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ON f-NONEXPANSIVE MAPS

By SEHIE PARK

1. Introduction

Let (X, d) be a metric space and f a continuous selfmap of X. A self­
map g of X is said to be f-nonexpansive (e-f-nonexpansive for some e>O)

if
(1) d(gx,gy) sd(fx,/y)

for all x,yEX (with d(fx,/y) <e). If d(gx,gy) <d(fx,/y) for any x,yEX,
gX=l=gy (for any x,yEX with gX=Fgy, d(fx,fy)<e for some e>O), then g­

is said to be f-contractive (e-f-contractive) [9J. A sel£map g of X is called
an f-contraction if there exists an aE[O, 1) such that d(gx,gy) sad(fx,fy)
for any x, yEX. When f=lx, the identity map of X, those are reduced
to usual nonexpansive maps, contractive maps, or contractions (cf. [5J, [6J,
etc. )

Let g be a sel£map of X such that, for some xE X, the sequence {gnx }

of iterates has a subsequence which converges to a point yE X. Then y is
fixed if g is contrative, periodic if g is e-contractive [5J. There are also cor­
responding generalizations for nonexpansive and e-nonexpansive maps [6].

Our first purpose in this paper is to extend those important results of M.
Edelstein to (e-)f-nonexpansive or (e-)f-contractive maps in Sections 2 and
3. In the proofs of main theorems, we make use of Edelstein's methods.
Consequently, theorems on fixed points and periodic points are obtained,
and some of main results in [9J is also extended.

In recent works of Dotson [3J, [4J, of Guseman and Peters [7J, and of
Talman [13J, results concerning the existence of fixed points of nonexpansi­
ve maps on certain classes of compact nonconvex sets of metric (linear)
spaces are obtained.

Our second purpose of this paper is to extend those results to f-nonexpan­
sive maps. Our main tools are fixed point criteria for compact Hausdorff
spaces in [l3J and for metric spaces in [7J. In Section 4, f-nonexpansive
maps on compact metric spaces are considered. Section 5 deals on weakly
compact subsets of Banach spaces, and Section 6 on starshaped compact
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:subsets of metric linear spaces.

Sehie Park

2. f -nonexpansive maps

Let f be a continuous selfmap of X. Given a point XoEX and a map
g: X-X an l-iteratwn of Xo under g is sequence {Ix,,} :=0 given recursively
by the rule IX,.=gX"-l for n~ 1. If gXclX then every point of X has an

f-iteration under g (not necessarily unique).
Given a selfmap g of X, a point yE X is said to belong to the g-closure

of X, yEXj
g

, if there is a point 7JoEX and an I-iteration {/7J,,}:=0 of '1)0

.such that a subsequence of {/7],,} converges to y (cf. [6J).
A sequence {x,,}:'o in X is said to be ismnetric (s-isometric) if d(xm, x,,)

=d(xm+A, X,,+k) for all m, n, k=O, 1, 2, •.. (with d(xm, X,.) <s) [5J. A point
.xoEX is said to generate an f-isometric (s-I-isometric) sequence under g if
there is an isometric (s-isometric) I-iteration {Ix,.} of Xo (cf. [6J).

Using those concepts we extend Edelstein's results in [6J as follows:

PROPOSITION 2.1. 11 g:X-X is s-I-nonexpansive and XoEX with IxoE
X j6, then there exists an I-iteration {fx,.} of Xo such that a subsequence

{/xmA 1=1 converges to Ixo

Proof. Since IxoE X f
6 , there exists a point '1)oE X and an/.:..iteration {/7],,}

-of '1)0 such that Ixo=lim;-ool7J,., for some {ni}' If 17]m=lxo for some m, we
nave d(g'1jm,gxO) ::;: d(l7Jm'/xo) =0 and, hence, g1}m=gxO· Hence, {/'1),.} "";,11<

is an I-iteration of Xo, by putting 7]m+1e=Xi, k~ 1, and {mj} = {ni-m},
ni>m, is a sequence satisfying limj_,,,,/xmj-Ixo. Otherwise, let 0 be a
-fixed number such that 0 <o<s. Then an i=i(O) exists so that

(2) d(lxo, 17],.,+j)<0/4 (j=0,1,2,···).
For such an i and for arbitrary k(k=l, 2, ...) we have

d(/7]"" 17]",+1;) ::;:d(lxo, 1'1),.,) +d(lxo, /'1)",+1;) <0/2.

Now for any I-iteration {fx,,} of xo, we obtain from (2) for j=O and (1)

0/4>d(fxo,I7],.,) ":2d(gxo, g'1j,.,) =d(lxb /7]n,+I)

Hence

d(lxo,lx"i+C"') sd(lxo, 17]",) +d(/7]""I7]"i+1) +d(/7]lIi+l' IX"i+C",)

<0/4 +0/2+0/4=0.

We put ml=ni+l-ni' Suppose that ml<m2<"'<mj-l are already defined
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and that

d(jxo,f1Jm) :::;;1/2 min {d(fx o,f1Jm) Im=l, 2, "', mi-l} , i=2, 3, "',j-I.

Then we choose mj =nl+l-nl where 1 is chosen as to satisfy (2) with 0
replaced by 1/2 min {d(fxo,f1Jm) Im=1,2, ···,mj-l}. Now the sequence {mA
so defined satisfies the requirements of the proposition.

THEOREM 2.2. If g:X-X is e-/-1Wnexpansive then each xoEX with fXoE
X f

g generates an e-f-isometric sequence under g.

Proof. Choose an f-iteration {fxn} of Xo satisfying Proposition 2. l.
Suppose there exist indices m, nand k such that d(fxm, fXn) <e and

o=d(fxm, fXn) -d(!Xm+k' fXn+k) *0.
Then we have

(3)

for

?c.d(fxm+l, fXn+l).

Also from (1) and Proposition 2. 1 it follows that for some {nj} and all 1

limj-oo f(Xl) nj=!imj-<X> fXnj+l=!Xl.

Hence positive integer i exists such that j?c.i implies

d(jxm+nj, !xm) <0/2 and d(fxn+nj, fXn) <0/2.

However,

d(fxm, fXn) ~d(jxm, fXm+n) +d(jxm+np fxn+n) +d(fxn+nj, fx,,)

<0/2 +d(fxm+nj, fXn+,,) +0/2,

which contadicts to (3) for nj?c.max(ni, k). This shows that 0=0 and our
proof is complete.

AB an immediate consequence of Theorem 2.2, we obtain the correspon­
ding statement concerning f-nonexpansive maps.

THEOREM 2.3. If g:X-X is f-1Wnexpansive then each xEX with fXE
X f

g generates an f-isometric sequence under g.

In case f = Ix Theorems 2. 2 and 2. 3 are reduced to results of Edelstein
[6].
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3. f-contractive maps

In this section, we consider some applications to f-contractive maps. We
need the following.

LEMMA 3.1. ([9J, Lemma 2. 1) Let f and g be commuting selfmaps of a
metric space X. If gN is f-contractive for some integer N>O and f, gN have"
a coincidence (EX, then f( is the unique common fixed point of f and g.

LEMMA 3. 2. Let f be a continuous selfmap of a metric space X, g: X-X,
and gN be f-contractive for some integer N>O. Then f and gN have a
coincidence xoE X iff Xo generates an f-isometric sequence under gN.

Proof. Suppose fxO=gNxo for some xoEX. Then there is an f-iteration
{fxn} ;;':0 of Xo under gN such that xn=xo for all n. It is readily seen that
{fxn} is an f-isometric sequence.

Conversely, if xoEX generates an f-isometric sequence {fxn} ;:0, then d:
(fxo, fXl) =d(fxh fxz). Suppose gNxo=fx(=tfx2=gNxl' Then

dUxh fxz) =d(gNxo, gNX1) <d(fxo, fXl) ,

which is a contradiction. Hence we have fXl = fxz, which implies fxo=
gNxO'

THEOREM 3. 3. A continuous selfmap f 0/ a metric space X has a fixed point
iff there is a map g:X -> X commuting with f such that gN is f-contractive for
some N>O and there is a point xoEX generating an I-isometric sequence under­
gN. Indeed, I and g have a unique common fixed point Ixo.

Proof. Suppose that ft;=7j for some 7jEX. Define g:X->X by gX=7j for
all x EX. Then the necessity follows trivially. The converse follows from
Lemmas 3. 1 and 3. 2.

From Theorems 2.3 and 3.3, we have

COROLLARY 3. 4. A continuous sel/map I 01 X has a fixed point iff there is
a map g:X-X commuting with / such that gN is I-contractive lor some N>O,
and XfgN"*if>. Indeed, 7jEX/

N
is a unique common fixed point 0/ f and g.

In case f=lx, Corollary 3.4 implies that a point of xg=X1/ is fixed un­
der g if g is contractive [5]. Furthermore, Theorem 3.5 and Corollaries.
3. 6, 3. 7, 3. 8 of [9J follow from Corollary 3.4. Note that Corollary 3. 8 of
[9J generalizes results of Rakotch [10J, of Boyd-Wong [2J, and of Jungck
[8J.

Suppose gNX cfX in Corollary 3.4. Since X/N "* if> for a compact space.
X, we have
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COROLLARY 3. 5 A continMUS selfmap f of a compact metric space X has a
.fixed point zjf there is a map g: X~X commuting with f such that gN is f­
.contractive for some N>O and gNXcfX. Indeed, f and g have a unique
..common fixed point.

Theorem 3. 4 of [9J is a consequence of Corollary 3. 5.

Note that Corollaries 3.4 and 3. 5 also follow from Theorem 2. 2 and
'Corollary 2. 3 of [9J.

For an e:-f-contractive map we have the following.

THEOREM 3.6. Let f be a continuous selfmap of X. If g: X-'>X is e:-f­
.l:ontractive, then for any xoEX with fxoEXfg there exists an f-iteration
{fxnl.;~o of Xo and an integer j>O such that fxo= fXj'

Proof. Since g is e:-f-nonexpansive, by Proposition 2.1, Xo has an f­
iteration {fxnl such that there exist i, j>O satisfying dCfxo, fx;) <c/2,
d(fxo, fXi+j) <e:/2. Note that Uxnl is e:-f-isometric from the proof of
Theorem 2. 2. Since

we have

dCfxi, fXi+j) =d(jXi+l, f Xi+j+l)'

'Suppose fxi::f=.fXi+j' Since g is e:-f-contractive, we have

d(fxi+l' fX;+j+l) =d(gxi' gXi+j) <d(fxi' fXi+j),

which is a contradiction. Therefore we have d(/x., fXi+j) =O<e: and,
hence, d(fxo, fXj) =d(fxi' fXi+j) =0.

Theorem 3.6 generalizes the fact that if g is e:-contractive and xE xg
then x is a periodic point of g [5J.

4. f-nonexpansive maps of eompact metric spaces

We adopt the following modification of the main theorem of Talman
[13].

THEOREM 4. 1. A continuous selfmap g of a compact Hausdoff space X has
4 fixed point iff there is a family a of selfmaps of X satisfying

(i) Ix is in the uniform closure of a, and
(ii) gh or hg has a fixed point in x for each h in a.
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Proof. If g has a fixed point, then;:]= {Ix} satisfies [(i) and (ii). For
the converse, simply follow the proof of Theorem 1 of [13J.

COROLLARY 4. 2. A continuous selfmap g of a compact Hausdorff space X has
a fixed point ijf there is an equicontinuous family :;} of selfmaps 0/ X satisfying

(i) Ix is in the pointwise closure of;:], and
(ii) gh or hg has a fixed point in X for each h in ;:].

Note that Guseman and Peters [7] essentially obtained Theorem 4. 1 and
Corollary 4. 2 for compact metric spaces and also gave examples which show
that certain hypothesis of 4. 1 and 4. 2 can not be relaxed.

They also obtained the following result [7J as a generalization of Smart's.
result [12J.

COROLLARY 4. 3. If the identity map of a compact metric space X is the­
Paintwise limit of contractive selfmaps of X, then each nonexpansive selfmap.
of X has a fixed point point.

Now we have the following main result in this section.

THEOREM 4.4. Let X be a compact metric space and f a continuous selfmap
of X. If Ix is the pointwise limt of contractive selfmaps of X commuting with
f, then each f-nonexpansive sel/map g of X commuting with / has a fixeil
point.

Proof. Let {hn} be a sequence of contractive selfmaps X which commute
with f. By a result of Edeltein [5J or Corollary 3. 4, each hn has a unique
fixed point X n in X. Moreover, hxn=xn implies fhnX fxn=hnfxm and he­
nce we have fxn=xn. Therefore the set F of fixed points of / in X is no­
nempty, and by the continuity of f, also compact. If g is f-nonexpansive
and commutes with f, it is immediate that g maps F into itself and g is
nonexpansive on F. New by applying Corollary 4. 3 to F we obtain our
result.

In case / = Ix theorem 4. 4 is reduced to Corollary 4. 3, and hence they
are equivalent.

COROLLARY 4. 5. Let X be a compact metric space and f a continuouS'
sel/map of X. Suppose there is a map F:XX[O, 1J ~ X which satisfies

(1) limt_l F(x, t) =x for any xEX,
(2) d(F(x,t), F(y,t»<d(x,y) for any x,yEX, X=FY, andanytE[O,l),.

and
(3) F(jx, t) -fF(x, t) for each xEX, tE[O,l).

Then each f-nonexpansive sel/map of X commuting with / has a fixed point.
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Proof. By (1), Ix is in the pointwise closure of :J= {htl where tE[O, 1)'
and ht=F( . ,t). By (2) ht is contractive for any tE[O, 1), and by (3) h~

commutes with f. Therefore, by Theorem 4. 4 our proof is complete.

Note that in case f=l x , Corollary 4.5 is reduced. to a result of Guseman
-Peters [7J and extend results in Talman [I3J and Dotson [3J, [4J.

A metric space X is called an S-spaee if there exists an Xo E X such that
for every tE (0, 1) there is a contractive selfmap ht of X satisfying

d(h::x, x) c::;; (l-t)d(xo,x)

for every xEX [lJ.

THEOREM 4.6. Let f be a continuous selfmap of a compact S-space X such
that htf=fht • Then any f-nonexpansive selfmp of X which commutes with f
has a fixed point.

Proof. Note that 'J = tilt ItE (0, 1)1 is a net which converges to Ix when
(0,1) is equipped with its usual order. Now our result follows from Theorem
4.4.

In case f = Ix Theorem4. 6 is reduced to a result of Baron and Matkowski
[lJ.

5. f -nonexpansive maps on weakly compact sets

In this section we consider f-nonexpansive maps on weakly compact su­
bsets of a Banach space. We need the following result of Jungck [8J Or

Corollary 3. 4.

LEMMA 5. 1. A continuous selfmap f of a complete metric space X has a
fixed point if[ there is an f-contraction g: X ~ X commuting with f such that g
X cfX. Indeed, f and g have a unigue common fixed point.

THEOREM 5.2. Let X be a weakly compact subset of a Banach space, and f
a continuous selfmap of X. Suppose there is a map F:XX[O, IJ ~ X which
satisfies

(1) limt-l F (x, t) =x for each x EX,
(2) there is a selfmap if> of (0, 1) such that for every x, y E X and for

every tE (0,1), we have

lIF(x, t) -F(y, t) 11 C::;;if>(t) \lx-y\l, and

(3) F(jx, t)=fF(x,t)!oreveryxEX, tE(O,I).
Then each f-nonexpansive map g;X----"X commuting with f such that gXcfX
has a fixed point.
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Proof. For each n=l, 2, .", let t,,=n/ (n+ 1) and define hn=F(·, t).
Then h,. converges uniformly to Ix. In view of Theorem 4.1, it suffices to
-show that gh,. has a fixed point for any n. For any x, yE X, we have

Ilg(hnx) - g(hny) 1/:::;; Ilf(h,..T) - f(h"y) 1/ = IIh"(jx) -h,,(!y) 1I~~(t,,) Ilfx-hl/.
Since ~ (t,,) <1 for every n, ghn is an f-contraction on X relative to the
norm. But X is weakly compact, hence norm closed, and hence norm com­
plete. Since gh" commutes with f and gh"XcfX, gh" has a fixed point by
Lemma 5.1.

In case /=Ix, 5.2 is reduced to results of Dotson [3J, [4J and of
Talman [13J.

6. f-nonexpansive maps on starshaped sets

Let E be a metric linear space with translation invariant metric d [l1J.
A subset X of E is said to be starshaped if there exists xoE X such that
.tx+ (I-t)xoEX for every tE[O, 1J, xEX. Let f) denote the zero element
of E. A metric d for E is said to be strictly monotone if d(O, tx) <d(O, x)
for every X=FO and tE[O, 1).

THEOREM 6. 1. Let E he a metric linear space with strictly monotone metric
·d. Let X he a compact subset of E starshaped at xoE X and f a continuous
.selfmap of X satisfying f(tx+ (l-t)xo) =t/x+ (l-t)xo for any xEX and
tE[O, 1). Then every f-nonexpansive selfmap of X which commutes with / has
·a fixed polnt.

Proof. Define a map F:XX[O, 1]~ X by F(x, t) =tx+ (l-t)xo. Then for
each XEX, limt-l F(x, t) =x and Fefx, t) =tfx+ (l-t)xo=fF(x, t) for each
.xEX, tE[O, 1). Given x,yEX, X=FY, and tE[O, 1), we have

d(F(x,t), F(Y,t»=d(tx, ty)=d«(), t(x-y»

<d(O, x-y) =d(x, y).

Therefore, from Corollary 4. 5 our proof is complete.

A p-norm (OspSl) on a linear space E is a nonnegative function 11 11

·on XX X which satisfies IIxll =0 iff x=(), IIx+YII s IIxll + IIYII, I/}.xll = IAIPllxl!
for each x, yE X and each scalar J.. Since each p-norm generates a trans­
lation invariant metric d(x,y) =lIx-y/l which is strictly monotone, we have
the following from 6. 1.

COROLLARY 6.2. Let E be a p-normed space, X a compact subset of E
.starshaped at xoE X, and f a continuous selfmap of X satisfying
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f(tx+ (l-t)xo) =tfx+ (l-t)xo
for any xEX and tE[O, 1). Then every f-nonexpansive selfmap of X which
commutes with f has a fixed point.

In case where d is not strictly monotone, we have the following.

THEOREM 6.3. Let E be a metric linear space, and suppose that d(O, tx) :::;
d(O,x) whenever It I:::;1. Let X be a compact subset of E starshaped at xoE
X and f a continuous selfmap of X satisfying f(tx+ (l-t)xo) =tfx+ Cl -t)xo
for any xEX and t E[O, 1). If a selfmap g of X commutes with f on X
and satisfies d(tgx, tgy) :::;d(tfx, tfy) for any x,yEX and tE[O,lJ, then
g has a fixed point.

Proof. The function p(x,y) = 1d(tx, ty)dt is an equivalent metric on X.

Since g is nonexpansive with respect to p, the result follows from 6.l.

In case f=l x , 6.1, 6.2 and 6.3 are reduced to results of Guseman­
Peters [7J.
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