has a fixed point.

Proof. The function p(x,y) = 1d(tx, ty)dt is an equivalent metric on X.

Since g is nonexpansive with respect to p, the result follows from 6.l.

In case f=l x , 6.1, 6.2 and 6.3 are reduced to results of Guseman
Peters [7J.
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