A GAUSS MAP ON HYPERSURFACES OF SUBMANIFOLDS IN EUCLIDEAN SPACES

By C. THAS

In this paper we consider a hypersurface N of a submanifold \overline{N} of the Euclidean space E^m . Let ξ be a unit normal vector field on $U \subset N$ in \overline{N} . If S^{m-1} is the hypersphere of E^m with centre the origin $(0, \dots, 0)$ and with radius 1 and if $\xi = \sum_{i=1}^m a^i \frac{\partial}{\partial x^i}$, where x^1, \dots, x^m is the standard coordinate system of E^m , then the Gauss map of N in \overline{N} is given by $\eta: U \to S^{m-1}$; $p \to (a^1(p), \dots, a^m(p))$. Let $\overline{\omega}$ (resp. ω) be a volume element of the spherical image of \overline{N} (resp. of N) at the point $\eta(p)$ (resp. at the point p). In section 3, we look for the connection between $\overline{\omega}$ and ω in the following cases: (a). the vector field ξ is parallel in the normal bundle N^1 , (b). N is totally geodesic in E^m , and (c). N is totally geodesic in \overline{N} and ξ determines at each point an asymptotic direction of \overline{N} .

1. Introduction

We shall assume throughout that all manifolds, maps, vector fields, etc. \cdots are differentiable of class C^{∞} .

Suppose that \overline{N} is a (n+1)-dimensional submanifold of the Euclidean space E^m (m>n+1) and that N is a n-dimensional submanifold (hypersurface) of \overline{N} . Consider in a neighborhood U of a point $p \in N$ a unit normal vector field ξ on N in \overline{N} . The standard Riemann connection of E^m and the Riemann connections of \overline{N} and N are respectively denoted by \overline{D} , \overline{D} and D.

The Weingarten map L of N in \overline{N} is given by

$$\overline{D}_x \xi = L(X), \quad \forall X \in N_p,$$
 (1.1)

and det L is the Gauss curvature at the point p of the hypersurface N of \overline{N} . If Y and Z are vector fields of N, then we have

$$\overline{D}_{Y}Z=D_{I}Z+V'(Y,Z),$$

where V'(Y,Z) is the second fundame stal form of N in \overline{N} . Moreover, we find

(the metric tensor is denoted by <, >)

$$\bar{D}_{Y}Z=D_{Y}Z-\langle L(Y), Z\rangle\xi.$$
 (1.2)

Let U and W be vector fields of \overline{N} , then

$$\bar{D}_U W = \bar{D}_U W + \bar{V}(U, W), \qquad (1.3)$$

where $\overline{V}(U, W)$ is the second fundamental form of \overline{N} in E^m . From (1.2) and (1.3) it follows that

$$\bar{D}_{Y}Z = D_{Y}Z - \langle L(Y), Z \rangle \xi + \bar{V}(Y, Z).$$
 (1.4)

But, if V(Y,Z) is the second fundamental form of \overline{N} in E^m , then we also have

$$\bar{D}_{Y}Z = D_{Y}Z + V(Y, Z), \qquad (1.5)$$

and so, because of (1.4) and (1.5) we find that for each two vector fields Y and Z of N

$$V(Y,Z) = -\langle L(Y), Z \rangle \xi + \overline{V}(Y,Z).$$
 (1.6)

The equation of Weingarten of N in E^m , with respect to the unit normal field $\hat{\xi}$ is given by

$$\bar{D}_{X}\xi = -(A_{\varepsilon}(X)) + D_{X}^{\perp}\xi, \quad \forall X \in N_{\rho}, \tag{1.7}$$

where A_{ξ} determines a self adjoint linear map in the tangent spaces of N and D^{\perp} is a metric connection in the normal bundle N^{\perp} . We also have

$$\bar{D}_{X}\xi=\bar{D}_{X}\xi+\bar{V}(X,\xi)$$

or

$$\bar{D}_X \xi = L(X) + \bar{V}(X, \xi). \tag{1.8}$$

From (1.7) and (1.8) it follows that

$$L(X) = -(A_{\xi}(X)) \tag{1.9}$$

and

$$D_{\overline{X}}^{\perp}\xi = \overline{V}(X,\xi), \quad \forall X \in N_{P}.$$
 (1.10)

Because of (1.9) we have det $L=\pm \det A_{\xi}$, which means that the Gauss-curvature at the point p of the hypersurface N of \overline{N} is equal to $\pm K(p, \xi_p)$, where $K(p, \xi_p)$ is the Lipschitz-Killing curvature at p of N in E^m with respect to ξ_p .

Suppose that \overline{R} is the curvature tensor of \overline{N} and that U_1, \dots, U_4 are \overline{N} -vector fields, then the Gauss equation of \overline{N} in E^m is given by

$$< U_1, \overline{R}(U_2, U_3) U_4> = < \overline{V}(U_2, U_1), \overline{V}(U_3, U_4)>$$

$$-< \overline{V}(U_2, U_4), \overline{V}(U_3, U_1)>.$$
(1.11)

If $X \in N_p$, then the Riemann curvature of \overline{N} at p in the two-dimensional direction (X, ξ_p) is given by

$$\overline{K}(X,\xi_p) = \frac{\langle X, \overline{R}(X,\xi_p)\xi_p \rangle}{\langle X, X \rangle},$$

and because of (1.11),

$$\langle X, \overline{R}(X, \xi_p) \xi_p \rangle = \langle \overline{V}(X, X), \overline{V}(\xi_p, \xi_p) \rangle - \langle \overline{V}(X, \xi_p), \overline{V}(X, \xi_p) \rangle.$$

$$(1.12)$$

Let Y and Z be N-vector fields, then it follows from (1.11) that $\langle Y, \overline{R}(Z,\xi)\xi \rangle$ determines a 2-covariant symmetric N-tensor field. Suppose that the principal directions of this tensor field are locally (i. e. in the domain of the unit normal field ξ) given by the orthonormal base field e_1, \dots, e_n of N. Then $\langle (e_i)_p, \overline{R}((e_i)_p, \xi_p)\xi_p \rangle$ $(i=1, \dots, n)$ are the extremal values of the Riemann curvatures of \overline{N} at p in the two-dimensional directions of \overline{N}_P which contain ξ_P (or, in other words, of the Riemann curvatures $\overline{K}(X, \xi_P)$, $\forall X \in N_P$).

DEFINITION. The total normal Riemann curvature of \overline{N} at the point $p \in N$ is given by

$$\mathcal{A} = \prod_{i=1}^{n} \langle (e_i)_p, \overline{R}((e_i)_p, \xi_p) \xi_p \rangle.$$

2. The Gauss map

Suppose that x^1, \dots, x^m is the standard coordinate system of E^m , with coordinate vector fields $\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^m} \cdot S^{m-1}$ is the hypersphere of E^m with centre the origin $(0, \dots, 0)$ and with radius 1. For the unit normal vector field ξ , with domain U, we have $\xi = \sum_{i=1}^m a^i \frac{\partial}{\partial x^i}$ and a^i $(i=1, \dots, m)$ are C^∞ functions over U.

DEFINITION. The Gauss map of N in \overline{N} is given by

$$\eta: U \to S^{m-1}; \quad p \to (a^1(p), \dots, a^m(p)).$$

Let $X \in N_p$ and consider a curve $\sigma :]-a, +a[\to N]$ such that $\sigma(o) = p$ and $T_{\sigma(o)} = X$. Then $\eta \circ \sigma$ is a curve on S^{m-1} and we have

$$\eta_{*}(X) = T_{\eta \circ \sigma(o)} = \sum_{i=1}^{m} \frac{da_{o}^{i}\sigma}{dt} (o) \left(\frac{\partial}{\partial x^{i}}\right)_{\eta(p)}$$
$$= \sum_{i=1}^{m} T_{\sigma(o)} (a^{i}) \left(\frac{\partial}{\partial x^{i}}\right)_{\eta(p)}$$

·or

$$\eta_*(X) = \sum_{i=1}^m X(a^i) \left(\frac{\partial}{\partial x^i} \right)_{\eta(p)}. \tag{2.1}$$

We also find $\bar{D}_X \xi = \bar{D}_X \left(\sum_{i=1}^m a^i \frac{\partial}{\partial x^i} \right) = \sum_{i=1}^m X(a^i) \left(\frac{\partial}{\partial x^i} \right)_p$ and thus, because of (1.7) and (1.8),

$$-(A_{\xi}(X)) + D_{X}^{\perp} \xi = L(X) + \overline{V}(X, \xi) = \sum_{i=1}^{m} X(a^{i}) \left(\frac{\partial}{\partial x^{i}}\right)_{p}$$
 (2.2)

3. a. The vector field ξ is parallel in the normal bundle N^{\perp} .

In this case we have $D_X^{\perp}\xi=0$, $\forall X\in N_p$ and $\forall p\in U$, or

$$L(X) = \sum_{i=1}^{m} X(a^{i}) \left(\frac{\partial}{\partial x^{i}} \right)_{p}, \quad \forall X \in N_{p} \text{ and } \forall p \in U.$$
 (3.1)

The variable point with coordinates $(a^1(q), \dots, a^m(q))$, $q \in U$ describes a submanifold S of S^{m-1} and dim $S \leq n$; S is the spherical image of N in the neighborhood U of the point p.

We restrict ourselves to the case det $L\neq 0$ at the point p.

THEOREM 1. Suppose the ω is a volume element of the spherical image S at the point $\eta(p)$ and that ω is a volume element of N at the point p, then

$$\eta^*(\bar{\omega}) = + (\det L)\omega$$
.

Proof. Because of (2.1) and (3.1), we know that the vectors $\eta_*(X)$ and L(X), $\forall X \in N_p$ have the same components with respect to the coordinate bases $\frac{\partial}{\partial x^1}$, ..., $\frac{\partial}{\partial x^m}$ at the points $\eta(p)$ and p. But $\det L \neq 0$ at p and therefore η_* is a bijection of N_p on $S_{\eta(p)}$. In this case S is n-dimensional (moreover there exists a neighborhood of p in which η is a diffeomorphism). Let X_1, \dots, X_n be an orthonormal set of eigenvectors of L at p and denote the dual forms by $\omega_1, \dots, \omega_n$. Then $\eta_*(X_1), \dots, \eta_*(X_n)$ form an orthogonal base of $S_{\eta(p)}$. Consider the orthonormal base

$$\eta_*(X_i)/\langle L(X_i), L(X_i)\rangle^{1/2}, i=1,\dots,n$$

and denote the dual forms by $\bar{\omega}_1, \dots, \bar{\omega}_n$. If ρ_i $i=1, \dots, n$ are the eigenvalues

of L at p, then

$$< L(X_i), L(X_i) > 1/2 = |\rho_i| i=1, \dots, n.$$

Thus we find $\eta^*(\bar{\omega}_i) = |\rho_i|\omega_i$ $i=1,\dots,n$ and we get

$$\eta^*(\bar{\omega}_1 \wedge \cdots \wedge \bar{\omega}_n) = \eta^*(\bar{\omega}_1) \wedge \cdots \wedge \eta^*(\bar{\omega}_n) = |\rho_1 \cdots \rho_n| \omega_1 \wedge \cdots \wedge \omega_n = |\det L| \omega_1 \wedge \cdots \wedge \omega_n,$$
 which has to be proved.

REMARKS.

- 1. In a classical way one should formulate the statement of Theorem 1 as follows: if the vector field ξ is parallel in the normal bundle N^{\perp} , then the Gauss curvature at the point p of N in \overline{N} or the Lipschitz-Killing curvature $K(p, \xi_p)$ of N is equal to the ratio of volume element of the spherical image of N and the volume element of N at p.
- 2. If det L=0 at p, then dim S < n in a neighborhood of p, or dim S=n, but in this case the function $\eta^*: F^1(S_{\eta(p)}) \to F^1(N_p)$ (F^1 means the vector space of 1-forms) is no more a bijection and then $\eta^*(\bar{\omega}) = 0$. Thus we can say that theorem 1 remains true for det L=0.
- 3. Suppose that \overline{N} is a hypersurface of E^m , with unit normal vector field τ and with Weingarten map \overline{L} , then we have

$$\overline{V}(X,\xi_p) = -\langle \overline{L}(X), \xi_p \rangle \tau_p.$$

And therefore ξ is parallel in the normal bundle N^{\perp} iff $\bar{L}(X) \perp \xi_p$, $\forall X \in N_p$ and $\forall p \in U$, i.e., ξ determines at each point $p \in U$ a principal direction of the hypersurface \bar{N} .

EXAMPLES

- 1. Consider any hypersurface N of the (n+1)-dimensional Euclidean space $E^{n+1} = \overline{N} \subset E^m$ (m > n+1). Then the (local) normal unit vector field ξ (or $-\xi$) of N in E^{n+1} is parallel in the normal bundle N^{\perp} and we find the well-known geometric interpretation for the Gauss curvature of a hypersurface of an Euclidean space.
 - 2. Consider in E^m (m>4) the sphere N with parametric representation $x^1=a\cos u\cos v$, $x^2=a\cos u\sin v$, $x^3=a\sin u$, $x^j=0$ $j=4,\cdots,m$, a>0.

The vector field ξ with components $\left(\frac{\cos u \cos v}{\sqrt{2}}, \frac{\cos u \sin v}{\sqrt{2}}, \frac{\sin u}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, \dots, 0\right)$ is clearly a C^{∞} normal unit vector field on N and it is parallel

in the normal bundle N^{\perp} . Consider the manifold \overline{N} , represented by

$$x^{1}=a \cos u \cos v + \frac{k}{\sqrt{2}} \cos u \cos v,$$

$$x^{2}=a \cos u \sin v + \frac{k}{\sqrt{2}} \cos u \sin v,$$

$$x^{3}=a \sin u + \frac{k}{\sqrt{2}} \sin u,$$

$$x^{4}=\frac{k}{\sqrt{2}},$$

Then N is a hypersurface of \overline{N} and it is at once clear that the relative total curvature of N with respect to ξ is equal to $1/2a^2$ at each point of N, while it is easy to see that we also have $\eta^*(\omega) = \pm \omega/2a^2$.

b. N is totally geodesic in E^m

 $x^s=0$, $s=5, \dots, m$ and $k \in \mathbb{R}$.

In this case we have V(Y,Z)=0, for each two N-vector fields. From (1.6) it follows that

L=0 (i. e. N is totally geodesic in \overline{N}) and $\overline{V}(Y,Z)=0$. Because (1.12) we have

$$\overline{K}(X,\xi_p) = -\frac{\langle \overline{V}(X,\xi_p), \overline{V}(X,\xi_p) \rangle}{\langle X, X \rangle}, \quad \forall X \in N_p.$$

These Riemann curvatures of \overline{N} are thus always negative or zero. From now on we consider only the points $p \in N$ for which the total normal Riemann curvature of \overline{N} is not zero (for the case $\mathcal{K}=0$, we can make an analogous remark as in 3a.). Since zero is an extremal value for the Riemann curvatures $\overline{K}(X, \xi_p)$, $X \in N_p$ and since the function $\delta \colon N_p \to N_p^{\perp}; X \to \overline{V}(X, \xi_p)$ is linear, we must suppose, if $\mathcal{K} \neq 0$, that $m \geq 2n+1$, otherwise δ can not be injective. Consequently we have: if m < 2n+1, then $\mathcal{K}=0$ at each point of N.

THEOREM 2. Suppose that $\overline{\omega}$ is a volume element of the spherical image of N at the point $\eta(p)$ and that ω is a volume element of N at the point p, then $(\eta^*(\overline{\omega}))^2 = (-1)^n \mathcal{K}(\omega)^2$.

Proof. Since L=0, we see, because of (2.1) and (2.2) that $\eta_*(X)$ and $\overline{V}(X,\xi_p)$, $\forall X \in N_p$, have the same components with respect to the coordinate bases $\frac{\partial}{\partial x^1}$, ..., $\frac{\partial}{\partial x^m}$ at the points $\eta(p)$ and p.

Whereas $\mathcal{K}\neq 0$ at the point p, η_* will be a bijection of N_p on $S_{\eta(p)}$. Suppose that $e_1, \dots e_n$ is an orthonormal base field of N, which determines the principal direction of the 2-covariant symmetric tensor field $\langle Y, \overline{R}(Z, \xi) \xi \rangle = -\langle \overline{V}(Y, \xi), \overline{V}(Z, \xi) \rangle$. The dual forms of $(e_1)_p, \dots, (e_n)_p$ are denoted by $\omega_1, \dots, \omega_n$. Since

$$[-\langle \overline{V}((e_i)_p, \xi_p), \overline{V}((e_j)_p, \xi_p) \rangle], \qquad i, j=1, \dots, n$$

becomes a diagonal matrix, we see that $\eta_*((e_1)_p), \dots, \eta_*((e_n)_p)$ are pairwise orthogonal. Consider the orthonormal base

$$\eta_*((e_i)_b)/\langle \overline{V}((e_i)_b, \xi_b), \overline{V}((e_i)_b, \eta_b) \rangle^{1/2}, \quad i=1,\dots,n$$

and denote the dual base by $\omega_1, \dots, \omega_n$. Remark that $-\langle \overline{V}((e_i)_p, \xi_p), \overline{V}((e_i)_p, \xi_p) \rangle$ are the extremal values of the Riemann curvatures of \overline{N} at the point p in the two-dimensional directions of \overline{N}_p which contain ξ_p . We have

$$\eta^*(\bar{\omega}_i) = \langle \bar{V}((e_i)_b, \xi_b), (\bar{V}((e_i)_b, \xi_b) \rangle^{1/2} \omega_i, \quad i=1, \dots, n$$

and so we find

$$\eta^* (\overline{\omega}_1 \wedge \dots \wedge \overline{\omega}_n) = \eta^* (\overline{\omega}_1) \wedge \dots \wedge \eta^* (\overline{\omega}_n) \\
= \prod_{i=1}^n \langle \overline{V} ((e_i)_p, \xi_p), \overline{V} ((e_i)_p, \xi_p) \rangle^{1/2} \omega_1 \wedge \dots \wedge \omega_n \\
= \sqrt{(-1)^n \mathcal{K}} \omega_1 \wedge \dots \wedge \omega_n,$$

and this completes the proof.

EXAMPLE. A variable *n*-dimensional linear space N(s) which is dependent on one parameter s, describes a monosystem \overline{N} in E^m . If r(s) is a base curve and if $a_1(s), \dots, a_n(s)$ constitutes a base of the variable generating space N(s), then \overline{N} can (locally) be represented by

$$X(s, 1_1, \dots, 1_n) = r(s) + \sum_{i=1}^n 1_i a_i(s), 1_i \in \mathbb{R}, i=1, \dots, n.$$

Each generating space N(s) is a hypersurface of \overline{N} , which is totally geodesic in E^m . If (accents mean derivation to s)

rank
$$[r'(s) \ a_1(s) \cdots a_n(s) \ a_1'(s) \cdots a_n'(s)] = 2n+1$$
, $\forall s$,

then \overline{N} is non-developable. In this case it can be proved that at each point of each generating space N(s) we have $\mathcal{K}\neq 0$ and so we can apply Theorem 2 (see [4]).

c. N is totally geodesic in \bar{N} and $\bar{V}(\xi_p, \xi_p) = 0$, $\forall p \in N$.

In this case the second fundamental form of N in \overline{N} is identically zero,

i.e. L=0 at each point p of N. If $\overline{V}(\xi_p, \xi_p) = 0$, $\forall p \in N$, then the vector ξ_p determines at each point $p \in N$ an asymptotic direction of \overline{N} . Because of (1.12), we find

$$K(X,\xi_p) = -\frac{\langle \overline{V}(X,\xi_p), \overline{V}(X,\xi_p) \rangle}{\langle X, X \rangle}, \ \forall X \in N_p.$$

These Riemann curvatures of N are always negative or zero. We consider only the points $p \in N$, for which the total normal Riemann curvature \mathcal{K} of \overline{N} is not zero and therefore we must suppose, analogously as in 3. b, that $m \ge 2n+1$ (if m < 2n+1, then we have again $\mathcal{K}=0$ a each point of N).

THEOREM 3. Suppose that $\overline{\omega}$ is a volume element of the spherical image S of N at the point $\eta(p)$ and that ω is a volume element of N at the point p, then

$$(\eta^*(\bar{\omega}))^2 = (-1)^n \mathcal{K}(\omega)^2.$$
 (3.2)

Proof. The proof of this statement is totally analogous to that of Theorem 2.

EXAMPLE. Suppose that $x^1, \dots, x^{2(n+1)}$ are orthonormal coordinates in $E^{2(n+1)}$ and consider E^{n+1} as the subspace of $E^{2(n+1)}$ represented by $x^{n+2} = \dots = x^{2(n+1)} = 0$. In E^{n+1} we take a hypersurface N, which is locally given by the following parametric representation $(u_j \ j=1, \dots, n)$ are the parameters)

$$x^{1}=f_{i}(u_{1}, \dots u_{n}), i=1, \dots, n+1,$$

 $x^{k}=0, k=n+2, \dots, 2(n+1).$ (3.3)

Using the unit normal vector field $\tau(\tau_1(u_1, \dots, u_n), \dots, \tau_{n+1}(u_1, \dots, u_n), 0, \dots, 0.)$ of N in E^{n+1} , we construct the following (n+1)-dimensional submanifold N of $E^{2(n+1)}$:

$$x^{1}=f_{i}(u_{1}, \dots, u_{n})$$
 $i=1, \dots, n+1,$
 $x^{j}=1\tau_{j-n-1}(u_{1}, \dots, u_{n})$ $j=n+2, \dots, 2(n+1)$ and $1 \in R$.

Then N (or the part N given by (3.3), which will henceforth be denoted by N) clearly is a hypersurface of \overline{N} .

Consider in $E^{2(n+1)}$ the normal unit vector field ξ on N, with components $(0, \dots, 0, \tau_1(u_1, \dots, u_n), \dots, \tau_{n+1}(u_1, \dots, u_n))$. If \overline{D} is the standard Riemann connection of $E^{2(n+1)}$, \overline{D} the Riemann connection of \overline{N} , \overline{V} the second fundamental form of \overline{N} , L the Weingarten map of N in \overline{N} and if \overline{L} is the Weingarten map of N in E^{n+1} , then we have

$$\bar{D}_{X}\tau = \bar{L}(X), \ \forall X \in N_{p}$$
 (3.4)

and the Gauss curvature G of N in E^{n+1} at the point p is given by det \overline{L} .

Moreover we find

$$\overline{D}_{X}\xi = \overline{D}_{X}\xi + \overline{V}(X,\xi) = L(X) + \overline{V}(X,\xi). \tag{3.5}$$

But if we consider the components of the unit normal field ξ , then it is clear that L=0 at each point of N, i.e., N is totally geodesic in \overline{N} . We also have that ξ determines at each point of N an asymptotic direction of \overline{N} , i.e., $\overline{V}(\xi,\xi)=0$. It is also clear that

$$\langle \vec{D}_{X}\tau, \ \vec{D}_{X}\tau \rangle = \langle \vec{D}_{X}\xi, \ \vec{D}_{X}\xi \rangle.$$
 (3.6)

Because of (3.4), (3.5) and (3.6) we find for the Riemann curvature of \overline{N} in the two-dimensional direction (X, ξ_p) of \overline{N}_p

$$\overline{K}(X,\xi_p) = -\frac{<\overline{V}(X,\xi_p), \quad \overline{V}(X,\xi_p)>}{< X,X>} = -\frac{<\overline{L}(X),\overline{L}(X)>}{< X,X>}.$$

If the principal curvatures of the hypersurface N (of E^{n+1}) at the point p are denoted by $1/R_i$, $i=1,\dots,n$, then we have at once for total normal Riemann curvature of \overline{N} at p

$$\mathcal{K} = \prod_{i=1}^{n} (-1)^{n} \frac{1}{R_{i}^{2}} = (-1)^{n} G^{2},$$

and this is what (3.2) says, because in our example $\eta^*(\omega) = \pm |G|\omega$.

REMARK

1. If n=1, than N is a curve on the surface \overline{N} . Suppose that T is a unit tangent vector field of N and that the unit normal vector field ξ is parallel in the normal bundle N^{\perp} , then we have $\overline{D}_T \xi = kT = L(T)$ for some $k \in R$ and Theorem 1 remains true ($k = \det L$ and volume element is now arc element). This is also valid for Theorems 2 and 3.

Remark that in the case n=1, the total normal Riemann curvature \mathcal{K} of \overline{N} at the point p of N is equal to the Riemann curvature (or Gauss curvature) G of \overline{N} at p. We give an example for the third case (3.c): consider a non-developable ruled surface \overline{N} in E^n $(n \ge 3)$, which is locally represented by

$$r(s)+1\xi(s), \xi^2=1, s\in I\subset R, 1\in R,$$

where s is the arc length of the base curve $I \rightarrow \overline{N}$; $s \rightarrow r(s)$, which is an orthogonal trajectory of the generating lines. Suppose that r(s) (which is in this example N) is a geodesic of \overline{N} . Then, a theorem of Bonnet says that N is also the line of striction of \overline{N} and the conditions for all this are (with classical notations; accents mean derivation to s) $r'\xi = r'\xi' = 0$, $\forall s \in I$. In

this case the parameters of distribution d are given by $d^2=1/\xi'^2$, $\forall s \in I$ and for the Riemann curvature K of \overline{N} at q we find $G=-d^2/(d^2+t^2)^2$, where t is the distance between q and the point of striction on the generating line through q. At the points p of N we have t=0 and thus

$$G = -\frac{1}{d^2} = -\xi'^2 = -\frac{(d\xi)^2}{(ds)^2},$$

and this is what (3.2) says.

2. Suppose that N is totally geodesic in E^m or that N is totally geodesic in \overline{N} and $\overline{V}(\xi_q, \xi_q) = 0$, $\forall q \in N$. Take a point $p \in N$ and a vector $X \in N_p$. Consider a curve $\sigma:]-a, +a[\to N; t \to \sigma(t) \text{ on } N, \text{ such that } \sigma(o) = p \text{ and } T_{\sigma(0)} = X$. Then we have for the arc length s of σ

$$\left(\frac{ds}{dt}\right)_{t=0} = \langle X, X \rangle^{1/2}.$$
 (3.7)

The spherical image of σ is the curve $\eta \circ \sigma$ on S. We find for the arc length \bar{s} of the curve $\eta \circ \sigma$, because of (2.1) and (2.2),

$$\left(\frac{d\bar{s}}{dt}\right)_{t=o} = \langle T_{\eta \circ \sigma(o)}, T_{\eta \circ \sigma(o)} \rangle^{1/2}$$

$$= \langle \sum_{i=1}^{m} X(a^{i}) \left(\frac{\partial}{\partial x^{i}}\right)_{\eta(p)}, \sum_{i=1}^{m} X(a^{i}) \left(\frac{\partial}{\partial x^{i}}\right)_{\eta(p)} \rangle$$

$$= \langle \overline{V}(X, \xi_{p}), \overline{V}(X, \xi_{p}) \rangle. \tag{3.8}$$

Now the expressions of $\overline{K}(X, \xi_p)$ in the cases 3. b. and 3. c., together with (3.7) and (3.8) give a nice geometrical interpretation of such Riemann curvature of \overline{N} : suppose that t=0 gives s=0

$$\overline{K}(X,\xi_p) = -\left(\frac{d\overline{s}}{ds}\right)_{s=0}^2.$$

References

- 1. Chen, B.Y., Geometry of submanifolds. Marcel Dekker, New York, 1973.
- 2. Hicks, N. J., Notes on differential geometry. Van Nostrand, Princeton, 1965.
- Spivak, M., A comprehensive introduction to differential geometry. Publish or Perish Inc., Boston, 1970.
- 4. Thus, C., Een (lokale) studie van de (m+1)-dimensionale variëteiten van de n-di-

mensionale euklidische ruimte R^n ($n \ge 2m+1$ en $m \ge 1$), beschreven door een ééndimensionale familie van m-dimensionale lineaire ruimten. Meded. Kon. Acad. Wet., Lett., Sch. K. van België, jaargang XXXVI, 1974, nr. 4,83 pp.

University of Ghent, Belgium