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ABSTRACT

It is well known that L,(sn) type PBIB designs have the Property A, so they are BNAS
PBIB designs. However, L;(m) type PBIB designs are not of type of Property A but do
have the factorial structure (Cotter, John, and Smith(1973)). In this paper, the properties
of the L;(m) type PBIB designs are investigated. Extended Property A and fractional
BNAS are defined and a solution formula for the treatment effects in the L;(m) type

designs is obtained.
1. Introduction

Partially Balanced Incomplete Block(PBIB) designs of the Latin square type
were introduced by Bose and Shimamoto(1952). They were tabled in a mono-
graph by Bose, Clatworthy, and Shrikhande(1954), The symbol L (m) is to
designate a Latin square type of v=m? treatments by the following definition.

In a PBIB design with parameters (s=m?rk,b; A,,1,), suppose it is possible
to form a square array of m rows and m columns filled with the treatment
numbers 1,2, +.-,m? so that two treatments are first associates if they occur in
the same row or same column of the array and are second associates otherwise.
Such a design will be said to belong to the sub-type L,(m) of the Latin square
type design. We also have designs with m? treatments belonging to the sub-type

L;(m) of the Latin square type design. In this case, it is possible to form a

*The author is Professor of Statistics, Korea University, Seoul.



126 # s B W R
square array of m? numbers and to impose a Latin square with m letters on this
array, so that any two treatments are first associates if they occur in the same
row or column of the array or correspond-to the same letter and are second
associates otherwise.

It is well known that L,(m) type PBIB designs have the Property A which
was introduced by Kurkjian and Zelen(1963), but L;(m) type PBIB designs
are not of type of Property A. In this paper, the properties of L;(m) type
PBIB designs are investigated. Extended Property A and Fractional BNAS are

defined and they are used to obtain a solution for the treatment effects.

2. Preliminaries

The following notations(after Kurkjian and Zelen(1963)) will be used:
1n,=m;x 1 column vector having all elements unity,
JIn,=m; X m; matrix with all elements unity,
I, =m;xm; identity matrix; I*=1n if ;=0 and I, if =1,
Dii=1, if 6;=0 and Ja, if d;=1,
Mi=miIn—Jn, MF=1," if x;=0 and M; if x,=1,
The Kronecker product of M; and M; will be written as M M; and in

n

general, the joint Kronecker product of nM;(i=1, 2, +--,n) will be written as T{
;=
QM.

Let » teatments be assigned to & blocks of % plots each in such a way that
each treatment is replicated r times and ith treatment occurs 7;;(n;=0 or 1)
times in the jth block. The #x¥& matrix (n;) =N is the incidence matrix of
the design. The usual additive set-up with normal indepedent errors with a
common variance ¢2 is assumed. The reduced normal equations for estimating
the treatment effects are known to be

ci=q, 2.1
where @Q=T— —71C—NB ; T'=column vector of the v treatment totals; B=column

vector of the & block totals; #=column vector of the v treatment effects; and
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1
C=rl,—— NN (2.2)
A solution to the equation (2.1) is given by
£:C-1Q: (2. 3)

where C-! is a generalized inverse of C, that is, satisfies CC~!C=C.

Kurkjian and Zelen(1963) introduced a structural property of the design

matrix NN’ with v:]n'[m,-. A block design will be said to have Property A if
i=1

NN'=%, [ L, k(0105000 1'j1®Df'}, (2.4)

5=0

where 9;=0 or 1 for i=1,2,+-,n and 4(0,,0,,+++,0,) are constants. In this case,

we obtain the following C~! matrix for the equation (2.3):

iy o e .
¢ ZZ[Z T RN
where
r@(xy, X9y 02Xn) =j};:[h+h+;m=’ g(51,52,...,an)ijlz[miﬂ‘*”“(l—xia.-)

for g(0,0, .-, 0), =r-—-—}c-h(0, 0, .+, 0), g(51,62,---,5,,)=———1/—;/’1(51,52,-“,5,,) if
(01,05,+++0n)==0.

In the case of v =:T}m,-, the ith treaiment can ke denoted by the n-tuple, i=
(i13,89,4%,1n), 1;=0, 1,1---, m;j— 1, and the treatments are written in lexicographical
order, then the two treatments are the (gy,p,+++,fn)th associates, while p;=1,
if the ¢ th factor occurs at the same level in both treatments and p;=0 other-
wise: App.-.5. Will denote the number of times these treatments occur
together in a block. The association scheme may be called a Binary Number
Association Scheme(BNAS).

Paik and Federer(1973) showed that every Property A Type Incomplete Block
design is a PBIB design with BNAS, and conversely.
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3. Properties of L;(m) type PBIB

It can be easily verified that L,(m) type PBIB is a PBIB having BNAS
such that v=m? A;;=2~401, 400, A11=7, and it has the following Property A:

NN =(r+2,— ) I In— (A, — 1) (InD T+ TuQ In) + 22T n& T 3.1
where A;=A4;=4q;, A3=2, and assume A;<4,.

In the case of Ly(m) type PBIB, however, it is not of type of Property A4
nor of PBIB having BNAS. In an L;(m) type PBIB, the treatments can be
written as a 1/m fraction of an m®factorial and in this case, the following
association forms will be obtained: (0,0, 0), (0,0, 1), (0, 1,0), (1,0,0), and
(1,1,1). So, we may call this “Fractional BNAS”, and we see that

A1=2501=2010= 4100, 22:2009, and r=A4;;.

In the matrix NN’ given an L;(m) type PBIB design, put A;;;=A4¢1=1 and
Ao1o=A100=Ao0o=0, then we obtain an m?Xxm? matrix L with the following
properties:

L=(L;;), i=1,2,+-,m; j=1,2,.-,m,
where L;; is an mxm matrix exactly one unit element in every row and col-
umn, all other elements zero and the pattern of the matrix L;; depends upon
the subscripts ¢ and j and the form of the Latin square. Also we have
;Lisz?Lu:Jm,
LijJo=JuL;j=J, for all { and j, (3.2)
LL=mL and LJn=JmnL=mJ un.

Now, design matrix NN’ of L,(m) type PBIB is following form (This pro-
perty of NN’ could be called “Extended Property A”):

NN =(r+22—2) IR In— (A — AT T n+ T u@ In) + oI @ T n — (A2 — )L (3. 3)
Therefore,

2

_T(k—l)—zlz"‘zl 2
- k

c Lot 2 A (L@T A T @ L) — 22 Fn 22 (3. 1)

Using (3.2), we obtain the generalized inverse of C as follows:
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k
C = M1 (k— 1)+ (m—2) Ao+ (1—m) A, ] (LM QLM+ I M QO I M)
k
+ mEr (k—1) — 225+ A1) I'M QL Mz +aL
k
=G T =D At (A—myay] L@ nln=Tn) + (mln=Tn)@J ]
1
where
_ —k(A,—41) 36
D) 2t A1 =D+ (=24 F (I—m)A;] G.6)
4, Example

v=4x4=16, r=3, k=3, b=16, A,=0, A,=1
Association scheme of Lj(4)
1A 2B 3C 4D
5B 6A 7D 8C
9C 10D 11B I12A
13D 14C 15A 16B
Plan

® ® @
2 2 3

w @

7 8
7 11 8 12 5 6 10 9 10 12 11

8 10 14 15 13 12 13 16 14 11 15 15 16 14 13
NN'~_—514®I4—I4®]4—]4®I4+]4®]4—L
where L=(Ly;), i=1,2,3,4; j=1,2,3,4, and

blocks @ @ ® @ ©® O @ @ ® ©® ®
1 1 1 3 4 4 4 5 6
8 5 6 9

kD\]N@

1 0 00 01 00

0 0 0 1 0 0 0O
L11:L22=L33=L44: ! ’ L12=L21=L34=L43:

0 010 0 0 0 1

0 0 0 1 0 010

0 0 0 1 0 01 0

0 01 O 0 0 0 1
L13:L24=L32:L41: ’ L16:L23:L31:L42:

1 0 00 01 0 0

01 00 1 0 0 OJ



130 M oaT B R

In this case,

C= 5 [4Ls+ L®Jit J@Li— T+ L]

From (3.5) and(3.6), we obtain

C= 5 (81,4~ 1@~ J®L~L]
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