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ON fF-NONEXPANSIVE MAPS

By SeHIE PARK

1. Introduction

Let (X,d) be a metric space and f a continuous selfmap of X. A self-
map g of X is said to be f-nonexpansive (e—f~nonexpansive for some £>0)
if

¢y d(gz, gy) <d(fz, fy)
for all z,ye X (with d(fr, fy)<le). If d(gz,gy) <<d(fz,fy) for any z,y< X,
gzx+gy (for any z,ye X with gr+#gy, d(fz,fy)<e for some ¢>0), then g
is said to be f-contractive (e—f-contractive) [9]. A selfmap g of X is called
an f-contraction if there exists an a<[0,1) such that d(gz, gv) <ad (fz, f¥)
for any z,yeX. When f=1x, the identity map of X, those are reduced.
to usual nonexpansive maps, contractive maps, or contractions (cf. [5],[6],
etc.)

Let g be a selfmap of X such that, for some z= X, the sequence {g"z}
of iterates has a subsequence which converges to a point y&X. Then y is
- fixed if g is contrative, periodic if g is e—contractive [5]. There are also cor-
responding generalizations for nonexpansive and e-nonexpansive maps [6].

Our first purpose in this paper is to extend those important results of M.
Edelstein to (e~)f-nonexpansive or (&-)f-contractive maps in Sections 2 and.
3. In the proofs of main theorems, we make use of Edelstein’s methods.
Consequently, theorems on fixed points and periodic points are obtained,
and some of main results in [9] is also extended.

In recent works of Dotson [3],[4], of Guseman and Peters [7], and of
Talman [13], results concerning the existence of fixed points of nonexpansi-
ve maps on certain classes of compact nonconvex sets of metric (linear)
spaces are obtained.

Our second purpose of this paper is to extend those results to f~nonexpan-
sive maps. Our main tools are fixed point criteria for compact Hausdorff
spaces in [13] and for metric spaces in [7]. In Section 4, f-nonexpansive
maps on compact metric spaces are considered. Section 5 deals on weakly
compact subsets of Banach spaces, and Section 6 on starshaped compact
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subsets of metric linear spaces.

2. f-nonexpansive maps

Let f be a continuous selfmap of X. Given a point 2z X and a map
g: X—X an f-iteration of xo under g is sequence {fz,}._o given recursively
by the rule fr,=gr,1 for n>1. If gXfX then every point of X has an
_f-iteration under g (not necessarily unique).

Given a selfmap g of X, a point y€ X is said to belong to the g-closure
of X, yeX,%, if there is a point & X and an f-iteration {fy,} e of 7
such that a subsequence of {f7,} converges to y (cf.[6]).

A sequence {z,} =, in X is said to be isometric (e-isometric) if d(zp, z,)
=d(xp+p, Zp+p) for all m,n, £=0,1,2, - (with d(z,,z,)<le) [5]. A point
o€ X is said to generate an f-isometric (e-f-isometric) sequence under g if
there is an isometric (e~isometric) f-iteration {fz,} of zy (cf.[6]).

Using those concepts we extend Edelstein’s results in [6] as follows:

PROPOSITION 2.1. If g:X—X is e—f-nonexpansive and ro&X with fro€
X/*, then there exists an [-iteration {fz,} of =zo such that a subsequence
{fZn;} o1 comverges to fxo

Proof. Since fxo= X%, there exists a point 7,& X and an f-iteration {fz,}
of 7o such that fro=lim;_. fi,, for some {n;}. I fy,=fzo for some m, we
have d(gfm gz0) < d(fNm>Fro) =0 and, hence, gh,=gzo. Hence, {f,}.2.
is an f-iteration of =z, by putting Yu+r=xz (21, and {m;} = {n;—m},
n>m, is a sequence satisfying lim;.,fz,;=fz,. Otherwise, let 6 be a
fixed number such that 0 <d<le. Then an i=i(d) exists so that

(2) d(fl’o, fﬂﬂ{+j) <5/4 (.7‘—'“0, 1, 2, “').

For such an i and for arbitrary k(k=1,2, ) we have
d(fﬂn,-, fﬂﬂﬁk) <d(fzo, S +d(fzo, fﬂn;+,,)<5/2.
Now for any f-iteration {fz,} of x,, we obtain from (2) for j=0 and (1)

5/4>d(f10: fﬂn,‘) 2 d(g-'fo: gﬂn,-) =d(fxla f7]n;+1)

.......................................

= d(fxu,wl—uga fﬂu&k) -

Hence
d(fz0, [2n,,y-n;) S 4205 1) +8 P Fln)) +AF s f2a, -a,)
<6/4 +5/2+0/4=6.
We put my=n;+;—n;. Suppose that my<lmy<---<m;-; are already defined
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and that
d(fx(b fﬂm,’) S]-/2 min {d(fxo, fﬂm) lm:l, 2: MY mi*l} ] Z=2, 3, "':j"_l-

Then we choose m; =n;+;—n; where Iis chosen as to satisfy (2) with 6
replaced by 1/2 min {d(fxo, fn) Im=1,2, ---,m;-1}. Now the sequence {m;}
so defined satisfies the requirements of the proposition.

THEOREM 2.2. If g:X—X is e~f~nonexpansive then each zo€ X with fr,&
X® generates an e~f—isometric sequence under g.

Proof. Choose an f-iteration {fz,} of z, satisfying Proposition 2.1.
Suppose there exist indices m,» and k such that d(fz,, fz,)<le and

0=d(fzp, fz,) —d([xpriy Sxawz) 70.
Then we have
A3) Ay Fx,) ~d(fzmeis [Ta0) 20 >0 (I2F)
for
e2d(fzp, f25) 2d(g2n, g%2) =d(fTps1, f2411)

.................................

2d(fxm+1, fZar1)-
Also from (1) and Proposition 2.1 it follows that for some {z;} and all /
limj., f(xp) o;=limj.., fr,;s1=Sx;.
Hence positive integer i exists such that j>7 implies
A(frpiny Frm)<0/2 and d(fzyin;, fr,)<0/2.
However,
A(fzm [2,) SA(fxpy [Tpin) +A(FTminjy fnin) +d(F1yin, fr)
<8/2 +d(Tminp STutny) +0/2,
which contadicts to (3) for »;=>max(n;, %). This shows that =0 and our
proof is complete.
As an immediate consequence of Theorem 2.2, we obtain the correspon-
ding statement concerning f-nonexpansive maps.
THEOREM 2.3. If g:X—X is f-nonexpansive then each z€X with fzxe
X% genmerates an f-isometric sequence under g.

In case f=1x Theorems 2.2 and 2.3 are reduced to results of Edelstein

{61
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3. f-contractive maps

In this section, we consider some applications to f-contractive maps. We:
need the following.

Lemva 3.1. (91, Lemma 2.1) Let f and g be commuting selfmaps of a
metric space X. If gV is f-contractive for some integer N >0 and f, gV have
a coincidence (=X, then f{ is the unique common fized point of [ and g.

LEMMA 3.2. Let f be a continuous selfmap of a metric space X, g:X—X,
and gN be f-contractive for some integer N >0. Then f and g¥ have a
coincidence xo€ X iff =z, generates an f-isometric sequence under g¥.

Proof. Suppose fro=g¥z, for some zo& X. Then there is an Jf-iteration
{fx,) 2o of xp under g¥ such that z,=x, for all ». It is readily seen that.
{fz,} is an f-isometric sequence.

Conversely, if zo&X generates an f-isometric sequence {fz,};, then &’
(fzy, fr)=d(fx;, fx3). Suppose gVzo=fz#fr,=gNz;. Then

d(fxla fzz) =d(ng0, gNzl) <d(f.’1.‘(), fxl) ’

which is a contradiction. Hence we have fr;=fz;, which implies fz,=
gN Tog.

THEOREM 3.3. A continuous selfmap f of a metric space X has a fixed point
iff there is a map g:X — X commuting with f such that gV is f-contractive for-
some N >0 and there is a point x90&E X generating an f—isometric sequence under-
g, Indeed, [ and g have a unique common fized point fz,.

Proof. Suppose that fyp=17 for some 7€ X. Define g:X—X by gz=7 for
all zeX. Then the necessity follows trivially. The converse follows from
Lemmas 3.1 and 3.2.

From Theorems 2.3 and 3.3, we have

COROLLARY 3.4. A continuous selfmap f of X has a fized point iff there is
a map g:X—X commuting with f such that gV is f-comtractive for some N >0
and X ngiqS. Indeed, n€X ng is a unique common fized point of f and g.

In case f=1x, Corollary 3.4 implies that a point of X*=X, *is fixed un-
der g if g is contractive [5]. Furthermore, Theorem 3.5 and Corollaries.
3.6, 3.7, 3.8 of [9] follow from Corollary 3.4. Note that Corollary 3.8 of
[97] generalizes results of Rakotch [107], of Boyd-Wong [2], and of Jungck
8.

Suppose g¥XcfX in Corollary 3.4. Since X ng¢¢ for a compact space.
X, we have
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COROLLARY 3.5 A continuous selfmap f of a compact metric space X has a
Jized point iff there is a map g:X—X commuting with [ such that gN is f-
contractive for some N >0 and gNXCfX. Indeed, f and g have a unique
common fixed point.

Theorem 3.4 of [9] is a consequence of Corollary 3.5.

Note that Corollaries 3.4 and 3.5 also follow from Theorem 2.2 and
Corollary 2.3 of [9].

For an e-f-contractive map we have the following.

THEOREM 3.6. Let f be a continuous selfmap of X. If g:X—X is e-f-
contractive, then for any zo€X with fro€X;® there exists an f-iteration
Uz} W20 of zy and an integer ;>0 such that fry=fz;.

Proof. Since g is e~f-nonexpansive, by Proposition 2.1, z, has an f-
iteration {fz,} such that there exist i, ;>0 satisfying d(fzy, fz;) <e/2,
d(fzo, fr;+;)<<e/2. Note that {fz,} is e-f-isometric from the proof of
Theorem 2. 2. Since

d(fzyy frivj) <d(fzo, frisj)<le,
we have
d(fz;, fzirj) =d(fxiv1, fxivjrl)-
‘Suppose fz;#fz;+;. Since g is e-f-contractive, we have
d(fx;+1 fxi+j+1) $d<g~"3i, g$i+j) <d(f~’5i, fxi+j) »

which is a contradiction. Therefore we have d(fz; fr;+;)=0<e and,

hence, d(fzo, fz;)=d(fx;, fzi+;)=0.

Theorem 3.6 generalizes the fact that if g is e-contractive and z&X*
then z is a periodic point of g [5].

4. f-nonexpansive maps of compact metric spaces

We adopt the following modification of the main theorem of Talman

[13].

THEOREM 4.1. A continuous selfmap g of a compact Hausdoff space X has
a fixed point iff there is a family F of selfmaps of X satisfying

(1) 1x is in the uniform closure of &, and

(ii) gh or hg has a fired point in x for each h in 3.
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Proof. If g has a fixed point, then F={1x} satisfies [(i) and (il). For
the converse, simply follow the proof of Theorem 1 of [13].

COROLLARY 4.2. A continuous selfmap g of a compact Hausdorff space X has
a fized point iff there is an equicontinuous family F of selfmaps of X satisfying

(1) 1x is in the pointwise closure of &, and

(ii) gh or hg has a fized point in X for each h in .

Note that Guseman and Peters {7] essentially obtained Theorem 4.1 and
Corollary 4.2 for compact metric spaces and also gave examples which show
that certain hypothesis of 4.1 and 4.2 can not be relaxed.

They also obtained the following result [77] as a generalization of Smart’s
result [127.

COROLLARY 4.3. If the identity map of a compact metric space X is the
pointwise limit of contractive selfmaps of X, them each nonexpansive selfmap
of X has a fized point point.

Now we have the following main result in this section.

THEOREM 4.4. Let X be a compact metric space and [ a continuous selfmap
of X. If 1x is the poimtwise limt of contractive selfmaps of X commuting with
S, then each f-nomexpansive selfmap g of X commuting with f has a fized
point,

Proof. Let {h,} be a sequence of contractive selfmaps X which commute
with f. By a result of Edeltein [5] or Corollary 3.4, each 4, has a unique
fixed point z, in X. Moreover, kz,==z, implies fh,x=fx,=h,fx,, and he-
nce we have fz,=z,. Therefore the set F of fixed points of f in X is no-
nempty, and by the continuity of f, also compact. If g is f-nonexpansive
and commutes with f, it is immediate that g maps F into itself and g is
nonexpansive on F. New by applying Corollary 4.3 to F we obtain our
result.

In case f=1x theorem 4.4 is reduced to Corollary 4.3, and hence they
are equivalent.

COROLLARY 4.5. Let X be a compact metric space and f a continuous
selfmap of X. Suppose there is a map F:XX[0,1]— X which satisfies

1) lim,q Flz,t) =z for any z€ X,

2) d(F(z,t), F(»,8))<d(z,y) for any z,yEX, z+y, and any t€[0,1),
and

) F(fx, ©)=fF(x,t) for each z€X, t<[0,1).
Then each f-nonexpansive selfmap of X commuting with f has a fixed point.
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Proof. By (1), 1x is in the pointwise closure of §={k,} where &[0, 1)
and h,=F(-,t). By (2) h, is contractive for any ¢t€[0,1), and by (3) &,
commutes with f. Therefore, by Theorem 4.4 our proof is complete.

Note that in case f=1x, Corollary 4.5 is reduced to a result of Guseman
-Peters [7] and extend results in Talman [13] and Dotson 3], [4].

A metric space X is called an S-space if there exists an zy€ X such that
for every t= (0,1) there is a contractive selfmap k, of X satisfying

d(hz, z)<(1—t)d(zo,x)
for every z&X [1].

THEOREM 4.6. Let f be a continuous selfmap of a compact S—space X such
that h,f=fh,, Then any f-nonexpansive selfmp of X which commutes with f
has a fized point.

Proof. Note that F={h,)t= (0,1)} is a net which converges to 1x when

(0,1) is equipped with its usual order. Now our result follows from Theorem
4.4.

In case f=1x Theorem4. 6 is reduced to a result of Baron and Matkowski
1.

5. f-nonexpansive maps on weakly compact seis

In this section we consider f-nonexpansive maps on weakly compact su-
bsets of a Banach space. We need the following result of Jungck [87 or
Corollary 3.4.

LemMA 5.1. A continuous selfmap f of a complete metric space X has a
fixed point iff there is an f-contraction g:X — X commuting with f such that g
XcfX. Indeed, f and g have a unigue common fized point.

THEOREM 5.2. Let X be a weakly compact subset of a Banach space, and f
a continuous selfmap of X. Suppose there is a map F:XX[0,1]— X whick
satisfies

1) lim,.; F(z,t) =2 for each z €X,

(2) there is a selfmap ¢ of (0,1) such that for every x,y €X and for
every t< (0,1), we have

NF(z, &) —F(y, )| <d (O llx—yll, and

(3) F(fz, ©)=fF(z,t) for every z€X, t<(0,1).
Then eack f-nonexpansive map g:X—X commuting with f such that gXcfX
has a fized point.
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Proof. For each n=1,2,---, let t,=n/(n+1) and define A,=F(-,t).
Then &, converges uniformly to 1x. In view of Theorem 4.1, it suffices to
show that gh, has a fixed point for any n. For any z,yc X, we have

g (ha) —g (Ra) | < 1f (hat) —f (Ra) || = llow () — B (PN (20) || fz— ¥l

Since ¢(¢,) <1 for every n, gh, is an f-contraction on X relative to the
norm. But X is weakly compact, hence norm closed, and hence norm com-
plete. Since gh, commutes with f and gh,XCfX, gh, has a fixed point by
Lemma 5.1.

In case f=1%, 5.2 is reduced to results of Dotson [3], [4] and of
“Talman [13].

6. f-nonexpansive maps on starshaped sets

Let E be a metric linear space with translation invariant metric d [117.
A subset X of E is said to be starshaped if there exists z,&X such that
tx+ (1—t)zpe X for every t<[0,1], zX. Let 9 denote the zero element
of E. A metric d for E is said to be strictly monotone if d(§, tz)<d(#, z)
for every z#6 and ¢<[0,1).

THEOREM 6.1. Let E be a metric linear space with strictly monotone metric
d. Let X be a compact subset of E starshaped at zo= X and f a continuous
selfmap of X satisfying f(tz+ (1—8)xo) =tfz+ (1—8)zy for any z€X and
t€[0,1). Then every f-nonexpansive selfmap of X which commutes with f has
-a fixed point.

Proof. Define a map F:Xx[0,1] — X by F(z, t) =tz+ (1—%)xg. Then for
each ze€ X, lim,.; F(z,£) =z and F(fz,t) =tfz+ (1 —t)zo=FF(z,t) for each
z€X, t€[0,1). Given z,y€X, z+#y, and ££[0,1), we have

d(F(z,t), F(y,t))=d(tz, ty)=d®, t(z—3))
<d(0: x——y) :d(xy y) -

“Therefore, from Corollary 4.5 our proof is complete.

A p-norm (0<p<1) on a linear space E is a nonnegative function || |

on XXX which satisfies ||z||=0 iff z=0, |lz+yl|<lzll+l»l], lAzl=]2)2)]x||
for each r,y=X and each scalar A. Since each p—norm generates a trans-
lation invariant metric d(z,y) =|lz—y|| which is strictly monotone, we have

the following from 6.1.

COROLLARY 6.2. Let E be a p—normed space, X a compact subset of E
starshaped at o= X, and f a continuous selfmap of X satisfying
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flz+ (A—2)zo) =tfz+ (1) zo
Jor any z€X and t&[0,1). Then every f-nonexpansive selfmap of X which
commutes with [ has a fixed point.

In case where d is not strictly monotone, we have the following.

THEOREM 6.3. Let E be a metric linear space, and suppose that d(6, tx) <
d(0, r) whenever |t|<1. Let X be a compact subset of E starshaped at z,<
X and f a continuous selfmap of X satisfying flz+ (1 —2t)zy) =tfx+ A —t)zy
Jor any z€X and t €[0,1). If a selfmap g of X commutes with f on X
and satisfies d(tgz, tgy) <d(tfz, tfy) for any z,yeX and t€[0,1], then
g has a fized point.

Proof. The function p(z,y) =J1d (tx, ty)dt is an equivalent metric on X.
Since g is nonexpansive with respect to p, the result follows from 6. 1.

In case f=1x, 6.1, 6.2 and 6.3 are reduced to results of Guseman-
Peters [7].
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