77

J. Korean Math. Soc.
Vol. 15, No.2, 1979

NOTE ON THE PRIME RADICAL IN NONASSOCIATIVE RINGS

By Hyo CHUL MYUNG

1. The prime radical

Several definitions of prime ideals in a nonassociative ring have been introduc-
ed during the past decade. An axiomatic definition, based on a *—operation, is
given in [37] and extends most of the known results for the prime radical [4].
A s-operation in a nonassociative ring R is a mapping of I(R) XI(R), where
I(R) is the lattice of ideals in R, into the lattice of additive subgroups of R
such that, for 4,B,C,DeI(R),1) if ACC and BSD, then A*BCCxD, 2)
(0)*A=B*(0) = (0), and 3) if R is a homomorphic image of R, then A*B=4AxB.

An ideal P of R is called *~prime if A*BC P for A, BEI(R) implies that
ACP or BCP. A nonempty subset M of R iscalled a *-system if, for A,
BeI(R), MNA+#¢ and MN\B+#¢ imply AxBNM+#¢. The +-prime radical
P*(R) of R is defined to be the set of elements z= R such that any *-system
containing z also contains 0 and shown to be the intersection of all *-prime
ideals in R. If R is an s—ring for a positive integer s>2, then there exists
a *—operation in R such that A*A=A* for all A€I(R) and P*(R) coincides
with the prime radical P(R) of R defined by Zwier [8] ([4]).

Let AxB=AB?-} (AB)B+B(AB)+(BA)B+B(BA)+B2A for A, BEI(R).
Then, in a weakly W-admissible ring R, A=*B is also an ideal of R [7].
The proof of Smith [6, Lemma 2.3] can be applied to show that A+B
for A, B€I(R) is an ideal in a generalized alternative ring II. Thus these
rings are 3-rings which generalize Lie, alternative, Jordan, standard, and
generalized standard rings. If we let A°B=AB-+BA for A, BEI(R), it is
shown that AoB is an ideal in Lie, alternative and (—1,1) rings [1] (in
the alternative case, AB is an ideal). Hence these rings are 2-rings. In a
2-ring we have following

PROPOSITION 1. Let A#*B=AB?+B?A+ (AB)B+B(AB)+ (BA)B+B(BA)
and AcB=AB+BA for A, BEI(R). In a 2-ring R, an ideal P of R is
prime if and only if P is ¥—prime if and only if P is o—prime. -

Proof. Let P be prime and let A*xBC P for A, B€I(R). Then AB2C A+B
CP. Since B? is an ideal of R and P is prime, ACP or BCP and so P
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is #-prime. Suppose that P is *-prime and ABCP. Let C=ANB. Then
C+C=C2C+CC2c A2B+AB*C ABCP and so C<P. Thus A*BCANB=CC
P, and since P is *-prime, ACP or BCP-and P is-prime. If P is prime, it
is clearly o—prime. Suppose that P is o—prime and ABC P. By a similar argu-
ment, if we let C=ANB, then C-C=C2c ABCP and so CcP. It follows
from this that BACANB=CCP and A-BCP. Thus P is prime.

Proposition 1 has been proved in a ring R in which AB is an ideal for A,
BeI(R) [4, Lemma 3.2].

In this note we give an analogous characterization of the prime radical in
an s-ring for the *—pnme radical of any rings {5]: We make use of this to
show that; in an s-ring R, every nonzero ideal of R which is contained in
the prime radical of R contains a nonzero ideal K of R such that K=,
and that the prime radical of R is essentially mlpotent This extends the result
of Fisher [2] for associative rmgs to any s—nng.

2 Charactenzatlon of the prlme radlcal
Following Rich [5], we’ make '

DEFINITION 1. Let R be any ring equipped. w1th a x—operation. Asequence
,{_ao, al,-- »a@y} In R is called a P*-sequence if a,& (a,-1)*(a,-;) for n=1
An element a of R is called strongly *-nilpotent if every P*—sequence
begmnmg with @ is ultimately 0. :

If R is an s-ring in which AxA= A’ for AEI (R), then the P*—sequences
are the P-sequences in [5]. ,

THEOREM 2. The *—przme radical P*'(R) of any ring R is the set of all
strongly *mzlpotent elements in R.

Proof. Let a be an element in R but not in P*(R). Then there emsts a
s~prime ideal P of R which does not contain a. The complement ¢(P) of
P is a #system in R. Let gg=a. Since (ap) Nc(P) #¢, there exists a nonzero
element a; in (ap)*(ag) Nc(P), and we inductively find a sequence S=
{@o, @y, ***» @y, ---} In R such that a,+1€ (a,)*(a,) Ne(P). Thus S is a P*-
sequence beginning with & which does not end in zero, so that a is not
strongly *-nilpotent in R.

Conversely, suppose that ec P*(R) and that S= {ag, a1, *++, @y, -}, where
ay=a, is a P¥*-sequence beginning with a. Let A, B be ideals of R such that
ANS+#¢ and BNS#¢. There exist elements a; ANS, g;,€BNS. Let j=
max {i;, is}. Then a;.,€(a))*(a;) C (a;))*(a;,) < A=B. Thus a;€ A*BN S+#4,
and this shows that Sis a #-system in R. Since a=SNP*(R), S must
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contain 0. Hence ;=0 for some j and a is strongly *-nilpotent.

COROLLARY 3. Let J be a nonzero ideal of R which is contained in P*(R).

Forevery s%-operation in R, J contains a nonzero ideal K of R such that
KxK=0.

Proof. Let a be a nonzero element in J. .If (a)*(a)#0, there exists a
nonzero element a,€ (a)*(a) € (a) €J. If (a;)*(a;) #0, then by Theorem 2
we can continue this to obtain a nonzero element a,.,€ (a,)*(a,) €J such
that (an"'l)*(an‘*'l) =0.

If R is an s-ring, there exists a *-operation in R such that AxA=A°* for
every A€ I(™), Hence we have

COROLLARY 4. Each nonzero ideal J of an s-ring R which is contained in

the prime radical P(R) contains a nonzéro nilpotent ideal K of R such that
Ks=(),

If R is a Lie, alternative or (—1, 1) ring (a 2-ring) then each nonzero
ideal of R which is contained in the prime radical contains a nenzero ideal
K of R such that K2=(. This improves the result of Fisher [2] for associa-

tive rings, which requires the additional assumption that the ring has an
identity.

DEFINITION 2. An ideal K of R is said to be essentially nilpotent if K
contains a nilpotent ideal L of R which is essential in K, i.e., L has nonzero
intersection with nonzero ideal of R contained in K.

Note that every nonzero nilpotent ideal of R is essentially nilpotent. While
it is well-known that the prime radical P(R) of an s-ring R contains all
nilpotent ideals of R, it is not known whether P(R) is nilpotent even under
the chain condition on one-sided ideals. However we can show that P(R) is
essentially nilpotent. This has been proved for associative rings [27].

THEOREM 5. Let R be an s—ring. Every nonzero ideal J of R which is con-
tained in the prime radical P(R) of R is essentially nipotent.

Proof. The proof proceeds as in [2]. Let {N,|t€T} be the collection of
all nonzero nilpotent ideals N, of R such that N;CJ and N,=0. By Cor-
ollary 4 this collection is not empty. Let Q= {SC T|2};esN; is direct}. Then
Q is non—empty and inductive. Hence by Zorn’s lemma one finds a maximal
element U in Q. Let N=3,cy N;. Since the sum is direct and each N; is
an ideal, we have that N*>=0. We show that N is essential in J. If not,
then there exists a nonzero ideal K< J of R such that NNK=0. Corollary
4 then ensures that there exists a nonzero N,CK for some t=T such that
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N7/=0. Hence N+ N, is direct and this contradicts the maximality of U.
Therefore, N is essential in J and J is essentially nilpotent.
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