NOTE ON THE PRIME RADICAL IN NONASSOCIATIVE RINGS

By Hyo Chul Myung

1. The prime radical

Several definitions of prime ideals in a nonassociative ring have been introduced during the past decade. An axiomatic definition, based on a *-operation, is given in [3] and extends most of the known results for the prime radical [4]. A *-operation in a nonassociative ring R is a mapping of $I(R) \times I(R)$, where I(R) is the lattice of ideals in R, into the lattice of additive subgroups of R such that, for $A, B, C, D \in I(R)$, 1) if $A \subseteq C$ and $B \subseteq D$, then $A * B \subseteq C * D$, 2) (0) * A = B * (0) = (0), and 3) if \overline{R} is a homomorphic image of R, then $\overline{A * B} = \overline{A} * \overline{B}$. An ideal P of R is called *-prime if $A * B \subseteq P$ for $A, B \in I(R)$ implies that $A \subseteq P$ or $B \subseteq P$. A nonempty subset M of R is called a *-system if, for A, $B \in I(R)$, $M \cap A \neq \phi$ and $M \cap B \neq \phi$ imply $A * B \cap M \neq \phi$. The *-prime radical P * (R) of R is defined to be the set of elements $x \in R$ such that any *-system containing x also contains 0 and shown to be the intersection of all *-prime ideals in R. If R is an s-ring for a positive integer $s \ge 2$, then there exists a *-operation in R such that $A * A = A^s$ for all $A \in I(R)$ and P * (R) coincides with the prime radical P(R) of R defined by Zwier [8] ([4]).

Let $A*B=AB^2+(AB)B+B(AB)+(BA)B+B(BA)+B^2A$ for A, $B\in I(R)$. Then, in a weakly W-admissible ring R, A*B is also an ideal of R [7]. The proof of Smith [6, Lemma 2.3] can be applied to show that A*B for A, $B\in I(R)$ is an ideal in a generalized alternative ring II. Thus these rings are 3-rings which generalize Lie, alternative, Jordan, standard, and generalized standard rings. If we let $A\circ B=AB+BA$ for A, $B\in I(R)$, it is shown that $A\circ B$ is an ideal in Lie, alternative and (-1,1) rings [1] (in the alternative case, AB is an ideal). Hence these rings are 2-rings. In a 2-ring we have following

PROPOSITION 1. Let $A*B=AB^2+B^2A+(AB)B+B(AB)+(BA)B+B(BA)$ and $A\circ B=AB+BA$ for A, $B\in I(R)$. In a 2-ring R, an ideal P of R is prime if and only if P is *-prime if and only if P is o-prime.

Proof. Let P be prime and let $A*B\subseteq P$ for $A, B\in I(R)$. Then $AB^2\subseteq A*B\subseteq P$. Since B^2 is an ideal of R and P is prime, $A\subseteq P$ or $B\subseteq P$ and so P

is *-prime. Suppose that P is *-prime and $AB \subseteq P$. Let $C = A \cap B$. Then $C * C = C^2C + CC^2 \subseteq A^2B + AB^2 \subseteq AB \subseteq P$ and so $C \subseteq P$. Thus $A * B \subseteq A \cap B = C \subseteq P$, and since P is *-prime, $A \subseteq P$ or $B \subseteq P$ and P is prime. If P is prime, it is clearly \circ -prime. Suppose that P is \circ -prime and $AB \subseteq P$. By a similar argument, if we let $C = A \cap B$, then $C \circ C = C^2 \subseteq AB \subseteq P$ and so $C \subseteq P$. It follows from this that $BA \subseteq A \cap B = C \subseteq P$ and $A \circ B \subseteq P$. Thus P is prime.

Proposition 1 has been proved in a ring R in which AB is an ideal for A, $B \in I(R)$ [4, Lemma 3.2].

In this note we give an analogous characterization of the prime radical in an s-ring for the *-prime radical of any rings [5]. We make use of this to show that, in an s-ring R, every nonzero ideal of R which is contained in the prime radical of R contains a nonzero ideal K of R such that $K^s=0$, and that the prime radical of R is essentially nilpotent. This extends the result of Fisher [2] for associative rings to any s-ring.

2. Characterization of the prime radical

Following Rich [5], we make

DEFINITION 1. Let R be any ring equipped with a *-operation. A sequence $\{a_0, a_1, \dots, a_n \dots\}$ in R is called a P^* -sequence if $a_n \in (a_{n-1}) \times (a_{n-1})$ for n=1, 2, An element a of R is called strongly *-nilpotent if every P^* -sequence beginning with a is ultimately 0.

If R is an s-ring in which $A*A=A^s$ for $A \in I(R)$, then the P^* -sequences are the P-sequences in [5].

THEOREM 2. The *-prime radical $P^*(R)$ of any ring R is the set of all strongly *-nilpotent elements in R.

Proof. Let a be an element in R but not in $P^*(R)$. Then there exists a *-prime ideal P of R which does not contain a. The complement c(P) of P is a *-system in R. Let $a_0=a$. Since $(a_0)\cap c(P)\neq \phi$, there exists a nonzero element a_1 in $(a_0)*(a_0)\cap c(P)$, and we inductively find a sequence $S=\{a_0,a_1,\cdots,a_n,\cdots\}$ in R such that $a_{n+1}\in (a_n)*(a_n)\cap c(P)$. Thus S is a P^*- sequence beginning with a which does not end in zero, so that a is not strongly *-nilpotent in R.

Conversely, suppose that $a \in P^*(R)$ and that $S = \{a_0, a_1, \dots, a_n, \dots\}$, where $a_0 = a$, is a P^* -sequence beginning with a. Let A, B be ideals of R such that $A \cap S \neq \phi$ and $B \cap S \neq \phi$. There exist elements $a_{i_1} \in A \cap S$, $a_{i_2} \in B \cap S$. Let $j = \max\{i_1, i_2\}$. Then $a_{j+1} \in (a_j) * (a_j) \subseteq (a_{i_1}) * (a_{i_2}) \subseteq A * B$. Thus $a_j \in A * B \cap S \neq \phi$, and this shows that S is a *-system in R. Since $a \in S \cap P^*(R)$, S must

contain 0. Hence $a_i=0$ for some j and a is strongly *-nilpotent.

COROLLARY 3. Let J be a nonzero ideal of R which is contained in $P^*(R)$. Forevery *-operation in R, J contains a nonzero ideal K of R such that K*K=0.

Proof. Let a be a nonzero element in J. If $(a)*(a) \neq 0$, there exists a nonzero element $a_1 \in (a)*(a) \subseteq (a) \subseteq J$. If $(a_1)*(a_1) \neq 0$, then by Theorem 2 we can continue this to obtain a nonzero element $a_{n+1} \in (a_n)*(a_n) \subseteq J$ such that $(a_{n+1})*(a_{n+1}) = 0$.

If R is an s-ring, there exists a *-operation in R such that $A*A=A^s$ for every $A \in I(P)$. Hence we have

COROLLARY 4. Each nonzero ideal J of an s-ring R which is contained in the prime radical P(R) contains a nonzero nilpotent ideal K of R such that $K^s=0$.

If R is a Lie, alternative or (-1, 1) ring (a 2-ring) then each nonzero ideal of R which is contained in the prime radical contains a nonzero ideal K of R such that $K^2=0$. This improves the result of Fisher [2] for associative rings, which requires the additional assumption that the ring has an identity.

DEFINITION 2. An ideal K of R is said to be essentially nilpotent if K contains a nilpotent ideal L of R which is essential in K, i.e., L has nonzero intersection with nonzero ideal of R contained in K.

Note that every nonzero nilpotent ideal of R is essentially nilpotent. While it is well-known that the prime radical P(R) of an s-ring R contains all nilpotent ideals of R, it is not known whether P(R) is nilpotent even under the chain condition on one-sided ideals. However we can show that P(R) is essentially nilpotent. This has been proved for associative rings [2].

THEOREM 5. Let R be an s-ring. Every nonzero ideal J of R which is contained in the prime radical P(R) of R is essentially nipotent.

Proof. The proof proceeds as in [2]. Let $\{N_t|t\in T\}$ be the collection of all nonzero nilpotent ideals N_t of R such that $N_t\subseteq J$ and $N_t^s=0$. By Corollary 4 this collection is not empty. Let $Q=\{S\subseteq T\mid \sum_{i\in S}N_i \text{ is direct}\}$. Then Q is non-empty and inductive. Hence by Zorn's lemma one finds a maximal element U in Q. Let $N=\sum_{i\in U}N_i$. Since the sum is direct and each N_i is an ideal, we have that $N^s=0$. We show that N is essential in J. If not, then there exists a nonzero ideal $K\subseteq J$ of R such that $N\cap K=0$. Corollary 4 then ensures that there exists a nonzero $N_t\subseteq K$ for some $t\in T$ such that

 $N_t'=0$. Hence $N+N_t$ is direct and this contradicts the maximality of U. Therefore, N is essential in J and J is essentially nilpotent.

References

- 1. G. V. Dorofeev, The locally nilpotent radical of nonassociative rings, Algebra i Logika 10 (1971), 355-364, Translated by Plenum Press, New York, 1973.
- J. W. Fisher, On the nilpotency of nil subrings, Can. J. Math. 22 (1970), 1211– 1216.
- 3. H.C. Myung, A generalization of the prime radical in nonassociative rings, Pacific J. Math. 42 (1972), 187-193.
- 4. _____, Prime and Primary ideal theories in nonassociative algebras, Yokohama Math. J. 24 (1976), 141-169.
- 5. M. Rich, The prime radical in alternative rings, Proc. Amer. Math. Soc. 56 (1976), 11-15.
- 6. H. F. Smith, The Wedderburn principal theorem for a generalization of alternative algebras, Trans. Amer. Math. Soc. 198 (1974), 139-154.
- 7. A. Thedy, Zum Wedderburnschen Zerlegungssatz, Math. Z., 113 (1970), 173-195.
- 8. P. J. Zwier, Prime ideals in a large class of nonassociative rings, Trans. Amer. Math. Soc. 158 (1971), 257-271.

University of Northern Iowa, U.S.A.