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A GAUSS MAP ON HYPERSURFACES OF
SUBMANIFOLDS IN EUCLIDEAN SPACES

By C. Tuas

In this paper we consider a hypersurface N of a submanifold N of the
Euclidean space E®. Let & be a unit normal vector field on UcN 'in N.
If S=-1 is the hypersphere of E» with centre the origin (0,:--,0) and with
radius 1 and if €=§l at 62:" , where z!,+:+, 2™ is the standard coordinate
system of E™, then the Gauss map of N in N is given by 9:U — S=1;
p— (@l (p),-,a"(p)). Let & (resp. w) be a volume element of the spherical
image of N (resp. of N) at the point 7(p) (resp. at the point p). In
section 3, we look for the connection between & and ® in the following
cases: (a). the vector field & is parallel in the normal bundle N4, (b). N
is totally geodesic in E=, and (c). N is totally geodesic in N and & determines
.at each point an asymptotic direction of N.

1. Introduction

We shall assume throughout that all manifolds, maps, vector fields, etc.
-+ are differentiable of class C”.

Suppose that N is a (z-+1)-dimensional submanifold of the Euclidean
space E* (m>n+1) and that N is a n—dimensional submanifold (hypersur-
face) of N. Consider in a neighborhood U of a point p&N a unit normal
vector field £ on N in N. The standard Riemann connection of E™
-and the Riemann connections of N and N are respectively denoted by D,
D and D.

The Weingarten map L of N in N is given by

D£=L(X), VXEN,, .1

;and det L is the Gauss curvature at the point p of the hypersurface N of
N. If Y and Z are vector fields of N, then we have

EyZ':'"D[Z‘*‘ V’ (Y’ Z) ?
where V’(Y, Z) is the se-ond fundame ital form of N in N. Moreover, we find
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(the metric tensor is denoted by <, >)

. DyZ=DyZ—<L(Y), Z>¢. 1.2y
Let U and W be vector fields of N, then
DyW=DyW+V (U, W), 1.3y

where V (U, W) is the second fundamental form of N in E™. From (1.2)
and (1.3) it follows that

Dyz=DyZ—<L(Y), Z>E+V (Y, 2). 1.4

But, if V(Y,Z) is the second fundamental form of N in E®, then we also-
have

DyZ=DyZ+V(Y,Z), (1.5)

and so, because of (1.4) and (1.5) we find that for each two vector fields.
Yand Z of N

V(Y,2)=—<L(Y), Z>E+V(Y,2). 1.6)

The equation of Weingarten of N in E”, with respect to the unit nor-
mal field € is given by

Dxé=—(A:(X))+Dié, VXEN,, 1.7

where A. determines a self adjoint linear map in the tangent spaces of N
and D! is a metric connection in the normal bundle Nt. We also have

Dxé=Dxt+V (X,8)

or
Dxé=L(X)+V(X,8). (1.8)
From (1.7) and (1.8) it follows that
L(X)=—(4:(X)) 1.9y
and
D=V (X,§), VXEN,. 1.10)

Because of (1.9) we have det L=+det A;, which means that the Gauss.
curvature at the point p of the hypersurface N of N is equal to -+K(p,
&,), where K(p,&p) is the L1psch1tz—K111mg curvature at p of N in E™
with respect to &,.

Suppose that R is the curvature tensor of N and that Uy, -+, U, are N—
vector fields, then the Gauss equation of N in E™ is given by
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LUy, R(Usp, U) U>=<V (Uy, Uy), V(Us, Up)>
— <V (Us, Uy, V(Us, U)>. (1.11)

If X N, then the Riemann curvature of N at p in the two-dimensional
direction (X,&;) is given by

R(x &) =<K RE LN

and because of (1.11),

<X’ R (Xa EP) EP>=<V (Xo X) s V (E?a ‘SP) > - <V (X, Eﬁ) ’ V(Xy {:i’) >'
(1.12)

Let Y and Z be N-vector fields, then it follews from (1.11) that <Y,
R(Z,8)&> determines a 2-covariant symmetric N-tensor field. Suppose that
the principal directions of this tensor field are locally (i.e. in the domain of
the unit normal field £) given by the orthonormal base field ¢y, --+, e, of N.
Then < (¢;)s, R((e)s,Ep)Ep> (i=1,---,m) are the extremal values of the
Riemann curvatures of N at p in the two-dimensional directions of N,
which contain &, (or, in other words, of the Riemann curvatures K (X, &;),
V XeN p) .

DerINITION. The total normal Riemann curvature of N at the point p&.
N is given by

g(=j'1< (e)p, R((e)p, Ep) £,

2. The Gauss map
Suppose that zl,---,z™ is the standard coordinate system of Em, with
. ] 0 -1 i -
coordinate vector fields J T S7-1 ijs the hypersphere of E

with centre the origin (0, ---,0) and with radius 1. For the unit normal vector

field &, with domain U, we have & ==}:}la"

6_ and ¢ (i=1, -, m) are C”
ox’
functions over U.
DeFINITION. The Gauss map of N in N is given by
7: U—=8"1; 5 (a'(p), -, am(p)).

Let X&N, and consider a curve ¢ : ]—a, +al — N such that o¢(0)=p
and T,,=X. Then 700 is a curve on S ! and we have
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Te(X) = Trouiw= 52227 ) (52 )oew

aaa:i )""’

- 2.1)

=% Tow @

“OF

7 (X) =§X(af)(

We also find Dzé=Dy (£ ) 5x@) (52 ) and thus, because

of (1.7) and (1.8),
— (4(X) +DE=LX) +7 (X, =£X@) (52-) (2.2)

3. a. The vector field & is parallel in the normal bundle N *.
In this case we have Di§=0, VX&EN, and Vpe U, or

LX) =£X@) (2-)» VXEN, and VpeU. 3.1

'The variable point with coordinates (al(g),--*,a”(g)), g<=U describes a
submanifold S of S*1 and dim S<#; S is the spherical image of N in
the neighborhood U of the point p.

We restrict ourselves to the case det L#0 at the point p.

THEOREM 1. Suppose the w is a volume element of the spherical image S at
the point 7(p) and that @ is a volume element of N at the point p, then

7* (@) =3 (det L) w.

Proof. Because of (2.1) and (38.1), we know that the vectors 7, (X) and

L(X), VXN, have the same components with respect to the coordinate
9

T
therefore 7, is a bijection of N, on S,(,. In this case S is #-dimensional
(moreover there exists a neighborhood of p in which » is a diffeomorphi-
sm). Let X;,---, X, be an orthonormal set of eigenvectors of L at p and
-denote the dual forms by @y, -, w,. Then 7,(X;), -+, 74 (X,) form an or-
thogonal base of S,. Consider the orthonormal base

7. (X)) /<L(Xp), L(XP>VZ2, i=1,+n

and denote the dual forms by &, -, @,. If p; i=1,---, n are the eigenvalues

at the points 7(p) and p. But det L#0 at p and

0
bases P
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of L at p, then
<L(X), L(X)>V2=|p;| i=1,-m.
Thus we find 7*(3;) =|p;|w; i=1,-,n and we get
T (B1AA8,) =7 (By) A=+ a* (@,) = | o1+ Pa| 014+~ 0, = | det L| @A+ rewy,
which has to be proved.
REMARKS,

1. In a classical way one should formulate the statement of Theorem 1
as follows: if the vector field £ is parallel in the normal bundle NX, then
the Gauss curvature at the point p of N in N or the Lipschitz-Killing curv-
ature K(p,§,) of N is equal to the ratio of volume element of the spheri-
cal image of N and the volume element of N at p.

2. If det L=0 at p, then dim S<z in a neighborhood of p, or dim S=
n, but in this case the function #* : F1(S,)—F'(N,) (F! means the ve-
ctor space of 1-forms) is no more a bijection and then %*(@)=0. Thus we
can say that theorem 1 remaims true for det L=0.

3. Suppose that N is a hypersurface of E», with unit normal vector field
7 and with Weingarten map L, then we have

V(X,E‘,)=~<Z(X), £p>TP.
And therefore £ is parallel in the normal bundle Nt iff L(X) £, VXe

N, and Vpe U, i.e.. & determines at each point p€ U a principal direction
of the hypersurface N.

ExampLES

1. Consider any hypersurface N of the (z+1)-dimensional Euclidean space
Er1=NCE™ (m>n+1). Then the (local) normal unit vector field & (or &)
of N in E**1 is parallel in the normal bundle N* and we find the well-
known geometric interpretation for the Gauss curvature of a hypersurface of
an Euclidean space.

2. Consider in E (m>4) the sphere N with parametric representation
zl=qg cosu cosv, 1% =a cosu sinv,
x3=a sinu, zi=0 j=4,--,m, a>0.

The vector field € with components ( Cosu COST cosu sinv . sin u s
P V2 V2 V2

- 0, ---, 0> is clearly a C* normal unit vector field on N and it is parallel

V2’
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in the normal bundle Nt. Consider the manifold N, represented by

k
zl=g cosu cosv+ el COs 4 COS v,
2 . k .
xl=aqa cosu s1n-o-¥—‘/2 cos # sin v,

23=g sin u—l——‘/—% sin #,

k
x4=———=, :
V2
=0, s=5,--,m and kSR,

Then N is a hypersurface of N and it is at once clear that the relative
total curvature of N with respect to & is equal to 1/2a? at each point of
N, while it is easy to see that we also have 7*(w)=+w/2q2.

b. N is totally geodesic in E™

In this case we have V(Y,Z)=0, for each two N-vector fields. From
(1.6) it follows that

L=0 (i.e. N is totally geodesic in N) and V(Y,Z) =0. Because (1.12)
we have

R(X,&)=— <V(X,i$é)),(§(>X,§,)> , VXEN,

These Riemann curvatures of N are thus always negative or zero. From now
on we consider only the points p& N for which the total normal Riemann
curvature of N is not zero (for the case &X=0, we can make an analogous
remark as in 3a.). Since zero is an extremal value for the Riemann curva-
tures K(X,&,), XEN, and since the function §: N,»Ni; X —-V(X,£,)
is linear, we must suppose, if X#0, that m>2x+1, otherwise § can not
be injective. Consequently we have: if m<22+1, then £=0 at each point
of N.

THEOREM 2. Suppose that & is a volume element of the spherical image of
N at the point 7(p) and that  is a volume element of N at the point p, then
* (@) 2= (DK ()2

Proof. Since L=0, we see, because of (2.1) and (2.2) that %,(X) and
V(X,§,), VXEN,, have the same components with respect to the coor-

eee a
o'’ oxm

dinate bases at the points 7(p) and p.
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Whereas £+0 at the point p,7, will be a bijection of N, on §,. Sup-
pose that e;, ---e, is an orthonormal base field of N, which deterinines the
principal direction of the 2-covariant symmetric tensor field <Y, R(Z,£)§>
=—<V(Y,8), V(Z,8)>. The dual forms of (e;),, -, (¢s), are denoted
by w,, -, w,. Since
[—<V((et)ﬁ’ Ep)’ V((ej)pa Sp)>], i’j=1’ M 4
becomes a diagonal matrix, we see that 74 ((e1) ), -+, s ((e,) ;) are pairwise
orthogonal. Consider the orthonormal base
7% ((€) ) I <V ((€) o 1)y V() p ) >V2  i=1,+,m

and denote the dual base by o, -, @, Remark that —<V((e), &),
V ((e;) ,,&,)> are the extremal values of the Riemann curvatures of N at
the point p in the two-dimensional directions of N, which contain §,. We
have

TH@) =<V () pEp)y V(e p Ep) >V 205,  i=1,+,m
and so we find
77* (&-?IA"'Aan) =77* ((Bl) ’\”"‘7]* ((1_),,)

=T <T () p ) V() p &>V anneencry

= ;‘/m wl/\o-.,\w’"
and this completes the proof.

EXAMPLE. A variable n-dimensional linear space N(s) which is depen-
dent on one parameter s, describes a monosystem N in E=. If r(s) is a
base curve and if a;(s), :+, a,(s) constitutes a base of the variable generating
space N(s), then N can (locally) be represented by

X(S, 11: *tty ln) =r(s) +211iai(5)1 liERa l=11 °tty R

Each generating space N (s) is a hypersurface of N, which is totally geodesic
in E™. If(accents mean derivation to s)

rank [/ (s) a1(5)a,(s) &' (s)---a,’ () 1=2n+1, Vs,
then N is non-developable. In this case it can be proved that at each
point of each generating space N(s) we have X#0 and so we can apply
Theorem 2 (see [4]).

c. N is totally geodesic in N and ¥V (£,,£,) =0, VpeN.

In this case the second fundamental form of N in N is identically zero,
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i.e. L=0 at each point p of N. If V(§,,§,) =0, VpEN, then the vector
&, determines at each point pEN an asymptotic direction of N. Because
of (1.12), we find

K(x,8p) = -V &L, P&ED> , vxen,

These Riemann curvatures of N are always negative or zero. We consider
only the points pEN, for which the total normal Riemann curvature & of
N is not zero and therefore we must suppose, analogously as in 3.b, that
m>=2r+1 (if m<2r+1, then we have again £=0 a each point of N).

THEOREM 3. Suppose that & is a volume element of the spherical image S of
N at the point 7(p) and that o is a volume element of N at the point p, then

(7* (@) %= (—D "% (o) (3.2)

Proof. The proof of this statement is totally analogous to that of Theo-
rem 2.

EXAMPLE. Suppose that z!,---, 22**? are orthonormal coordinates in E2(+1)
and consider E**! as the subspace of E2*+1 represented by z#*2=...=z2@+D
=(0. In E*! we take a hypersurface N, which is locally given by the fol-
lowing parametric representation (u; j=1, -*+,n are the parameters)

-’Cl=_f,'(1l1, "'un)y i=], -, n+1,
zk=(0, k=n+2,---,2(n+1). 3.3)
Using the unit normal vector field z(zy(ug, ==, %), <>, Tar1 (w15 ===, ), 0, -+,
0.) of N in E**1, we construct the following (zn+1)-dimensional subma-
nifold N of E2@+D;
=-ft'(u1’ b un) i"—‘ly Tty 7l+1,
2i=17j-p1(tey, -, %) j=n+2,-,2(n+1) and 1€R.

Then N (or the part N given by (3. 3)_,_ which will henceforth be de-
noted by N) clearly is a hypersurface of N.

Consider in E2®+V the normal unit vector field £ on N, with components
0, -+, 0, 71(uy, ==y tn), - Tut1 (21, ). If D is the standard Riemanp
connection of E2#+D D the Riemann connection of N,_ V the second fun-
damental form of N, L the Weingarten map of N in N and if L is the
Weingarten map of N in E#*!, then we have

Dyxr=L(X), VXeN, (3.4

and the Gauss curvature G of N in E*! at the point p is given by det L.
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Moreover we find
Dxé=Dxt+V(X,8)=L(X)+V(X,£). (3.5)

But if we consider the components of the unit normal field &, then it is
clear that L=0 at each point of N, i.e., N is totally geodesic in N. We
also have that £ determines at each point of N an asymptotic direction of
N, i.e, V(£.8)=0. It is also clear that

<Dx2', Dx‘l'> <Dx$ Dx§> (3 6)'

Because of (3.4), (3.5) and (3.6) we find for the Riemann curvature of
N in the two-dimensional direction (X,£,) of N,

R(x.6)=— VX&), VX E)> _ <L(X),LX)>
I <X, X> <X, X>

If the principal curvatures of the hypersurface N (of E**1) at the point p
are denoted by 1/R;, i=1,---,n, then we have at once for total normal Rie-
mann curvature of N at p

=” — n 1 e n 2
K=T (~Dr—r= (-1 &2

and this is what (3.2) says, because in our example 7*(w)=+|Glw.

REMARK

1. If =1, than N is a curve on the surface N. Suppose that 7 is a unit
tangent vector field of N and that the unit normal vector field £ is parallel
in the normal bundle N+, then we have Dy&=:T=L(T) for some EER
and Theorem 1 remains true (¢=det L and volume element is now arc ele-
ment). This is also valid for Theorems 2 and 3.

Remark that in the case =1, the total normal Riemann curvature £ of
N at the point p of N is equal to the Riemann curvature (or Gauss curva-
ture) G of N at p. We give an example for the third case (3.¢): consi-
der a non-developable ruled surface N in E* (z>3), which is locally repre-
sented by

r(s) +1£(s), &2=1, s€ICR, 1€R,

where s is the arc length of the base curve I->N; s—r(s), which is an or-
thogonal trajectory of the generating lines. Suppose that r(s) (which is in
this example N) is a geodesic of N. Then, a theorem of Bonnet says that
N is also the line of striction of N and the conditions for all this are (with
classical notations; accents mean derivation to s) r&é=r€'=0, Vs€l. In
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this case the parameters of distribution d are given by d2=1/£"2, VseI
and for the Riemann curvature K of N at ¢ we find G=—d?/(d?+?)2,
where ¢ is the distance between ¢ and the point of striction on the genera-
ting line through g. At the points p of N we have t=0 and thus

1_ e (d8)?
Gz"‘dz—"‘é 2= — ((dsgz >

and this is what (3.2) says.

2. Suppose that N is totally geodesic in E™ or that N is totally geodesic
in N and V(§,,§,)=0, VgN. Take a point p€N and a vector XEN,.
Consider a curve 6:]—a, +a[ - N; t—0(#) on N, such that ¢(0) =p and
T,w>=X. Then we have for the arc length s of ¢

(%—) z=0: <X, X 3.7

The spherical image of ¢ is the curve 50 on S. We find for the arc length
5 of the curve o0, because of (2.1) and (2.2),

(“gg“) =<Tﬂoa(o)1 Tﬂ00(0)>1/2
t /t=0

:‘"<‘7 (X: gp), V(X, ép) >. (3. 8)

Now the expressions of K(X,§,) in the cases 3.b. and 3.c., together with
(8.7) and (3.8) give a nice geometrical interpretation of such Riemann cur-
vature of N: suppose that z=o gives s=o)
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