NOTE ON THE SEMIGROUP OF FUZZY MATRICES

BY JIN BAI KIM

1. Introduction

Let F be a finite subset of the unit interval [0,1] of the real line. $M_n(F)$ denotes the set of all $n \times n$ fuzzy relation matrices over F. Then $M_n(F)$ form a semigroup under the matrix multiplication and we call it the semigroup of fuzzy (relation) matrices over F [5]. We denote by $C_n(F)$ the set of all circulant fuzzy (relation) matrices over F. Then $C_n(F)$ is a commutative subsemigrop of $M_n(F)$ [6]. [5, 6, 7] are main references for $M_n(F)$ and $C_n(F)$. We define $kI_r = (a_{ij})$ by $a_{ij} = k$ if $i = j = 1, 2, \dots, r$ and $a_{ij} = 0$ if $i \neq j$ or if i = j = r + 1, $r + 2, \dots, n$. Let R^n_{rk} and D^n_{rk} be respectively an R-class and a D-class containing $kI_r \in M_n(F)$, where k is a member of F. We find the cardinal numbers $|R^n_{rk}|$ and $|D^n_{rk}|$ of the sets R^n_{rk} and D^n_{rk} . We find the number of all idempotents in D^n_{rk} .

2. Elementary properties of the semigroup

We list some elementary properties of $M_n(F)$ and $C_n(F)$.

- (1) $M_n(F)$ is not regular. $C_n(F)$ is an abelian subsemigroup of $M_n(F)$ with the cardinality $|C_n(F)| = (|F|)^n$.
 - (2) If $A \in C_n(F)$, then A^h is an idempotent for some $h \le n$.
 - (3) Any idempotent A in $C_n(F)$ is of the form

 $A = a_1 E + a_2 (P^{d_1} + P^{2d_1} + \dots + P^{(t_1-1)d_1}) + \dots + a_m (P^{d_m} + P^{2d_m} + \dots + P^{(t_m-1)d_m}),$ where $n = d_i t_i$, $d_1 = d_2 s_2$, $d_2 = d_3 s_3$, ..., $d_{m-1} = d_m s_m$, $d_1 \neq n$, $d_i \neq d_j$ ($i \neq j$, $a_i \in F$, $a_1 \geq a_2 > a_3 > \dots > a_m \neq 0$, and E is the identity of $M_n(F)$. (See [5, 6] for proofs of items (2) and (3).

(4) Let r(A) and c(A) denote respectively the row-rank and column-rank of $A \in M_n(F)$. Then r(A) = 1 iff c(A) = 1. If $D_1 = \{X \in M_n(F) : r(X) = 1\}$, then D_1 is the union of k D-classes of $M_n(F)$, where k = |F| - 1. For simplicity, we write $F = \{0, 1, 2, \dots, k\}$.

We denote by D_{ra}^n the D-class of $M_n(F)$ containing aI_r , $0 \neq a \in F$.

THEOREM 1. Let $0 \neq a \neq b \neq 0$. Then $D^n_{ra} \cap D^n_{rb} = \phi$ (the empty set). Let D^n_r be the union of all D^n_{ra} ($0 \neq a \in F$). If $A \in D^n_r$, then r(A) = c(A).

Proof. Assume that a>b. There is no X in $M_n(F)$ such that $aI_r=(bI_r)X$ and consequently we have shown that $D^n_{ra}\cap D^n_{rb}=\phi$. We show that if $A\in D^n_r$ then r(A)=r=c(A). To show that let $A\in D^n_{ra}$. Then there exists B such that $A \perp B$ and $B \in A$. There exist $A \in A$ is such that $A \perp B$ and $A \in A$ is exist $A \in A$. We obtain $A \in A$ is such that $A \perp A \in A$ is an $A \in A$ in the exist $A \in A$ is such that $A \perp A \in A$ is an $A \in A$ in the exist $A \in A$ is such that $A \perp A \in A$ is an $A \cap A$ in the exist $A \cap A$ is such that $A \perp A \cap A$ is an $A \cap A$ in the exist $A \cap A$ is such that $A \perp A \cap A$ in the exist $A \cap A \cap A$ is such that $A \cap A \cap A$ in the exist $A \cap A \cap A$ in the exist $A \cap A \cap A$ is such that $A \cap A \cap A$ in the exist $A \cap A \cap A$ in the exist $A \cap A \cap A$ is such that $A \cap A \cap A$ in the exist $A \cap A \cap A$ is such that $A \cap A \cap A$ in the exist $A \cap A \cap A$ in the exist $A \cap A \cap A$ is such that $A \cap A \cap A$ in the exist $A \cap A \cap A$ in the exist $A \cap A \cap A$ is such that $A \cap A \cap A$ in the exist $A \cap A$

3. The R-class R^{n}_{rm}

We note that $F = \{0, 1, 2, \dots, k\}$. Let $0 \neq m \in F$. R^n_{rm} denotes the R-class-containing mI_r . We compute the cardinality $|R^n_{rm}|$ of the set R^n_{rm} in the following theorem. $\binom{n}{k}$ denotes the binomial coefficient.

THEOREM 2. Let r be a positive integer with $1 \le r \le n$. Then

$$|R^{n}_{rm}| = \sum_{i=0}^{r} (-1)^{i} {r \choose i} ((m+1)^{r} - i)^{n}.$$

To prove the theorem 2 we need lemmas.

LEMMA 1.
$$\binom{t}{m} + \binom{t}{m+1} = \binom{t+1}{m+1}$$
.

LEMMA 2.
$$|R^n_{1m}| = (m+1)^n - m^n$$
.

Proof. We supply two proofs of Lemma 2. $V_n(m)$ denotes the set of all $1 \times n$ matrices over $F = \{0, 1, 2, \dots, m\}$. Let $\underline{0}$ denote the $(n-1) \times n$ zero matrix. Letting $x = (x_1, x_2, \dots, x_n) \in V_n(m)$, $\underline{x} = \begin{pmatrix} x \\ \underline{0} \end{pmatrix}$ denotes an $n \times n$ matrix formed from x and $\underline{0}$. Then $\underline{x} \in R^n_{1m}$ iff x contains at least one m as its component. We see that $|V_n(m)| = (m+1)^n$. Therefore we see that

$$|R^{n}_{1m}| = |V_{n}(m)| - |V_{n}(m-1)| = (m+1)^{n} - m^{n},$$

proving the lemma.

The second proof is given by the following expression.

$$|R^{n}_{1m}| = {n \choose 1} {\sum_{t=0}^{n-1} {n-1 \choose t} (m-1)^{t}} + {n \choose 2} {\sum_{t=0}^{n-2} {n-2 \choose t} (m-1)^{t}} + \cdots + {n \choose i} {\sum_{t=0}^{n-i} {n-i \choose t} (m-1)^{t}} + \cdots + {n \choose n} = (m+1)^{n} - m^{n}.$$

A term of $|R^n_{1m}|$ with the coefficient $\binom{n}{i}$ expresses the number of $\underline{x} = \binom{x}{0}$ of R^n_{1m} such that $|\{j: x_j = m\}| = i$, where $x = (x_1, x_2, \dots, x_n) \in V_n(m)$. This also proves the lemma.

LEMMA 3. Let $F = \{0, 1, 2, \dots, k\}$. Let $V_r(F)$ denote the row vector space over F. Then $|V_r(F)| = (k+1)^r$.

Proof of Theorem 2. We prove this theorem by induction on r. We proved this theorem for case r=1 in Lemma 2. We assume that Theorem 2 is proved for all r less than r_0 , where r_0 being a fixed positive integer less than n and greater than 1.

Consider $|R^{n}_{r_0m}|$. By induction assumption we have that

$$|R^{n}_{r_{0}-1 m}| = \sum_{i=0}^{r_{0}-1} (-1)^{i} {r_{0}-1 \choose i} ((m+1)^{r_{0}-1}-i)^{n} = Q.$$

The first term of Q is $((m+1)^{r_0-1})^n$ which becomes

$$((m+1)^{r_0})^n - ((m+1)^{r_0}-1)^n = (u)^n - (u-1)^n$$

if we assume $R^n_{r_0-1\,m}$ has changed to $R^n_{r_0\,m}$, by a careful application of Lemma 4, where $u=(m+1)^{r_0}$ which is justified by Lemma 3. Consider the second term $-(r_0-1)\,((m+1)^{r_0-1}-1)^n$ of Q. This quantity becomes $-(r_0-1)\,(v^n-(v-1)^n)$ as $R^n_{r_0-1\,m}$ becomes $R^n_{r_0m}$ by Lemma 4, where $v=(m+1)^{r_0}-1$ which is justified by Lemma 3. In similar fashin, by applying Lemma 4 and Lemma 3 to each term $(-1)^i\binom{r_0-1}{i}((m+1)^{r_0-1}-i)^n=q$ of Q, we claim that q becomes

$$(-1)\binom{r_0-1}{i}(((m+1)^{r_0}-i)^n-((m+1)^{r_0}-(i+1))^n)$$

as $R_{r_0-1}^n$ becomes $R_{r_0}^n$. Now using the identity $\binom{t}{s-1} + \binom{t}{s} = \binom{t+1}{s}$ of Lemma 1, we obtain

$$|R^{n}_{r_{0}m}| = ((m+1)^{r_{0}})^{n} - {r_{0} \choose 1}((m+1)^{r_{0}} - 1)^{n} + \dots + (-1)^{r_{0}}{r_{0} \choose r_{0}}((m+1)^{r_{0}} - r_{0})^{n}$$

$$= \sum_{i=0}^{b_{0}} (-1)^{i} {r_{0} \choose i}((m+1)^{r_{0}} - i)^{n}.$$

4 Jin Bai Kim

This proves Theorem 2.

THEOREM 3.
$$|D^n_{rm}| = \frac{1}{r!} (|R^n_{rm}|)^2$$
.

Proof. We can prove that $|L^n_{rm}| = |R^n_{rm}|$, where L^n_{rm} denotes the L-class containing mI_r . We can also show that $|H^n_{rm}| = r!$, where H^n_{rm} denotes the H-class containing mI_r . This proves Theorem 3.

4. The number of all idempotents in D_{rm}^{n}

E(S) denotes the set of all idempotents of a subset S of a semigroup. We find $|E(D^n_{rm})|$ in Theorem 4.

LEMMA 4.
$$|E(D^n_{1m})| = ((m+1)^2)^n - ((m+1)^2 - 1)^n$$
.

We give two different proofs of Lemma 4.

Proof. (1). Let $x=(x_1,x_2,\cdots,x_n)\in V_n(F)$ and 0 denotes the $(n-1)\times n$ zero matrix. Then $x_1=m$ if $x_i=m$ for some i. $x=x_1=x_2=n$ is an idempotent iff $x_1=m$. Thus the number of all idempotents in $x_1=n$ is equal to $(m+1)^{n-1}$. It is not difficult to show that there are $x_1=n$ and $x_2=n$ if $x_1=n$ which contains $x_1=n$ and $x_2=n$ which contains $x_1=n$ where $x_1=n$ and $x_2=n$ if $x_1=n$ which contains $x_1=n$ where $x_1=n$ and $x_2=n$ if $x_1=n$ where $x_1=n$ and $x_2=n$ where $x_1=n$ and $x_2=n$ if $x_1=n$ where $x_1=n$ if $x_1=n$ and $x_2=n$ where $x_1=n$ if x_1

$$|E(D^{n}_{1m})| = {n \choose 1} m^{n-1} (m+1)^{n-1} + {n \choose 2} m^{n-2} (m+1)^{n-2} ((m+1)^{2} - m^{2}) + \cdots + {n \choose r} m^{n-r} (m+1)^{n-r} ((m+1)^{r} - m^{r}) + \cdots + {n \choose n} ((m+1)^{n} - m^{n})$$

$$= (m+1)^{2n} - ((m+1)^{2} - 1)^{n}.$$

This proves Lemma 4.

(2) (The second proof of Lemma 4). For simplicity we write $F = \{0, 1, 2, \dots, m\}$ instead of $F = \{0 = r_1, r_2, \dots, r_m = 1 : r_i \in [0, 1]\}$. Consider $E(D^n_{1m})$. $A \in E(D^n_{1m})$ iff there exist $x = (x_1, x_2, \dots, x_n)^t$ (t means that 'transpose') and $y = (y_1, y_2, \dots, y_n)$ such that xy = A and yx = m. This shows that if $A \in E(D^n_{1m})$ is the second proof of Lemma 4). For simplicity we write $F = \{0, 1, \dots, r_m\}$ instead of $F = \{0, \dots, r_m\}$

 $E(D^n_{1m})$ then there exists *i* such that $x_i = m = y_i$ and xy = A. Now we consider the meaning of $(m+1)^{2n} - m^{2n}$. $(m+1)^{2n}$ means the number of xy = A such that $x = (x_1, x_2, \dots, x_n)^t$ and $y = (y_1, y_2, \dots, y_n)$, $x_i, y_i \in F$. m^{2n} means that

$$|\{xy:x_i,y_j\in\{0,1,2,\cdots,m-1\}=F\setminus m\}|=m^{2n}.$$

This proves that $|E(D^{n}_{1m})| = (m+1)^{2n} - m^{2n}$.

Note that if we set r=1, in Theorem 4, then $2(m+1)^r + rm^2 - 1 = (m+1)^2$. If r=2, then $2(m+1)^r + rm^2 - 1 = (2m+1)^2$.

DEFINITION. We denote by $M_{m,n}(F)$ the set of all $m \times n$ matrices over F. We define a square matrix $I(m,r) = (a_{ij})$ of order r as the following: $a_{ii} = m$ and $a_{ij} = 0$ for all $i \neq j$. We define

$$X = \{ \underline{x} = \begin{pmatrix} I(m, r) \\ x \end{pmatrix} \in M_{r+1,r}(F) \} \text{ and } Y = \{ \underline{y} = (I(m, r), y) \in M_{r,r+1}(F) \},$$

where $x = (x_1, x_2, \dots, x_r)$ and $y = (y_1, y_2, \dots, y_r)^t$. Note that $\underline{x}\underline{y} =$ is a member of $M_{r+1,r+1}(F)$ for $\underline{x} \in X$ and $y \in Y$.

LEMMA 5. Let $\underline{x}Y = \{\underline{x}y : \underline{x} \in X, y \in Y\}$. Then

- (1) $|E(\underline{x}Y)| = (m+1)^r$ when $x = (0, 0, \dots, 0)$.
- (2) $|E(\underline{x}Y)| = m+1$ when $x = (x_1, x_2, \dots, x_r)$ contains just one nonzero element.
- (3) $|E(\underline{x}Y)|=1$ when x contains at least two nonzero components.

The proof of Lemma 5 is trivial and we omit it.

Lemma 5 has an important meaning in Theorem 4. For (2) of Lemma 5, there exist mr such vectors $x = (x_1, x_2, \dots, x_r)$ each of which contains just one non-zero element (referring to $F = \{0, 1, 2, \dots, m\}$). We define a number rm(m+1) for (2). Consider (1) of Lemma 5. There is just one vector $x = (0, 0, \dots, 0)$, the zero-vector, and we define a number $(m+1)^r$ for (1). For (3), we define a number $(m+1)^r - mr - 1$. The sum of these three numbers rm(m+1), $(m+1)^r$ and $(m+1)^r - mr - 1$ is equal to $2(m+1)^r + rm^2 - 1 = t$ and t has a significant meaning for $|E(D^n_{rm})|$.

THEOREM 4.
$$|E(D^n_{rm})| = \frac{1}{r!} \sum_{i=0}^r (-1)^i {r \choose i} (t-i)^n$$
, where $t=2(m+1)^r + rm^2 - 1$.

Proof. We prove this theorem by induction on r. For the case of r=1, we have Lemma 4 which proves Theorem 4. We assume that the theorem is proved for all $r < r_0$, where r_0 is a fixed positive integer less than n. This means that

$$|E(D^{n}_{r_{0}-1 m})| = \frac{1}{(r_{0}-1)!} \sum_{i=0}^{r_{0}-1} (-1)^{i} {r_{0}-1 \choose i} (t(r_{0}-1)-i)^{n},$$

where $t(s) = 2(m+1)^s + sm^2 - 1$. Consider A in $D^n_{r_0m}$. For A there exist $U \in L^n_{r_0m}$ and $V \in R^n_{r_0m}$ such that A = UV. For a moment, we suppose that A were $\overline{A} = \overline{U}\overline{V}$, $\overline{U} \in L^n_{r_0-1m}$, $\overline{V} \in R^n_{r_0-1m}$. Applying Lemma 4 to \overline{A} which changes to A, and a careful consideration of the meaning of Lemma 5, we can realize that the first term $\binom{r_0-1}{0}(t(r_0-1))^n$ of $|E(D^n_{r_0-1m})|$ changes to $\binom{r_0-1}{0}(t(r_0))^n - (t(r_0)-1)^n$) as \overline{A} changes to A or r_0-1 changes to r_0 . The foregoing argument applies to the second term $\binom{r_0-1}{1}(t(r_0-1)-1)^n$ which changes to $\binom{r_0-1}{1}(t(r_0)-1)^n - (t(r_0)-2)^n$) as \overline{A} changes to A. We apply the foregoing argument to each term of $|E(D^n_{r_0-1m})|$ and using $\binom{s}{m} + \binom{s}{m-1} = \binom{s+1}{m}$ of Lemma 1, we obtain the formula for $|E(D^n_{r_0m})|$. This proves the theorem.

5. Some additional results

It is difficult to find the number of all D-classes of the semigroup $M_n(F)$ but we have the following.

PROPOSITION 1. The number of all D-classes of the semigroup $M_2(F)$ of all 2×2 fuzzy matrices over F is given by $\sum_{t=0}^{m} (2t^2-t+1)(m-t+1)$, where m is given by |F|=m+1.

Note that if m=1, then the number above is equal to 4. We know that the semigroup $M_2(\{0,1\})$ of all 2×2 boolean matrices over the set $\{0,1\}$ of two elements has four D-classes:

$$D_{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}}, D_{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}, D_{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} \text{ and } D_{\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}}.$$

We consider now Theorem 2. Let $A \in M_n(F)$. R(A) and L(A) denote respectively the row space and the column space of A. R_A and L_A denote respectively the R-class and the L-class containing A. The following is the generalized from of Theorem 2.

PROPOSITION 2.
$$|R_A| = \sum_{i=0}^{c(A)} (-1)^i {c(A) \choose i} (|L(A)| - i)^n$$
 and $|L_A| = \sum_{i=0}^{c(A)} (-1)^i {r(A) \choose i} (|R(A)| - i)^n$.

The proof of Proposition 2 is similar to that of Theorem 2 and we omit the proofs of Propositions 1 and 2.

References

- 1. K. K. Butler, On (0,1)-matrix semigroups, Dissertation, George Washington University, D. C. 1970.
- 2. K. K. Butler, On (0,1)-matrix semigroups, Semigroup Forum 3 (1971), 74-79.
- 3. K. K. Butler, Combinatorial properties of binary semigroups, Periodica Mathematica, Hungarica 5 (1974), 3-46.
- 4. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. 1, AMS Math. Surveys No. 7, Providence, R. I., 1961.
- 5. Jin Bai Kim, A certain matrix semigroup, Math. Japonica 22-5 (1978), 519-522.
- 6. Jin Bai Kim, On the circulant fuzzy matrices, Math. Japonica.
- 7. Jin Bai Kim, On the semigroup of the circulant fuzzy matrices, submitted to a journal.
- 8. Jin Bai Kim, On the structures of linear semigroups, J. Combinatorial Theory 11 (1971), 62-71.
- 9. S. Schwarz, On the semigroup of binary relations on a finite set, Czechoslovak Math. J. 24 (1974), 252-253.
- 10. S. Schwarz, A counting theorem in the semigroup of circulant boolean matrices, Czechoslovak Math. J. 27 (1977), 504-510.

West Virginia University, U.S.A.