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TOPOLOGY OF LONG LINE AND INSEPARABLE
CONNECTED MANIFOLDsn

By JEHPILL KIM

1. Introduction

This note starts by proving a condition under which manifolds embedded
in La, the n-fold product of the long line, fail to have boundary collars.
After recognizing that pretty many inseparable manifolds have boundary not
collared, we construct uncountably many liri'e bundles over La, implying in
particular that there are uncountably many simply connected open 2-mani-
fwd~ .

In view of Brown [lJ, failure of boundary collaring is an essential differ­
ence between nonparacompact manifolds and metric ones. A typical counter
example for the boundary collar problem is the Priifer manifold [5, 8J, a
separable Hausdorff manifold with uncountably many boundary components.
We do not know, however, if any Hausdorff manifold is known to have
connected boundary that is not collared. Existence of uncountably many sim­
ply connected open manifolds is also in sharp contrast compared with metric
manifolds since the plane R2 is the only simply connected open 2-manifold
that is metrizable. Note incidentally that there are uncountably many con­
tractible manifolds of dimension higher than 2 by [2J, [7J and [3J.

Although we do not require paracompactness, 'We shall treat only those
manifolds which are normal Hausdorff spaces. If M is a manifold, oM and M
will denote the boundary and interior of M. A subset of a manifold M is
said to be bounded if it is contained in a compact subset of M.

The Stone-Cech compactification of a Tychonov space X is dnooted by
{3X. If f is a map between Tychonov spaces, f* will denote the Stone exten­
sion of j. We do not discriminate points and singletons notationally; x can
stand for {x} not just only the point x.

2. Definition and basic properties of the long line

The long ray is the set L+= WX[O, 1J ordered lexicographically, where
W denotes all countable ordinal~ Let L- be an·order reversing copy of L+
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and identify the first element of L+ with last element of L_. The resulting
ordered space L is called the long line. L is a connected I-manifold because
every bounded closed interval of L is separable and irreducibly connected
between end points. Note that countable sets are bounded in L and that a
subset of L is metrizable exactly when it is bounded.

For the sake of convenience, designate the unique common point of L+
and L- by 0, and let - x denote the image of x under the obvious order
reversing involution of L fixing O. Following the customary usage for real
numbers, we denote by Ixl one of the two points x, -x that belongs to
L+.

Any homeomorph of L or L+ will also be called a long line or a long ray.
A homeomorph of L+ contained in a long line or a long ray is often called
a tail. The following well known result play the key role.

LEMMA 1. If A and B are co/mal and closed in Lh then so is A nB.

Immediate corollaries are:
(i) f3L+- L+ consists 0/ one point, which we shall denote by Q. Accordingly,

we may regard f3L=LU {a, -O} to be an ordered space by asking -D<x<Q
for all x in L.

(ii) Every map 0/ L+ into a metric space is constant on some tail.

Here and afterwards,. maps are assumed to be continuous.

LEMMA 2. f3(L+XI}' f3L+XI. In particular, f3(L+XI) - (L+XI) is an arc.

LEMMA 3. f3L" = (fJL) a.

These two lemmas follow from Glicksberg [4J. As usual, I is the closed
unit interval [0, IJ.

By Lemma 3, we may write points of f3L" as .x= (Xl, "', xa), Xi =p; (X) ,
where Pi: f3Lu= (fJL)" - f3L are projections. By a vertex of L", we shall
mean any of those 2a points in f3La having all coordinates in f3L-L. The
diagonal map for L" is the unique map D:L-L" such that PioD is the
identity map of L for all i.

LEMMA 4. 1/ A is a closed subset 0/ L+" such that Pi (A) is unbounded for
each i, then A meets every tail of D(L+).

LEMMA 5. La is normal.

For Lemma 4, observe that the sets p; (A) meet in a co:6.nal subset of L+
by Lemma 1. For Lemma 5, let A, B be closed subsets of Ln sharing a limit
point x in fjLa-La and conclude that A meets B in La. If n=I, this is
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Lemma 1. If x is a vertex, n>1, use Lemma 4. If x is not a vertex, pick
an i with Xi=Pi(X) in L and observe that both Anpi-1(xi) and B nPi-1(xi)
meet every neighborhood of x. Then use induction to complete the proof.

At this stage, we can answer a problem of Hirsch [5. p. 118J in the
following form. A different proof is obtained in [6J as a byproduct of
homotopy classification and fixed IJOint theory for self maps of L h without
using Stone-Cech compactifications. '

THEOREM 1. There does not exist an embedding h:LXI--.L" such that hex, 0)
=D(x) for all x in L+.

Proof. If there is an h as in the theorem, we have h* (0, 1) *h* (0,0)
because h* must be an embedding by Lemma 5. Hence Pioh*(O, 1) *
Pioh*(O, 0) =PioD*(O) =0 for some i. 'lt follows that a=Pioh*(J3(L+XI)­
(L+ X1)) is a nondegenerate subset of {3L cOntaining O. This is impossible
since a must be a continuous image of an' arc by Lemma 2.

3. A cellwar structure on Ln

An inseparable cell complex Of dimension n, or briefly n-c6mplex, is a finite
ascending sequence of spaces Min OS;kS;n, with M o totally disconnected and
M n not separable such that each component of M,,-M"-h k>O, is locally k-eu
clidean, conditionally compact in M", and homotopy connected in all dim­
ensions in the sense that all homo-topy groups of if vanish. Components of
M,,- M"-l are called k-pseudocells, or simply k-cells if no confusion is likely:
M, is called; the k-skeleton of the ,complex. If M is an' n-manifold eontained
in the top dimensional skeleton M1I and if MII - M consists of: all those
points of {3M-M that are limit point oLsome long ray in M" then we
,may asSociate this n-complex structure to M.,' Ip.'this ~, cells and, skeletons

, of M are those of the associated complex although ,they' ~eed not be ,suhspaces

of M in general. Very frequently, ,we shap ,express:~ situation by saying
. that M ,is a cellular manifold assuming the associated cell complex structure

tacitly. . . '

The space Ln has a structure very similar. to the obvious cell complex
structure of the unit n-cube 1". A k--cell (J'e consists of those points x in {3L1I
with exactly n - k coordinates Pi (x) =e (i) in flL - L, where e is a ft)Ilction
into {3L-L defined on a set of n~k int~g~~~between0 and n+l. i ...· has

exactly 2n~"(k) cells of dimension'k',all o~'which are'~omeomorpPsof !i.
Of course, the k-skeleton X" of Ln is the Union of cells of dimension not
exceeding k; X"-l consists of those points of X" at which X" is not.. locally
separable. '
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LEMMA 6. Pseudocells of La are path components of (3La.
Proof. If t71! and t7.. are distinct cells, then there is an i such that e(i) =1=

e' (i) or i belongs to the domain of exactly one of e, e'. Because {3L has
exactly three path components, L, {} and -0, this means that the projection
Pi maps t7'" t7c' into distinct path components of {3L.

REMARK. We have shown in [6] that self maps of L+ are divided into
two homotopy classes, bounded maps and tmbounded ones. Lemma 7 reflects
this; every path in (3La- La is obtainable as end point trnce of suitable one
parameter family of long rays in La. In this regard, maps of L+ into La

are divided into I:~2a-i(~) = 3ahomotopyc~ each determined by cells

of La. Any of these homotopy classes except the cIasss consisting of bounded
maps can be represented by a smooth long ray. Accordingly, there are 3a-l
homotopicaIly inequivalent long rays in La such that every long ray in La is
homotopic with one of them. Of COU1'5e, some of them are equivalently em­
bedded; there are only n inequivalent embeddings among them because faces
of La are classified by dimensions under self homeomorphisms of La. One
should also be aware that there are many other inequivalent embeddings
because wild embeddings exist for n>2.

A map between cellular manifOlds is called a ceUtdar map if it sends pseu­
doceIIs into pseudoceIIs. Terms like cellular isomorphism and cellular sulnnani­
fold will have obvious meaning as categorical terms. Note that every subdi­
vision of associated cell complex of a cellular manifold gives rise to a cellular
submanifold in this definition. A noteworthy consequence of Lemma 6 is: "If
a cellular manifolds is topologically embedded in La, then it is a cellular
submanifold."

THEOREM 2. Let M be a cellular StIlnnanifold of La. If a k-pseudoceU t7 of
M meets the 'k-slteleton Xj of La, i<n, tllen there does not exist an embedding
h:MXI-+La such tAat h(x,O)=x for all x in. M.

Proof. Let r be the cell of La containing t7. Pick a point y in q and let
T be a long ray in M of which y is a limit point. If there is an h as in
the theorem, it follows from Lemmas 2,5 and 6 that a=~(yXI)=h*

(fJ(TXI) - (TXI» is an arc in r and that the open arc a-y fails to touch
q. This is impossible since r must have dimension i by Lemma 6, and so
q contains a (i-l)-sphere sparating y form r-q.

Let M be a manifold and let y be a limit point of oM contained in 13M
-M. We shall say that oM is loetdly collartJ at y if there is an open neigh­
borhood U in 13M of y such that there is an embedding h: (oM nU) XI -»

Mn U with hex) =x for all x in oMn U. If U can be taken to be whole of
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pM, oM is· collared in usual sense.

THEOREM 3. For each n~ 1, there exists a manifold l1J of dimension n+1
such that (i) aM is not locally collared at any limit point 0/ oM in 13M- M,
and (ii) M and aM are homotopy connected in all dimensions.

Proof. Let M consists of those points x of Ln+1 with xn+l~ Ixil for all i
~n. The first asseration follows from Lemma 5 and Theorem 2 above. For
the second assertion, observe that each a-sublevel set xn+l~a,aEL+, meets
M and aM in contractible sets. In fact, the intersections are homeomorphs
of In+!, In if a>O. Since compact sets must be bounded in M, this shows
that both 7rk(M) and 7Ck(aM) are trivial for all k~O.

REMARK. If M' is a metric manifold of dimension n+ 1, n~ 1, and if x is
a point of aM', there is a Hausdorff manifold M" with aM" not collared
such that 7Ck(M") ~7Ck(M') and 7Ck(aM") ~7Ck(oM' -x) for all k. Such M"
can be most easily obtained by sewing a small n-cell of aM' containing x
homeomorphically, to an n-cell in aM with M as in Theorem 3. In fact,
we have uncountably many such M" by the technique that will be developed
in the next section.

4. Unconntably many line bundles over Ln

We begin this section by describing two nontrivial line segment bundles
H and K that will be used to define a class of cellular manifolds all are
line bundles over Ln. Let a>O be an element of L and let H consists of
those x in Ln+l such that Ixn+!l::;;a or Ixn+ll ~ Ixil for all i~n. Then define
K to be the part of H lying in the a-sublevel set xn+l::;;a. H has two
boundary components, the upper boundary a+H=aHnpn+I-I(L+) and the
lower boundary o-H=oHnPn+I-I(L-). The upper and lower boundaries of
K are o+K=Ln+! nPn+I-I(a) and o-K=o-H. Since Lemma 5 implies that
H, K are normal and that their closures in f3Ln+1 agree with Stone-Cech
compactifications, we may regard Hand K as cellular manifolds by specify­
ing their cells; pseudocells of Hare fI and path components of f3H- fI; those
of K are path components of f3Ln Xa and those part of cells of H lying
below the a-level xn+l=a.

LEMJ.\1A 7. H and K are bundless ove,. Ln with each fibre ho1neomorphic
with 1. Moreover, they are nontrivial and inequivalent each other.

Proof. Let q: Ln+L_'>Ln be defined by p;oq(x)=p;(x) for i~n. Since
Hnq-I(X) and Knq-I(X) are homeomorphic with XXI for all bounded
subsets X of £n, Hand K are I-bundles whose projections are q suitably
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restricted. They are nontrivial and inequivalent each other because no boundary
component ofH is collared while K has exactly one boundary component
collared in K. by virtue of Theorem 2.

Now to the proposed construction of uncountably many bundles: If c=
(Ch···,Cj,···) is an infinite dyadic sequence, i.e., if cj=l or 0, let M j be a
copy of H or K according to whether Cj is 1 or o. For j~O, we let M j =

Ln X[j-1, j]. The boundary components o+Mj , o-Mj and bundle projections
qj:Mj-'.Ln are defined in the obvious fashion for all integers j. Form the
disjoint union of all M j and sew o+Mj to o-Mj +1 by identifying each pair
of points having the same image under bundle projections. The resulting
space M is a line bunddle over Ln if we define the projection q: M-Ln by
.requiring that q and qj agree on each M j • Moreover, we may regard M as
a cellular manifold because every building block M j is associated with an
(n+1) -complex structure in the obvious manner. To verify this is indeed the
case, we need to show that every long ray in M has its end point in some
PMj and that M is normal. For the first assertion, observe that a long ray
is countably compact and it can touch only finitely many pMj • For the
second, let A be a closed subset of M and let f be a real valued map
defined on A. Since each M j is normal by Lemma 5, we can successively
extend f to maps defined on A UM - j U... UM j to get a continuous extension
of f defined on M. Thus M has a well defined cell complex structure.
Denote by x,. the part of the k-skeleton of M contained in fJM- M. Also
let Y,. be the part of X,. whose points are limit point of M j for some
i>O. It is clear that the X,.' s and y,.'s give rise to inseparable n-complex
structures for the spaces X = X n and Y= Yn•

Now suppose c, c' are infinite dyadic sequences and let M, M' be con­
structed as above corresponding to c, c', respectively. The cell complexes X,
X' and Y, Y' are alS() defined as above.

LEMMA 8. If h:M-M' is a homeomorphism, its Stone extension h* is an
isomorphism of inseparable complexes between Y and Y'.

Proof By definition, the complement of a cellular manifold in its top skel­
eton does not depend on the associated cell complex because its points are
precisely those which can be accessible by long rays in the manifold. Hence
the Stone extension h* maps X homeomorphically onto X'. In particular, h*
sends path components of X to path components of X'.

Next observe that each path component of X, X' contained in Y, Y' is
homeomorphic with Lk or L"XL- for suitable k~O. Path components of X, X'
that are not contained in Y, Y' are of the form aX (- 00, OJ, a being any
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cell of (3o+Mo-o+Mo or (3o+M'o-o+M'o. Since h* must be a homeomorphism
on each aX (-00, OJ which is a manifold whose boundary is aXO, it follows
that h* sends X-Yonto X'-y' and (3o+Mo-o+Mo onto (3o+M'o-;hM'o. In
turn, h* sends Y onto Y'.

Now, for each k<n, the k-skeleton Yk of Y = Y" consists of those points
of YHI at which Yk+l is not locally separable. Since the same is true for all
skeletons Y'k, k<n, of Y' = Y'", h* sends Yk to Y'k for all k~n. This im­
plies that both h* and h*-1 are cellular maps between Y, Y'. .

THEOREM 4. If there is a homeomorphism h:M~ M', then c=c'.

Proof. For each vertex v of Y, there is a unique vertex Vo of o+Mo and
an integer j?:.O such that v is the point of intersection of the fibre q*-I(VO)
with the section (3o+Mj -o+Mj , where q* is the Stone extension of the
bundle projection q:M~L"=(hMo. Vertices of Y' are also uniquely expressed
in a similar fashion. We shall use this to prove that h* sends the vertex of
o+Mj contained in q*-I(VO) to the vertex of o+M'j contained in q'*-I(h*(vo))
for all integers j"2.0 and for all vertices Vo of o+Mo• Since this is true for
j=O by Lemma 8, assume true for j and we shall prove the case j+1. Let
Vj+l be any vertex of o+Mj with q*(Vj+l) =Vo and let Vj be the unique ver­
tex of o+Mj in q*-I(vO). The edge(=I-pseudosimplex) a of Y having
v j, v j+1 as vertices has the property that a is the only edge of Y having v j

as a vertex such that the other vertex of a is not in any of {3o+Mo-o+MiJ, ••• ,
{3o+Mj -o+Mj. Since h* is a cellular isomorphism on Y, the induction hypo­
thesis implies that h*(a) is the only edge of Y' with h*(vj) as a vertex such
that the other vertex of h*(a) is not in any of (3o+M'o-o+M'o, ••. ,
{3o+M'j-o+M'j. This shows that h*(Vj+l) lies in q'*-I(h*(vo)) and (30+M'j+l
-O+M'j+h and the induction is complete.

The above argument shows that h* is a cellular isomorphism of Y n
q*-I(VO) to Y'nq'*-I(h*(vo) for vertices Vo of o+Mo• In turn, h* becomes
a homeomorphism of q*-1 (vo) n{3Mj to q'*-1 (h* (Vo)) n(3M'j for all j?:.l.
But q*-I(vO) n{3Mj is homeomorphic with (3L or (3L+ according as Cj is 1 or
o and similarly for q'*-I(h*(vo)) n(3M'j, and it follows that Cj=c'j for all
j?:.l if there is a homeomorphism h: M ~M'.

In light of Theorem 4, we have

CoROLLARY 1. There are uncountahly many inequivalent line bundles over L"
such that their bundle spaces are pairwise non-homeomorphic.

CoROLLARY 2. There are uncontahly many topologically distinct noncontractible
open n-manifolds, n?:.2, which are homotopy connected in all dimensions.
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These results are sources of many attractive counter examples: Let, for
exa.:mple,. M+ be the part of M in Theorem 4 that corresponds to all M,;
with 'j;c.O and let M# be the part corresponding to all M j , j;c.l. The M#
are uncountably many examples of manifolds without boundary collars. If
we double M h we have uncountably many line bundles with obvious refle­
citons about the Q-section o-Mo=L7J XO. Since the part corresponding to
(ftO-Mo-o-MO) xC-1, IJ is recognizable by its path components, we can
discriminate topological types by the techique used in proving Lemma 8 and
Theorem 4. In fact, we can go one step further. Take M j for all countable
ordinals j and sew them along boundaries. Proceeding as above, we have,
we have 2N distinct long line bundles over L7J as well as 2N distinct open
manifolds that cannot be discriminated by homotopy groups, where ~ deno­
tes .• the first uncountable cardinal. Proof is the same as the case of line
bundles except that we use transfinte induction instead of mathematical
induction. We omit the details.
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