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A GAUSS MAP ON HYPERSURFACES OF
SUBMANlFOLDS IN EUCLIDEAN SPACES

By C. THAs

In this paper we consider a hypersurface N of a submanifold N of the
Euclidean space Em. Let ~ be a unit normal vector field on UeN in N.
If sm-1 is the hypersphere of Em with centre the origin (0, ···,0) and with

radius 1 and if ~ = t ai~, where Xl, ••• , xm is the standard coordinate
i=l ux'

system of Em, then the Gauss map of N in N is given by 1): U -+ 8m- 1 ;

p-+(a1(p), ···,am(p». Let (jj (resp. w) be a volume element of the spherical
image of N (resp. of N) at the point 1)(p) (resp. at the point p). In
section 3, we look for the connection between (jj and (J) in the following
cases: (a). the vector field ~ is parallel in the normal bundle NJ., (b). N
is totally geodesic in Em, and (c). N is totally geodesic in N and ~ determines
..at each point an asymptotic direction of iN.

1. Introduction

We shall assume throughout that all manifolds, maps, vector fields, etc.
•.. are differentiable of class c...

Suppose that iN is a (n+l)-dimensional submanifold of the Euclidean
space Em (m>n+ 1) and that N is an-dimensional submanifold (hypersur­
face) of N. Consider in a neighborhood U of a point pEN a unit normal
vector field ~ on N in N. The standard Riemann connection of Em
and the Riemann connections of Nand N are respectively denoted by D,
15 and D.

The \Veingarten map L of N in N is given by

Dzg=L(X) , VXENp, (1.1)

•and det L is the Gauss curvature at the point p of the hypersurface N of
N. If Yand Z are vector fields of N, then we have

DyZ=D/Z+ V'(Y,Z),

where V' (Y, Z) is the se:ond fundame 1tal form of N in N. Moreover, we find
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(the metric tensor is denoted by < , »
15yZ=DyZ-<L(Y) , Z>~. (1.2)

Let U and W be vector fields of N, then

Du w=15u W+ V(U, W), (1. 3)'

where Veu, W) is the second fundamental form of Ft in Em. From (1. 2)\
and (1. 3) it follows that

DyZ=DyZ-<L(Y), Z>~+V(y,Z). (l.4)

But, if V(Y, Z) is the second fundamental form of N in Em, then we also­
have

DyZ=DyZ+ V(Y,Z), (1. 5)

and so, because of (1. 4) and (1. 5) we find that for each two vector fields.
Yand Z of N

V(Y,Z) =-<L(Y), Z>~+V(y,Z). (1. 6}

The equation of Weingarten of N in Em, with respect to the unit nor­
mal field ~ is given by

D~=-(Ae(X»+Dje, VXENp, (1.7)-

where Ae determines a self adjoint linear map in the tangent spaces of N
and DJ.. is a metric connection in the normal bundle NJ... We also have

Dx~=15~+v(x,~)

or

Dx~=L(X)+V(X,~).

From (1. 7) and (1. 8) it follows that

L(X) = - (AeCX»

and

(1. 8)'

(1. 9}

(1.10)

Because of (1. 9) we have det L= ±det Ae, which means that the Gauss.
curvature at the point p of the hypersurface N of N is equal to ±K(p,
ep) , where K CP, ~p) is the Lipschitz-Killing curvature at p of N in E fIr

with respect to ~p.

Suppose that R is the curvature tensor of Ft and that Ub "', U4 are Ft­
vector fields, then the Gauss equation of N in Em is given by
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<Vb R(Vz, Vs) U4>=<V(Vz, V1), V(Vs, V4»

-<V(Vz, V,), V(Vs, V1».
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If XENp, then the Riemann curvature of N at p in the two-dimensional
direction (X, ~p) is given by

<X, R(X, ~p)~p>
<X, X>

and because of (1.11),

<X, R(X,~p)~p>=<V(X,X), V(~p,~p» -<V(X,~p), V(X,~p».

(1.12}

Let Y and Z be N-vector fields, then it follows from (1. 11) that <Y,
R(Z, ~) ~> determines a 2-covariant symmetric N-tensor field. Suppose that
the principal directions of this tensor field are locally (i. e. in the domain of
the unit normal field ~) given by the orthonormal base field eb "', en of N.
Then < (ei) p, R( (eD p, ~p)~p> (i=l, '.', n) are the extremal values of the
Riemann curvatures of N at p in the two-dimensional directions of NJr

which contain ~p (or, in other words, of the Riemann curvatures K (X, ~p),
V XENp).

DEFINITION. The total normal Riemann curvature of N at the point pE
N is given by

2. The Gauss map

Suppose that xl, "', xm is the standard coordinate system of Em, with

coordinate vector fields 0:1 ' "', o~m . Sm-1 is the hypersphere of Em

with centre the origin (0, ",,0) and with radius 1. For the unit normal vector

field ~, with domain V, we have ~=~1 ai O~i and ai (i=l, "', m) are C'"

functions over V.

DEFINITION. The Gauss map of N in N is given by

7j: V_Sm-1; p_(a1(p), ...,am(p)).

Let XENp and consider a curve (J: J-a, +a[ - N such that (J(o) =fr
and Tq(o)=X. Then 1jQ(J is a curve on Sm-1 and we have
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· . ( (} )= ~ TaCo) (a') """"5T 7JCp)
.=1 vX

'or

thus, because

.. . ( (} )
7)* (X) = !;X (a') ~ 7J Cp).

1=1 vx

We also find lJx.e=Dx (f a; ~~ )=f:X(ai ) ( ~o;) and
.=1 U - 1=1 ()X p

of (1.7) and (1.8),

-(Ae(X»+D*=L(X)+V(X'';)=~IX(ai)(0:; )p.

(2.1)

(2.2)

3. a. The vector field .; is parallel in the normal bundle N 1-.

In this case we have Di';=O, VXENp and VpE U, or

L(X) =tlx(ai) ( 0:; )p, VXENpand VpEU. (3.1)

The variable point with coordinates (al(q). ···,a"'(q», qE U describes a
submanifold S of sm- l and dim S~n; S is the spherical image of N in
the neighborhood U of the point p.

We restrict ourselves to the case det L::;t:O at the point p.

THEOREM 1. Suppose the (0 is a volume element of the spherical image S at
the point 7)(p) and that (0 is a volume element of N at the point p, then

7)* (m) = + (det L)(O.

Proof. Because of (2. 1) and (3. 1), we know that the vectors 7)* eX) and
LeX), VXENp have the same components with respect to the coordinate

bases 0:1 ' ••• , 0:'" at the points 1)(p) and p. But det L::;t:O at p and

therefore 7)* is a bijection of N p on S7J CP). In this case S is n-dimensional
(moreover there exists a neighborhood of p in which 1) is a diffeomorphi­
sm). Let Xl> •.. , Xn be an orthonormal set of eigenvectors of L at p and

-denote the dual forms by (Ob ••• , (On. Then 1)* (Xl), ... ,1)* (XJ form an or-
thogonal base of S7J CP). Consider the orthonormal base

1J* (Xi) I<L(X;), L(X;) >112, i=1,···.n

..and denote the dual forms by ml> •••, m". If Pi i=1• .•.• n are the eigenvalues
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of L at p, then

<L(Xj) , L(Xj»1I2=lpjl i=I,···,n.

Thus we find 1)* (Wj) = Ipj IWj £=1, "', n and we get

1)* (WIA"'AWn) =1)* (oh) A"'A1)* (wn) = IPl"'Pn IWl A'" AWn= Idet L IWIA'" AWn'

which has to be proved.

REMARKS.

1. In a classical way one should formulate the statement of Theorem 1
as follows: if the vector field e is parallel in the normal bundle NJ., then
the Gauss curvature at the point p of N in N or the Lipschitz-KiIling curv­
ature K (p, ~p) of N is equal to the ratio of volume element of the spheri­
eal image of N and the volume element of N at p.

2. If det L=O at p, then dim S<n in a neighborhood of p, or dim S=
71, but in this case the function 1)* : Fl(ST/ep)-Fl(Np) (Fl means the ve­
ctor space of I-forms) is no more a bijection and then 1)* (w) =0. Thus we
ean say that theorem 1 remaims true for det L=O.

3. Suppose that N is a hypersurface of Em, with unit normal vector field
"1: and with Weingarten map L. then we have

V(X,~p)=-<L(X), ~p>"p,

And therefore e is parallel in the normal bundle Nl. iff L(X) J.Jp, VXE

N p and VpE U, i. e•• ~ determines at each point pE U a principal direction
of the hypersurface N.

EXAMPLES

1. Consider any hypersurface N of the (n+1) -dimensional Euclidean space
En+l=NcEm (m>n+1). Then the (local) normal unit vector field ~ (or -~)

of N in En+l is parallel in the normal bundle NJ. and we find the well­
known geometric interpretation for the Gauss curvature of a hypersurface of
an Euclidean space.

2. Consider in Em (m>4) the sphere N with parametric representation

x 1=a cos u cos v, x2 =a cos u sin v,

x3=a sin u, xi=O j=4, "', m, a>O.

The vector field ~ with components ( cos ~ ~os v, cos~ ~in v s~; •

.)2' 0",', 0) is clearly a C"" normal unit vector field on N and it is parallel
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in the normal bundle Nl.. Consider the manifold N, represented by

k
x1=a cos u cos v+ .J 2 cos U cos v,

2 • + k .x =a cos u smv ,,; 2 cos u sm v,

_'I • k.
~-=a sm u+ .; 2 sm u,

x'=O, s=5, ... , m and kER.

Then N is a hypersurface of Ft and it is at once clear that the relative
total curvature of N with respect to ~ is equal to 1I2a2 at each point of
N, while it is easy to see that we also have 1)* (m) = ±m/2a2•

b. N is totally geodesic in Em

In this case we have V(Y, Z) =0, for each two N-vector fields. From
(1. 6) it follows that

L=O (i. e. N is totally geodesic in Ft) and V(Y, Z) =0. Because (1.12)
we have

These Riemann curvatures of Ft are thus always negative or zero. From now
on we consider only the points pEN for which the total normal Riemann
curvature of Ft is not zero (for the case 9(=0, we can make an analogous
remark as in 3a.). Since zero is an extremal value for the Riemann curva­
tures K(X,e;p), XENp and since the function 0: Nr~N-j; X--V(X,';p)
is linear, we must suppose, if 9(*0, that m~2n+l, otherwise 0 can not
be injective. Consequently we have: if m<2n+1, then 9(=0 at each point
of N.

'THEOREM 2. Suppose that mis a volume element of the spherical image of
N at the point 1)(p) and that m is a volume element of N at the point p, then

(1)* (m» 2 = (-1) n9( (m) 2.

Proof. Since L=O, we see, because of (2.1) and (2.2) that 7}* (X) and
V(X,~p), VXENp, have the same components with respect to the coor-

dinate bases o~J , ..., o~ at the points 1) (p) and p.
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Whereas eX:;t:O at the point P,1)* will be a bijection of N p on S1J{P)' Sup­
pose that eh •··e" is an orthonormal base field of N, which determines the
principal direction of the 2-covariant symmetric tensor field <Y, R(Z, ~) ~>
= - <iT (Y, ~), iT (Z, ~)>. The dual forms of (el) p, ••• , (e,,) p are denoted
by (Vh ••• , (V". Since

i,j=l, ' .. , n

becomes a diagonal matrix, we see that 7)* «el) p), ••• ,7)* «e,,) p) are pairwise
orthogonal. Consider the orthonormal base

7)* «ei) p) / <iT «ei) p, ~p), iT «ei) p, 7)p) >112, i=l, .", n

and denote the dual base by (Vh"', (v". Remark that - <V ((ei) p, ~p) ,
V( (ei) p, ~p) > are the extremal values of the Riemann curvatures of N at
the point p in the two-dimensional directions of Np which contain ~p' We
have

7)* (mi) = <iT «ei) p, ~p), CV «ei) p, ~p) >1I2(Vi,

and so we find

1)* (ml"·· ."m,,) = 7)* (ml) "... "1)* (m,,)

i=l, ···,n

n

= If <iT ((ei) p, ~p), iT «ei) p, ~p) >112 (VI"···"(V"
=1

= .; ( - 1) n§( (VI"·· •"(V,,,

and this completes the proof.

EXAMPLE. A variable n-dimensional linear space N(s) which is depen­
dent on one parameter s, describes a monosystem N in Em. If res) is a
base curve and if al (s), .'., a" (s) constitutes a base of the variable generating
space N(s), then N can (locally) be represented by

n

X(s,l h ···, 1n)=r(s) +L:1iai (s) , 1iER, i=l,···,n.
i=1

Each generating space N(s) is a hypersurface of N, which is totally geodesic
in Em. I£(accents mean derivation to s)

rank er' (s) al (s) ···a" (s) aI' (s) "'a,,' (s) ] =2n+1, Vs,
then N is non-developable. In this case it can be proved that at each
point of each generating space N(s) we have §(:;to and so we can apply
Theorem 2 (see [4J).

c. N is totally geodesic in N and V (~p,~p) =0, V pEN.

In this case the second fundamental form of N in N is identically zero..
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i.e. L=O at each point p of N. If iT(~J>'~P) =0, VpEN, then the vector
~p determines at each point pEN an asymptotic direction of N. Because
of (1.12), ~e find

These Riemann curvatures of N are al~ays negative or zero. We consider
-only the points pEN, for ~hich die total normal Riemann curvature /1(, of
N is not zero and therefore ~e must suppose, analogously as in 3. b, that
m~2n+1 (if m<2n+1, then we have again /1(,=0 a each point of N).

THEOREM 3. Suppose that (ij is a volume element of the spherical image S of
N at the point 7J(p) and that co is a volume element of N at the point p, then

(3.2)

Proof. The proof of this statement is totally analogous to that of Theo­
rem 2.

EXAMPLE. Suppose that Xl, ••• , x2(n+V are orthonormal coordinates in E2(n+1l
and consider En+l as the subspace of E2(n+ll represented by xn+2= ••• =x2(n+v

=0. In En+1 ~e take a hypersurface N, ~hich is locally given by the fol­
lo~ing parametric representation (Uj j=1, ••• , n are the parameters)

x 1=f;(U1o ···un), i=1, ···,n+l,

xk=O, k=n+2, ···,2 (n+ 1). (3.3)

Using the unit normal vector field "(T1 (Ub ••• , un), .••, "n+l (U1o ••• , Un), 0, ... ,
Q.) of N in En+1, ~e construct the follo~ing (n+ 1)-dimensional subma­
nifold N of E2(n+V:

x 1=f;(U1o···'Un) i=l,···,n+l,

X j =lTj-n-1(U1o···,Un) j=n+2,···,2(n+l) and IER.

Then N (or the part N given by (3. 3), ~hich ~ill henceforth be de­
noted by N) clearly is a hypersurface of N.

Consider in E2(n+V the normal unit vector field ~ on N, with components
(0, ···,0, T1 (U1o ••• , Un), ••• , Tn+1 (U1o ••• , Un». If D is the standard RiemanD

eonnection of E2(n+V, jj the Riemann connection of N, iT the second fun­
damental form of N, L the Weingarten map of N in N and if L is the
Weingart~n map of N in En+1, then we have

DXT=L(X), VXENp (3.4)

and the Gauss curvature G of N in En+1 at the point p is given by det L.
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Moreover we find

(3.5)

But if we consider the components of the unit normal field ~, then it is
clear that L=O at each point of N, i. e., N is totally geodesic in N. We
also have that ~ determines at each point of N an asymptotic direction of
N, i. e., V (~.~) =0. It is also clear that

<Dg7:, Dg7:>= <Dgt;, fJgt;>. (3. 6)

Because of (3. 4) , (3. 5) and (3. 6) we find for the Riemann curvature of
N in the two-dimensional direction (X, ~p) of Np

[{(X t; )=_ <V(X,~p), V(X,~p» <L(X),L(X»
, p <X, X> <X, X>

If the principal curvatures of the hypersurface N (of En+l) at the point p­
are denoted by 1/R.;, i = 1, .'., n, then we have at once for total normal Rie­
mann curvature of N at p

and this is what (3.2) says, because in our example 1}*(m)=+IGlm.

REMARK

1. If n=l, than N is a curve on the surface N. Suppose that T is a unit
tangent vector field of N and that the unit normal vector field ~ is parallel
in the normal bundle Nl., then we have fJ-re=kT=L(T) for some kER
and Theorem 1 remains true (k=det L and volume element is now arc ele­
ment) . This is also valid for Theorems 2 and 3.

Remark that in the case n= 1, the total normal Riemann curvature !J<. of
N at the point p of N is equal to the Riemann curvature (or Gauss curva­
ture) G of N at p. We give an example for the third case (3. c): consi­
der a non-developable ruled surface N in En (n;;;'3), which is locally repre­
sented by

res) +1';(s) , ';2=1, sE/cR, lER,

where s is the arc length of the base curve /-N; s-r(s), which is an or­
thogonal trajectory of the generating lines. Suppose that res) (which is in
this example N) is a geodesic of N. Then, a theorem of Bonnet says that
N is also the line of striction of N and the conditions for all.this are (with.
classical notations; accents mean derivation to s) r't;=r'~'=O, VsE!. In.
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this case the parameters of distribution d are given by dZ=l/t;'z, VsEI
and for the Riemann curvature K of N at q we find G= -dZj (d2+t2) 2,

where t is the distance between q and the point of striction on the genera­
ting line through q. At the points p of N we have t=O and thus

and this is what (3. 2) says.

2. Suppose that N is totally geodesic in Em or that N is totally geodesic
in N and V(~q,;q)=0, VqEN. Take a point pEN and a vector XENr
Consider a curve a:J-a, +a[~ N; t ~ aCt) on N, such that a (0) =p and
T" (0) = X. Then we have for the arc length s of a

(ds) =<X, X>1I2.
dt t=O

(3.7)

The spherical image of a is the curve 1joa on S. We find for the arc length
s of the curve 1jo a, because of (2.1) and (2.2),

( ds) -<T. T. >1/2
~ t=o- 1/0"(0» 1/0"(0)

m • ( 0) m • ( 0 )=<~X(al) ~ 1/(P)' ~X(al) ~ 1/ (P»
.=1 ux .=1 UX

(3.8)

Now the expressions of K (X, ; p) in the cases 3. b. and 3. c., together with
(3.7) and (3.8) give a nice geometrical interpretation of such Riemann cur­
vature of N: suppose that t=o gives $=0)

( ds )2K(X,~p)=- -d .
s $=0
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