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NOTE ON THE SEMIGROUP OF FUZZY MATRICES

By JIN BAI KIM

1. Introduction

Let F be a finite subset of the unit interval [0, 1J of the real line. M" (F)
.denotes the set of all nXn fuzzy relation matrices over F. Then Mn(F)
form a semigroup under the matrix multiplication and we call it the semi·
.group of fuzzy (relation) matrices over F [5]. We denote by Cn (F) the set
-of all circulant fuzzy (relation) matrices over F. Then C" (F) is a commu­
tative subsemigrop of M" (F) [6]. [5,6, 7J are main references for M" (F)
and C,,(F). We define kIr=(aij) by ajj=k if t"-j=1,2,"',r andaij=O if
i=l=j or if t"=j=r+l. r+2,···,n. Let R"rk and D"rk be respectively an R­
-class and a D-class containing kIrEM,,(F), where k is a member of F.
We find the cardinal numbers IR"rkl and ID"rkl of the sets R"rk and D"rk'
We find the number of all idempotents in D"rk.

2. Elementary properties of the semigroup

We list some elementary properties of M" (F) and C" (F) .

(1) M,,(F) is not regular. C,,(F) is an abelian subsemigroup of M,,(F)
with the cardinality IC" (F) 1= (I FI)".

(2) If AEC,,(F), then Ah is an idempotent for some h;;an.
(3) Any idempotent A in C" (F) is of the form

A=a1E+a2(pd1+ p2d1+ .•.+pCtcDdl) +...+am(Pd..+ P2d..+ ••. +pCt..-Dd..).

where n=djtj, d1=dzS2, d2=dsS3, •..• dm-1=dmsm, d1 =1= n, dj=l=dj (i=l=j, ajEF,

al~a2>a3>"'>anA:O, and E is the identity of M,,(F). (See [5,6J for
proofs of items (2) and (3).

(4) Let reA) and c(A) denote respectively the row-rank and column-rank
of AEM,,(F). Then reA) =1 iff c(A) =1. If D1= {XEM" (F) : r(X) =1},
then D 1 is the union of k D-classes of M,,(F), where k= IFI-1. For sim.
plicity, we write F= to, 1,2, ..., k}.

We denote by D"ra the D-class of M,,(F) containing aIr, O=l=aEF.
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THEOREM 1. Let 0*a::;t: b:;t: O. Then Dnra nlY'rh=tjJ (the empty set). Let Dn,.­
be the union of all Dnra (O::;t:aEF). If AEDnn then reA) =c(A).

Proof. Assume that a>b. There is no X in M n(F) such that aIr= (bIr) X
and consequently we have shown that Dnra nD"rb=tjJ. We show that if
AEDnr then reA) =r=c(A). To show that let AEDnra• Then there exists.
B such that A L Band BR (aIr)' There exist X, Y, U, V such that BX=
aIr> UA=B, aIrY=B and VB=A. We obtain C(alr) ~C(B) ~C(aIr) and
hence C(aIr) =C(B), where C(B) denotes the column space of B. Thus
c(B) =c(aIr) -=r(aIr) =1". Since B has at most r non-zero rows, we have­
that r(B) ~r. From c(B) =r, it follows that there exists a submatrix G=
(c;j) of B of order r such that cu=a (i=l, 2, "', r) and C;j=O for i:;t:j.
This means that r(B) =r. Now from UA=B and VB=A, we have that.
R(A) =R(VB) ~R(B)=R(UA) ~R(A) and R(A) =R(B), where R(B) de­
notes the row space of B. We obtain reA) =r(B) =r. Similarly, we can.
show that c(A) =c(B) =r. This proves Therem 1.

3. The R-class Rnrm

We note that F= to, 1, 2, "', k}. Let O:;t:mEF. Rnrm denotes the R-class.
containing mlr' We compute the cardinality IRnrm I of the set Rnrm in the'

following theorem. (~) denotes the binomial coefficient.

THEOREM 2. Let r be a positive integer with l~r~n. Then

IRnrm I=i~ (-l);(~) «m+ l)r-i)n.

To prove the theort:m 2 we need lemmas.

LEMMA 2. IRn1ml = (m+1)n- mn.

Proof. We supply two proofs of Lemma 2. Vn(m) denotes the set of an:
1Xn matrices over F= {O, 1,2, ''', m}. Let Qdenote the (n-I) Xn zero ma-

trix. Letting x= (Xl> X2, ••• , x n) E Vn(m), :f= (~ denotes an nXn matrix

formed from X and Q. Then :fERnlm iff x contains at least one m as­
its component. We see that IVn(m) I= (m+l)n. Therefore we see that

IRn1", I= IVn(m) I-I Vn(m-I) 1= (m+l)n-mn,

proving the lemma.
The $eCOnd proof is given by the following expression.
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!Rn1ml = (~) (~(n-;l) (m-l)t) +(i) (~(n-;2) (m-nt) +...

+(~)(~(n;i) (m-nt)+ ... + (:)= (m+l) "-m".

A term of IRnl",l with the coefficient (~) expresses the number of ~=~)

of Rnlm such that I U: xj=m} I=i, where x= (Xl> Xz, "', XII) E V,. (m). This
also proves the lemma.

LEMMA 3. Let F= {O, 1,2, "', k}. Let VT(F) denote the row vector space
OfJer F. Then IVr(F) I=(k+l)T.

Proof of Theorem 2. We prove this theorem by induction on r. We pro­
ved this theorem for case r=1 in Lemma 2. We assume that Theorem 2 is
proved for all r less than ro, where ro being a:fixed positive integer less
than n and greater than 1.

Consider IRnTom \. By induction assumption we have that

IR"T -1 ml rE (-1); (ro-:-l) «m+l)To-l_i)II=Q.
o ;=0 z

The first term of Q is «m+1)ro-l)n which becomes

if we assume Rllro- l m has changed to RnTO m, by a careful application
of Lemma 4, where u= (m+l)ro which is justified by Lemma 3. Consider
the second term - (ro-I) «m+1)To-l-1)" of Q. This quantity becomes
-(ro-l) (vll_(v-l)n) as R"To - 1m becomes RnTo11l by Lemma 4, where v=
(m+l)ro-l which is justified by Lemma 3. In similar fashin, by applying

Lemma 4 and Lemma 3 to each term (-1);(roi1) «m+1)To-l_i)"=q of

Q, we claim that q becomes

(-1) (roil) «(m+ l)To-i)lI- «m+l)To- (i+1) ),,)

as R"To-lm becomes R"Tom' Now using the identity (S:l)+(:)=(t~l) of

Lemma 1, we obtain

IR"T
0

11l 1= «m+l)To)"- (io) «m+l)To-l)n+ ..•+ (-l)TO(~~) «m+ l)To- ro)"

=~(-1)1 (7) «~+l)To-i)n.
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This proves Theorem 2.
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Proof. We can prove that ILnrm I= IRnnnl, where Lnrm denotes the L­
.dass containing mlr • We can also show thow that IHnrml =r!, where
H"rm denotes the H-class containing mlr• This proves Theorem 3.

4. The number of all idempotents in Dnrm

E (S) denotes the set of all idempotents of a subset S of a semigroup.
We find IE(Dnrm) I in Theorem 4.

LEMMA 4. IE(Dn1m) 1= «m+1)2)"- «m+1)2-1)n.

We give two different proofs of Lemma 4.

Proof. (1). Let X=(Xl,X2,···,x,.)EV,,(F) and Q denotes the (n-I)Xn

'zero matrix. Then (~ER"lm if xi=m for some i. ,!= (~ER"lm is an idem­

potent iff Xl =m. Thus the number of all idempotents in R"lm is equal to
(m+l)n-l. It is not difficult to show that there are u R-classes each of which

-contains exactly (m+ 1),,-1 idempotents, where u= (i)mn
-

l . Now consider

an R-class RA which contains A = (aij), where all =a21=m and aij=0

if all=FaU=Fa21' We can show that RAr;;JJn1m and IE(R,A) 1= (m+ 1),,-2
«m+1) 2 - m2) • We can show that there are exactly u R-classes RE such that

jE(R.J 1= IE(RB) I and RBcDn1m, where u=(~)m"-2. By the foregoing

argument, we can write

\E(Dn1m) 1= (i)mn- 1(m+ 1)n-1+ (i)m,,-2(m+1),,-2«m+ 1)2-m2) +

...+ (~)m,,-r(m+1)n-r«m+I)r-mr) +...+(:) «m+1)"-m")

= (m+1)2n- «m+1)2-1)".

This proves Lemma 4.
(2) (The second proof of Lemma 4). For simplicity we write F= {O,I,

2, "', m} instead of F= {O=rl' r2, "', rm=l : riE[O, I]}. Consider E(D"lmJ.
AEE(D"lm) iff there exist x= (Xl> X2, "', x,,)t (t means that 'transpose')
and Y=(YtoY2,"',y,,) such that xy=A and yx=m. This shows that if AE
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E(IJn1m) then there exists i such that xi=m=Yi and xy=A. Now we consi­
der the meaning of (m+1)2n-m2n. (m+1)2n means the number of xy=A
such that x = (Xl> X2, •••, x,,) t and y = (Yl> Y2, ••• , Y,,), Xi' Yi E F. m2n means that

I {XY:Xi,YjE {O, 1, 2, ... , m-I} =F\m} I=m2n.

This proves that \E(D"lm) I= (m+1)2n- m2n.

Note that if we set r=l, in Theorem 4, then 2(m+1)r+rm2-1=

{m+1)2. If r=2, then 2(m+1)r+rm2-1= (2m+1)2.

~TION. We denote by Mm,,,(F) the set of all mXn matrices over F.
We define a square matrix I(m, r) = (aij) of order r as the following:
.aii=m and aij=O for all i::J=.j. We define

where x= (Xl> X2, ... , x r) and y= (Yl> Y2, ···,Yr)t. Note that J;J!=is a member
of M r +hr+1 (F) for J;EX and J!E Y.

LEMMA 5. Let J;Y= {J;J!: J;EX, J!E Y}. Then

(1) IE(J;Y) 1= (m+1)r when x= (0, 0, ···,0).
(2) IE(J;Y!=m+1 whenx=(Xl>X2'···'Xr) contains just one nonzero element.

(3) lE (J; Y) \ = 1 when X contains at least two nonzero components.

The proof of Lemma 5 is trivial and we omit it.
Lemma 5 has an important meaning in Theorem 4. For (2) of Lemma

5, there exist mr such vectors x= (Xl> X2, ... , xr) each of which contains just
one non-zero element (referring to F= {O, 1,2, ..., m}). We define a number

rm(m+l) for (2). Consider (1) of Lemma 5. There is just one vector
.x= (0, 0, ···,0), the zero-vector, and we define a number (m+ 1) r for (1).
For (3), we define a number (m +1) r- mr-1. The sum of these three
numbers rm(m+1), (m+1)r and (m+1)r- mr-1 is equal to 2(m+1)r+
rm2-1=t and t has a significant meaning forIE(Dnrm) I.

THEOREM 4. IE(D"rm) I= }, it (-1) i(n (t-i)n,

where t=2(m+1)r+rm2-1.

Proof. We prove this theorem by induction on r. For the case of r=l,
we have Lemma 4 which proves Theorem 4. We assume that the theorem
is proved for all r<ro, where ro is a fixed positive integer less than n.
This means that
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1 I TO-I (-1)--,--=-:~I: (-l)i rO. (t(ro-l)-i)n,
(ro -I)! ;=0 t

where t(s) =2(m+l)s+sm2 -1. Consider A in D"ro"'. For A there exist
UeLnro'" and VeRnro'" such that A=UV. For a moment, we suppose that
A were A=UV, UeLnro - 1m' VeRnro- 1m• Applying Lemma 4 to A which

changes to A, and a careful consideration of the meaning of Lemma 5, we

can realize that the first term (r0o-l)Ct(ro-1»n of IE(Dnro - 1m) I changes.

to (ro0- 1) (t (ro) ) n- (t (ro) -1) n) as A changes to A or ro -1 changes tl>

ro. The foregoing argument applies to the second term (rol l ) (t (ro -1) -1) n

which changes to (roll) «t(ro) -1)n- (t(ro) -2)n) as A changes to A.

We apply the foregoing argument to each term of IE(Dnro - 1m) I and using

(~)+(m~l)=e~l) of Lemma 1, we obtain the formula for IE(Dnro"') I.
This proves the theorem.

5. Some additional results

It is difficult to find the number of all D-classes of the semigroup M n (F)
but we have the following.

PROPOSITION 1. The number of all D-classes of the semigroup M 2 (F) of
m

all 2X2 fuzzy matrices over F is given by I:(2t2 -t+1)(m-t+l), where m
t=O

is given by IFI =m+l.
Note that if m=l, then the number above is equal to 4. We know that

the semigroup M 2 Cto, I}) of all 2 X2 boolean matrices over the set to, I}
of two elements has four D-classes:

D(oo) D(10) D(10) and D(10)
00, 00, 01 11·

We consider now Theorem 2. Let A E M n(F). R (A) and L (A) denote
respectively the row space and the column space of A. RA and LA denote­
respectively the R-class and the L-class containing A. The following is the
generalized from of Theorem 2.

e(A) • (c(A»)
PROPOSITION 2. IRA I= I: (-1)' ,;.. (11J(A) I-i) n and

;=0 t

ILAI =%\-1)i (rCt») (IR(A) I-i)".
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The proof of Proposition 2 is similar to that of Theorem 2 and we omit
the proofs of Propositions 1 and 2.
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