The Reaction of 4,4′-Dihydroxydiphenyl Methane with Glycidyl Methacrylate

  • Pyun, Hyung-Chick (Radiation Chemistry Laboratory, Korea Atomic Energy Research Institute) ;
  • Park, Wan-Bin (Radiation Chemistry Laboratory, Korea Atomic Energy Research Institute) ;
  • Sung, Ki-Woung (Radiation Chemistry Laboratory, Korea Atomic Energy Research Institute) ;
  • Choi, Kyu-Suck (Department of Industrial Chemistry, Han Yang University)
  • Published : 1979.06.01

Abstract

The reaction of 4,4'-dihydroxydiphenl methane (4,4'-DPM) with glycidyl methacrylate (GMA) catalyzed by triethylbenzyl ammonium chloride (TEBAC) has been studied for the purpose of synthesis of electron beam curable prepolymer. The reaction was in good agreement with third-order kinetics. according to -d[GMA]/dt=k[TEBAC][DPM][GMA] and the apparent activation energy was about 33.4kca1/mole. However, the reaction rates were increased if tile reaction proceeded after the mixtures exposed to air for 24 hrs at room temperature. The effects of the catalyst and the difference in the reactivity between 2.2'-DPM to GMA were discussed. The plausible reaction mechanism was proposed on basis of experimental data obtained.

전자선경화성 prepolymer를 합성하기 위해서 4,4'-Dihydroxydiphenyl methane (4,4'-DPM) 과 메타크릴산 글리시딜 (GMA)과의 반응을 염화벤질 트리에틸 암모늄(TEBAC)을 촉매로 하여 진행시키고 그 반응 메카니즘을 고찰하였다. 반응은 3차 속도식 진행시키고 그 반응 메카니즘을 고찰하였다. 반응은 3차 속도식 (equation omitted) 에 해당하였고 활성화 에너지는 33.4kca1/mole 이었다. 그러나 혼합물을 상온에서 24시간 방치한 후의 반응은 빠른 속도로 진행되었다. 촉매효과 및 2,2'-DPM 과 4,4'-DPH의 GMA에 대한 반응성을 비교 검토하였다. 얻어진 데이타를 기초로 하여 가능한 반응기구를 제시하였다.

Keywords