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NOTE ON THE SEMIGROUP OF FUZZY MATRICES

By Jin Bar Kim

1. Introduction

Let F be a finite subset of the unit interval [0, 1] of the real line. M, (F)
denotes the set of all X# fuzzy relation matrices over F. Then M,(F)
form a semigroup under the matrix multiplication and we call it the semi-
group of fuzzy (relation) matrices over F [5]. We denote by C,(F) the set
of all circulant fuzzy (relation) matrices over F. Then C,(F) is a commu-
tative subsemigrop of M, (F) [6]. [5,6,7] are main references for M,(F)
and C,(F). We define %I, =(a;;) by a;;=Fk if i=j=1,2,---,r and q;;=0 if
i#j or if i=j=r+1, r+2,---,n. Let R*; and D", be respectively an R-
class and a D-class containing 2l,&M,(F), where % is a member of F.
We find the cardinal numbers |R%;| and |D*;| of the sets R#,; and D=,
We find the number of all idempotents in D%,

2. Elementary properties of the semigroup
We list some elementary properties of M,(F) and C,(F).

(1) M,(F) is not regular. C,(F) is an abelian subsemigroup of M, (F)
with the cardinality |C,(F)|=(F|)=

(2) If AC,(F), then A" is an idempotent for some A< .

(3) Any idempotent A in C,(F) is of the form

A=a1E+a2(P"1+P241+---+P(‘1‘1)d1) +---+a,,,(P4m+P24m+--- +P(tm_1)dm),
where n=d;, dy=dss3, dy=dss3, ", dpu-1=8pSp, di#n, diqbdj (i?’—'j, 24;EF,
a;>a>a3 > >a,%0, and E is the identity of M,(F). (See [5,6] for
proofs of items (2) and (3).

(4) Let r(A) and ¢(A) denote respectively the row-rank and column-rank
of AeM,(F). Then r(A)=1 iff c(4)=1. If D;={XeM,(F): r(X)=1},
then D, is the union of 2 D-classes of M,(F), where k=|F|—1. For sim-

plicity, we write F=1{0, 1,2, ---, #}.
We denote by D*, the D—class of M,(F) containing al,, (0+acF.
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THEOREM 1. Let 0#a#b+#0. Then D* ,(\ D" y=¢ (the empty set). Let D",
be the union of all D7, (0%#a<F). If AcD", then r(A)=c(4).

Proof. Assume that ¢ >b. There is no X in M,(F) such that al,= (BI,) X
and consequently we have shown that D#,ND*,=¢. We show that if
AeDr. then r(A)=r=c(A). To show that let A€D#?,. Then there exists.
B such that AL B and BR (al,). There exist X, Y, U, V such that BX=
al,, UA=B, al,Y=B and VB=A. We obtain C(al,) cC(B)<C(al,) and
hence C(al,) =C(B), where C(B) denotes the column space of B. Thus
¢(B) =c(al,) =r(al,) =r. Since B has at most » non-zero rows, we have
that 7(B) <r. From c¢(B)=r, it follows that there exists a submatrix G=
(¢;j) of B of order r such that c;=a (=1,2,+-,7) and ¢;;=0 for i#j.
This means that r(B) =r. Now from UA=B and VB=A, we have that
R(A)=R(VB)SR(B)=R(UA)<SR(A) and R(A)=R(B), where R(B) de-
notes the row space of B. We obtain r(A4)=r(B)=r. Similarly, we can.
show that ¢(A4) =c(B)=r. This proves Therem 1.

3. The R-class R-,,

We note that F=1{0,1,2,--,k}. Let 0¥m&F. R?, denotes the R-class.
containing mI,. We compute the cardinality |R=%,,| of the set R*,, in the:

following theorem. (’,:) denotes the binomial coefficient.
THEOREM 2. Let r be a positive integer with 1<r<n. Then
| Rem| = 5, (= D(0) (Gt Dy =),

To prove the theorem 2 we need lemmas.

Lesoas 1. (1) + (1) =(aT1)-
LEMMA 2. |R*ip| = (m+1)"—m"

Proof. We supply two proofs of Lemma 2. V,(m) denotes thé set of all
1Xn matrices over F=1{0, 1,2, ---,m}. Let Q denote the (r—1) Xz zero ma-

trix. Letting z= (x1, o, ***, ) € V,, (), g=('§) denotes an zXn matrix

formed from z and 0. Then z&R*, iff x contains at least one m as
its component. We see that |V, (m)|=(m+1)». Therefore we see that

| RP 1| = | Vo (m) | —| Vn(m—l) j=(m+1D)*"—m*,

proving the lemma.
The second proof is given by the following expression.
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e e
+((E (7)) D)+ -+ () =t D=

1) \i=o

A term of |R%,,| with the coefhcient (:z) expresses the number of g-:(;g)

of Ry, such that | {j: z;=m} |=i, where z= (a1, 25 -, z,) €V, (m). This
also proves the lemma.

LeMMA 3. Let F=1{0,1,2,-, k. Let V,(F) denote the row wvector space
aver F. Then |V.(F)|=(k+1)".

Proof of Theorem 2. We prove this theorem by induction on r. We pro-
ved this theorem for case r=1 in Lemma 2. We assume that Theorem 2 is
proved for all r less than r;, where ry being a fixed positive integer less

than z and greater than 1.
Consider |R” ,|. By induction assumption we have that

| R -1 ::::20 (=D (fo;jl) ((m+1)ret—i)r=Q.
The first term of Q is ((m+1)71)* which becomes

((m+1)70)*— ((m+1)70~1)*= @)*— (w—1)*

if we assume R" -1, has changed to R% ., by a careful application
of Lemma 4, where #= (m-+1)"c which is justified by Lemma 3. Consider
the second term — (rg—1) ((m—+1)70"1—1)* of Q. This quantity becomes
—(r—D (@"— (v—1)") as R% -1m becomes R* , by Lemma 4, where v=
(m+1)ro—1 which is justified by Lemma 3. In similar fashin, by applying
Lemma 4 and Lemma 3 to each term (-—1)"(’0:1) ((m+1)r0"1—{)s=g of

@, we claim that g becomes

=D (7 ) (@t D= = (Gm+ D7 G+D))

as R, -, becomes R" ,. Now using the identity (s_t_l)+(§)=<tt1) of

Lemma 1, we obtain

70) ((me+1)r0—ro)*

| R gul = (A D7) 2= () (G Dro— 1) 4+ (= Do

=5 (=1* () (@+Dro—)~
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This proves Theorem 2.

THEOREM 3. ID“,,,,I=-;17—(|R"mD"’-

Proof. We can prove that |L*.,]|=|R*,|, where L?», denotes the L-
«lass containing mlI,. We can also show thow that |H®.,|=r!, where
Hr#_, denotes the H-class containing mI,. This proves Theorem 3.

4. The number of all idempotents in D=,

E(S) denotes the set of all idempotents of a subset S of a semigroup.
“We find |E(D*,,,) | in Theorem 4.

LEMMA 4. |E(D*y) | = ((m+1)%)2— ((m+1)2—1)=
We give two different proofs of Lemma 4.

Proof. (1). Let z= (21,22 ", 2, € V,(F) and @ denotes the (z—1)Xn
zero matrix. Then (E)GR”M if z;=m for some i. z= (@ & R*, is an idem-

potent iff z;=m. Thus the number of all idempotents in R*;,, is equal to
(m-+1)#-L It is not difficult to show that there are » R~classes each of which

contains exactly (m+1)*"! idempotents, where u= (iz)m"‘l. Now consider

an R-class R, which contains A=(g;;), where a;;=ay=m and ;=0
if ay#a;;7an. We can show that R,CD*, and |E(R,|=(m+1)*?
((m+1)2—m?). We can show that there are exactly u R—classes Rp such that

[E(R)|=|E(Rp)| and Rp<=D™,, where u=(g)m"”2. By the foregoing

argument, we can write
[E(D"m) | = (’{)m"-l (m+1)"1+ (g)mu—z (m+1)*2((m+1)2—m?) +

| .--+(’;)mn—r(m+1)n—r((m+1)r—mr)+---+(’,§)((m+1)n—m»)
= (A D~ (m+1)2—1)".

This proves Lemma 4.

(2) (The second proof of Lemma 4). For simplicity we write F={0,1,
9, -, m} instead of F= {0=ry,7s -, ra=1:r;€[0,1]}. Consider E(D*,).
A€ E(D"y,,) iff there exist z=(z, z3, -, z,)* (¢ means that ‘transpose’)
and y=(yy, y2 > ¥,) such that zy=A and yr=m. This shows that if Ae
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E(D*,) then there exists i such that z;=m=y; and zy=A. Now we consi-
der the meaning of (m+1)2*—m?. (m-+1)2* means the number of zy=A
such that z= (zy, z3, **-, z,)* and y= (91, ¥, ***, ¥a)» i, %:EF. m2® means that

| {zy:z;, 3;€ {0, 1,2, -+, m—1} =F\m} | =m?~.

This proves that |E(D%,) | = (m-+1)2*— m?».
Note that if we set r=1, in Theorem 4, then 2(m+1)"+rm?2—1=
(m+1)2. I r=2, then 2(m+1)"+rm2—1=(2m-+1)2

DeremitiON. We denote by M,,,,(F) the set of all mXn matrices over F.
We define a square matrix I(m,r)=(a;;) of order r as the following:
a;=m and q;;=0 for all i+#j. We define

X=te= (1) My (P} and Y=ly=Um,1,5) €M ()},

where z= (zy, z3, -+, z,) and y=(y1, 2 ***,¥,)*. Note that zy=is a member
of M,+1,,+1(F) for z€X and yeEY.

LEMMA 5. Let zY={zy:z€X, y€Y}. Then

1) |E@@Y)|=(m+1)" when z= (0,0, -, 0).

2) |E(zY|=m+1 when 2= (z,, 25, -, ,.) contains just one nonzero element.
(8) |E(zY)|=1 when z contains at least two nonzero components.

The proof of Lemma 5 is trivial and we omit it.

Lemma 5 has an important meaning in Theorem 4. For (2) of Lemma
5, there exist mr such vectors z= (z;, 73, ***, z,) each of which contains just
one non-zero element (referring to F=1{0,1,2,+-+,m}). We define a number

rm(m+1) for (2). Consider (1) of Lemma 5. There is just one vector
x=(0,0, ---,0), the zero-vector, and we define a number (m-+1)7 for (1).
For (3), we define a number (m+1)"—mr—1. The sum of these three
numbers rm(m—+1), (m-+1)" and (m+1)"—mr—1 is equal to 2(m-+1)7+
rm?—1=¢ and ¢ has a significant meaning for|E(D=,,) |.

Tuporem 4. |E(D%) | =1 B (-D(}) ¢~

r!

where t=2(m~+1)"+rm2—1.

Proof. We prove this theorem by induction on r. For the case of r=1,
we have Lemma 4 which proves Theorem 4. We assume that the theorem
is proved for all r<{r;, where ry is a fixed positive integer less than =.
This means that
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E@m) =278 (- (77 ) €to-1 =0

where t(s) =2(m+1)*+sm2—1. Consider A in D*, ,. For A there exist
Uel~ , and VER" g such that A=UYV. For a moment, we suppose that
A were A=0V, UEL ~1ms VER® 1, Applying Lemma 4 to A which
changes to A, and a careful consideration of the meaning of Lemma 5, we

can realize that the first term (r"o— 1) (¢@o—1))" of |E(D% -1m)| changes
to (r" >(t (ro))*— () —1)®) as A changes to A or ry—1 changes to

ro- The foregoing argument applies to the second term ( ) @ (ro—1)—1*

which changes to (r" )((t(ro) 15— ((rg) —2)®) as A changes to A.
We apply the foregoing argument to each term of {E(D* _;,)| and using
<S)+( s ) ('H_l) of Lemma 1, we obtain the formula for |E(D% ) |.

m m—1
This proves the theorem.

5. Some additional resalts

It is difficult to find the number of all D-classes of the semigroup M, (F)
but we have the following.

ProproSITION 1. The number of all D-classes of the semigroup Mo,(F) of
all 2X2 fuzzy matrices over F is given by Z'_E:O(th—-t-f-l) (m—t+1), where m

is given by |F|=m-+1.

Note that if m=1, then the number above is equal to 4. We know that
the semigroup M2({0,1}) of all 2X2 boolean matrices over the set {0, 1}
of two elements has four D-classes:

Dey, Pgy, Py ad Doy,

We consider now Theorem 2. Let AcM,(F). R(4) and L(A4) denote
respectively the row space and the column space of A. R, and L, denote
respectively the R-class and the L-class containing A. The following is the
generalized from of Theorem 2.

PROPOSITION 2. |RA|=:}§::(——1)=' (@-(fl) )(lL”’(A)I—i)" and

Ll =% (-D¢ (") (R -0~
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The proof of Proposition 2 is similar to that of Theorem 2 and we omit
the proofs of Propositions 1 and 2.
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