Multi-Line System with the Switching Rules

Y. K. Ahn*

1. Introduction

The general description concerning the multi-line systems with the switching
rules have been presented by Ahn. In this paper we derive some steady state
probabilities for three mainly different kinds of systems.

We assume that all of the systems are to have poisson input with the finite
mean 1/4 and two servers with the negative exponentional service distribution
where each has its own mean 1/u,.

The notations follow the paper (Ahn, 1979).
2. Matrix Equation Method

Let pmn(t) =Pr(N,(t)=m, N,(t)=n)

for m=0.1, « « - « M+1
n=01, + « « « My+1

where M-+ AM,=M is the waiting room capacity.

When we assume that the reneging distribution is exponentional and the
balking distribution depends on the state, then it is possible to set up a ballance
equation as the following matrix equation.

pA=0, pe=1 and 0 < p< 1 (2-D

where €=(1,---; 1)T and no of Vs is (M, +42)(M,+2) and 0 is a vector

where all elements are zero.

The many classical methods used to solve equation (2-1) have involved
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66 Ahn: Multi-Line System

finding the probability generating function.

It also appears that in many problems the /A-matrix has a block-triangular
structure (see, Definition 2, 1 below) after an appropriate ordering of states
(Disney, 1975) In this paper mainly we discuss systems in which has a struc-
ture as follows.

The systems with the exponential ranging and state dependent balking
give this this kind of structure.

Definition 2. 1.

A=( 4, 45
Ay Ay Ay
As A, A
- o
As Ag

where all submatrices are non-singular with same rank. Note that two mar-
A . My+1 Mo+l X
ginal probabilities >, pz, and Y] p,; are denoted by p., and p,. respectively.
=0 k=0

Arranging the steady state probability p according to the structure of A and
the Equation (2-1)

We define
p=C(po o po)
and
Pror= pr(As— A) 4571 (2-2)
Lemma 2. 1. Let X,= (., pn,y) for n=0.1,... £k
Then X1 =XoAry for n=0, «veeeenneennn. , k,
where
0, A;A571
Aoz-—( B J (2-3)
—1, A 4571

and I is the identity matrix with the rank same as that of 4.'s.
{Proofy  p=0 implies that
bodi+ p14,=0
Pyt pr Ay~ PripAs=0 for n=0,1,..., k=2 (2-4)
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e s+ peds=0
Using the definition of p,;, we have
brllyt proi Ayt by ds=0 for n=0,1,.- k—1 (2-5)
Multiply Equation (2-5) by A;7! from the right side. Then we have
Dals s+ P Ay As™ 4 puy1 =0,
which is the same as Equation (2-3).
Remark 2.1, The calcuation of X, gives the steady state probabilities. Instead
of trying to get p, we derive marginal probabilities.
‘ Example 2.1, System with Bivariate Poisson Input (Hunter, 1971).
The input process to the i** server is the sum of two independent Poisson
processes with rates A, and A; for i=1,2. This process is called the bivariate
Poisson prccess. The application of this process to the reliability systems is
well known (Barlow and Proschan, 1975, page 135),
Let pi=( pig, **+» Pinzsy) for i=0,1 ... Af+1. Then Equation (2-1) has
a matrix given in Definition 2,1, The submatrices satisfy the following
formula.
A= 2o+4 —2,
—Uy, At+Agtuy

— Uy
) _/12
—Uy, Ag+Ai+uy
/12'—‘/15:—1111.
A3:— 21, 20,
)‘l}
’ 2[)

Aot 4
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Ay=( A+ 20+,  —A,
— Uy, 2+21+u; _227
— Uy,

5 /-{2
—uy, AgF AL+ 7

Ae=[ A+Atu;, — (A+22),
— Uy, 2+22‘i‘u; _(2+22),

— Uy,

[ (’2+22)
y Uy, u

where A=24;+4, and A;’s are (AM;+1) X (M;+1) matrices.

Now we define ¢= (1, ---, 1)T so that the multiplication of matrices is
possible by having some number of [’s.
Hence,
Aze=Ae= A+ A€
Aye=Aye=Age = —uye
A= Ao+ A +uy)e
Using the above equations, Equation (2-4) becomes
(Ao+ A1) poe=u, pi€
Ao+ A1 +uy) prir€=(Ao+2Ay) pr€+uy pn,o€ for n=0,1, o M —1
(Ro+ A1) pw€=u; pu,n (2-6)

My+1

Since pne= 3 pnr, pr€= Pn.
k=0

Therefore, Equation (2-6) which is the same as the balance equation of a

birth-death process, yields the marginal probabilities as follows: If we

b= by ,,Qef;@i for n=0, 1, -, 1, =1
1
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rearrange the order of p;/’s, then we have

(Ag+4)"
Uy

Don= po for n=0, 1, -+ Mo+ 1

Remark 2.2. The marginal probabilities given'in Example 2. 1 are intuitively
clear, since two servers act independently and the input process into each
server is a Poisson process.
In particular, consider a matrix whose submatrices satisfy the following
formula
Ay=As=—ul, A= —1L
Then A, given in Lemma 2.1 reduces to

A
y ul

1
—A4 |

u )

Ao:_ 0 I

—1

2

Using the boundary conditions, i.e., balance equations containing p,, p,,
and pi, pr.;, it is possible to get p up to a constant multiple which can be
calculated by the normalizing condition.

As before the basic difficulty arises from the problem of finding a power
of A,

3. Overflow System (See Ahn)

The balance equations become

boo= 1 prot+tz Pon

(A1) pro=uy pni1soFAPn_1,0FUs pnyy, for O n M, 41

(A1) busr,0=Us Pt 1,1+ A by o

(A+uy) pon=ty pr,n+Us Pg, ney for 0<n<M,+1

(A1) oy n=Uy Pyt n Uy Prs a1+ A Pmoron fOr 0<n<Mp+1, 0<m< M+ 1
(Aru) + M+ 1, n=2 P, nUp brt, o1, me1 A Pty o1,y fOr 0<n<TMp+1

Uy o1 wev1= (A+Uz) Po, 1,41

(A0 Py st e1=t1 Prusty ie1F A Py, w,n for 0<m<M;+1
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upux+l’uz+1:2pM1’ M2+1+217M’+1, M,
Let p":(pn:Oy"':pnyMz+1) for n:O, 1, seey, M1-+-1

Lemma 3,'1

b= (1=p) 0y (1= (p)**?) for n=0,1,-, M+1  (3-1)

and
Pn=02 buri1ynoy for n=1,000 My+1 (3-2)
{(Proof)> The balance equations can be written as the matrix from. The

submatrices are;

A1: R \]
Uy, Atuy
— Uy, Z‘*‘uz;
y T Ug 2+”2,
A3:/2+u1, ’
— Uy, '2+un
Uy,
y Uy 2+u
Ag={ A+tu, —A4,
—uy, Atu, —A4,
1 — Uy,
2 b —'/2
— U, u

A2:A5: —ull.



Az=—AlL
Equation (3-1) can be derived as Example 2, 1,
Now define the vectors .= (pgn, -+, pu,+1, n), for n=0,1,+.-. My+1 Then
the vector p'={(p,,-+-, p'u,.1) satisfy the matrix equation p'A=0 where
matrix is the form given in the Definition 2, 1,

The submatrices have the following forms:

Ay=7 4 =24,
—uy, Ay, —A,
y Uy, .
. , —A
, —uy, Aty
As=As= —u,l.
=0 7
. 0
, —A
Ay=7 Atu,, —A4,
—u,, Atu, —14,
, —A
s —u, A+u
Ag=7 A+u,, —4, 7
—uy, A+u, i
- |
\
1
.-
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Then
Ae= 1€,
Age=—J¢
Aje=u,e+ Ae,
Age=uze, where 1=(0,,0,.--1)7
Multiply Equation (2-4) as in Example, 2. 1, then we have
Apu 0=tz p.y
Apuisr, n=Uy pons1+APussrinsr1—Up ponsg fOor n=0,1 -0 Af,—1
Apw, et m, = Uy Pory o
The inductive argument proves Equation (3-2).

Remark 3.1. Ghirtis (1968) said that Equation (3-2) can be derived by using
the probability generating functlon, which is usually a hard method. 2, 2.
Furthermore, the normalizing condition gives,

Do=1=02(Pryer- — Duysrs wi41) (3-3)
Now we derive pm, y,.; in terms of pg, u,.;. Considering the balance equa-
tions having pm,u,,;, we have the following lemma.

Lemma 3.2. Let w; and w, be the two roots of the following equation;
ww?— (A4+w)w—+A=0. Then

Dmor1 =200 me1em for m=1 o M +1, (3-4)

where ¢, =0n—0Un_g

and U= b

{Proofy When m=1,
vlz(wl—sz):i(lﬁ—u) and 01:—1(2—{—112).
u Uy

Therefore py, y,.1= po, u,-161 satisfies the balance equation.

When m=2,

Vo= (ZUI—}-wz)Z_wlwz:% <‘ (,/li‘liy)i__;{>

1 Uy

- L( (A+uw) A4u)

/.>, SO po, i, Satisfies.
Uy

Assume that Equation (3-4) is true for m. Then for m--1 it is sufficient
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to show that
uen,=(A+u)er-—Aer_y (3-5)
Now consider the two roots, then
uy ("2 — w2 =w (A4 w)w, — A} —w," {(A+u)w,— )
=(A+)w " —dw " — (A+w)w, "  +Aw," (3-6)
Since Fquation (3-6) implies Equation (3-5), using the mathematical
induction we show that Equation (3-4) satisfies equations
Uy 1 1= (A-+1z) poy wos1
and
(A0) by w1 =1 Pmsss a1+ A fmty e TOr O<m M, 41
The uniqueness of solutions for the above equations yields the proof.
Remark 3.2. Ghirtis(1968) solved p recursively after getting the Lemma 3. 2.
However, we derive the probabilities p., by a different method which will

be di:cussed later.

3.1 Subnetwork Method
Clark and Disney (1967) have shown that the input process into the second
server is a renewal process. Therefore, it is possible to derive p., separately
by using this input.
Definition 3.1. Define T, to be the time between two consecutive arrivals
into the second server.

First we need the L.S.T. of T.

Theorem 3. 1.

A () = 14 L (ﬂiL) _1, where (3-7)

P2\ €41
Ae*(0) is the L.S.T. of T..
Let M.(?) be the renewal function of 7., then

MLt Ay — M.(t !
tim AU 4,0y = (3-8)

where the superscripts of function mean the number of the differentiation

with respect to 6.
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Conditioning on the points of arrivals into the second server, define the
steady state probabilities
II,® =Pr(N,=k|there is an arrival) for k=0, 1, .--) M,+1

Solving the equations set up by the supplementary variable method (Ahn)

we have,
Tu,®  _ 1—A4:*(uy) -
i@ = A% () (3-9)
Using Equation (3-8), Theorem 4.4. (Ahn) yields
I,2= HUpPenry  pop n=0,1 . M, (3-10)
Apusy-
and
Mi+1
O, »=1— Up e Pu,+1 Mp+1 3-11
r 2ﬁu+1- nZ=l ﬁ pMml ( )
Mi+]

Since  pou+1= Por Mo Z €x= po, m,+104,+1, We have

1 pou
Iy ®@=— Lo Xl g, 3-12
M, Pz pm+1 My+1 ( )
Therefore, Equations (3-9), (3-11) and (3-12) give the proof.
Corollary 3.1,
cner =D (My—n) — D(My— 1 —n) -L2Ltis: ey 3-13
p-ni1=D(My—n) (M, ) A7 (1) ( )
for n=0,1, ..., M,—1
_ * _&2”1'*1’ Mz*L . -
,b Mz+1“(1 A (”2)) A *(uz) (3 14)
_ A*(up) puas -
Pu,v1 M2+1“——m (3 15)
where  D(o) =1
&
D([):Z Z diooeres d,’j for k:1,2,~--
i=1l iy +...i =k
d— 14+ AV (w)
T AW
_ ()R (u)
= LA™ ()

{Proof Inductive arguments on the equations (Section 4, Ahn) give
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1,2 = (D(My—n) = D(My—n—1)} LZMaF 1 g0 n=o 1, e, My—2

AR ()
Then Equations (3-10) and (3-11) yield Equations (3-13) and (3-14).
Summing all g.,’s, we have Equation (3-15) by using normalizing conditions.
Remark. 3.3. It is very complicated to get A.*(f) using the methods of
Ginlar and Disney (1967); however, we need A.*(f) only when 6=u,.
Furthermore, II,,®® is not the same as p,, since [,‘®’s are the conditional

probabilities which are different from II.,’s.

3.2. General Overflow System
We generalize the overflow system by adding two variables; (i) T is the
r.v. of traveling time from the first queue into the second queue when N,=
M,+1, (ii) whether joining the second queue or not depends on b.
Define the L.S.T. of T, by 4:*(f) with the finite mean 1/4;.
Then the L.S.T. of T.-+ T. becomes A.*(0)A4:*(8) by assuming independence.
Let pmn(u,t)du=Pr(N;()=m,L,(¢)=n, u U(t) u+du).
Then we have for b=p¢,
(0—2) p*00(0) = poo(0) — 1y p*10(0) — 212 p*01 (6)
(0—2—tz) p*on(6) = pon(0) —tty £*1,n (0) =212 "0, n1.(0)
— A:*(0) po, n-1(0) for 0<nM,+1
where A.*(0) =A*(0) A:*(0)
(0—2—u3) p*o, w,21(0) = o, w1 (0) — 1 p*0, w1 (0)
—A*(0) po w.(0)+ po w.41(0)
(60— 2uy) p* o (0) = pmy 0(0) — 1 p*ms1, 0 () — iz p*m, 1(0) —Ap*m1 o(0)
for 0<<m<M,;+1
(O—uy) p*ue1r 0(0) = pu,e1,0(0) =tz p*i,21, 1(0) — A £*u, 0 (0)
(0—2—10) p*nsn(0) = myn(0) =ty p*ms1sn (0) =22 p¥ms m41(6)
— p*no1n(0) — A (0) pmn-s(0) for 0Tm<TM+1
and 0<n<AM,+1
(0—2A—u) p*nyus1(0) = Pmyr1,01(0) =2tz p*mes 11 (0) — 2 p*n_1w ()
—A*(0) { prr 1, (0) + pmyw,41(0)} for 0<m<TM;+1
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(O—=u) p*ue1n(0) = paus1,m ((0) =242 p*u,01,me1(0) — A% (0) pat,v1,m-1(0)
for 0<m<M,+1
O—u) p*ur1i1,01(0) = pusrm,41(0) — A (0) { w11, (0) + puir1 1001 (0)}
Theorem 3.2. fn.=po.py" for n=0, 1, - M, +-1. (3-16)
Furthermore, p., satisfies equations given in Corollary 3.1. by replacing
Ae* (ug) by A.*(uy).
(Proof) Adding the corresponding terms, we have A pg.=u; #,
(A1) pm- =y pms1e -+ A pm_g. Tor 0<m<M,+1
Hence, Equation (3-16) follows. For p..’s we have
8 5.5*(8) = p.o(0) —tt p*(6)
(O—115) pon* () = pon(0) —t fonsy* (B) = A(0) pons(0)  (3-17)
for 0<{n<u,+1
(O—1) prt,r* () = $rarr(0) = A5 (6) { pose1 (0) + b, (0)).
The above equations are the same as those given in the proof of Theorem
4.1 (Ahn) by assuming b=¢ and replacing A*(f) by A.*(f). Therefore,
the proof follows.
Remark 3.4. Since the decomposition of the system into two subsystems as
Section 3.1 is possible, Theorem 3.2 is intuitively clear. However, it is
impossible to obtain /4 matrix, thus we need the supplementary variable

method used above.
4. Instantaneous Jockeying System

Consider the M.S.S.R. with the following structure
@ r(m=1if m<m,
1 if my=m,
0 if m >m,
where n= (m,m,)
(b) b(n)=0 if n=(M+1, M;+1)
1 otherwise

(c) While waiting in the i** queue, if the number of items of another
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queue is less than that of the i** queue by 2, then an item in the i** queue
moves into another queue for /=1, 2,

Remark 4.1. The possible states are (x,x), (x+1,x), (x,x+1) and (M;+1,
M+1), for x=0,1, ---) M;. When r;=1 and M;=co, then this system

becomes the system given by Haight (1958).
The balance equations become

A poo=1t1 pro+tz po1

(Atuy) pro=ty p11+ A7y Poo

(Atuz) por =ty pry+ Az poo

(A+u) piyig+ pictri) Fu( pivisi+ pivy,i) for 0<7A -1

(A1) piyivy = Ary piitily fisyyiey for 00T M 41

(A-u) pisy,i=Ary pirt itz pivyyivq for 0T+ 1

U st vt 1= A Py, Puerm,}

Theorem 3.5.  pu, 1,001 = 0% 11 (4-1)
Ar 2k
Pk;k+1:<"'p’22A+”1> *(/{’Oﬁjfﬁu (4-2)
1 2k
j)k.i,l,k:<w£21m+uz> < /{’m, pu for k=0, 1, - M,
(Proof) Let p=(po, ", pu,*1),
where

ﬁk:(l)k,k, ﬁk+1;k,~ ﬁk;k+1),~ le+2;M,+1 and /)MlJrI,MH,Z

are arbitrary.

Then p satisfies FEquation (2-1) where A matrix has the structure given in

the Definition 2. 1.

The corresponding matrices are

M= =2  in, Ay
u, —(A+u, 0 i
o 0, —(Atuy)
/12:/15:( 0 s uy ]
0 0 0

0 0 0o |
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Ay=1 0 0 0
0 0 0
A 0 0
A= —(A+u), Ary, Aty
u, —(A+u), 0
u, 0, —(A+u)

Multiplying Equation (2-4) by €, we have
A prorart Pren i} —U protsker=u{ proryhiot Pronbir) —U Prinbin
for k=0, 1, e M, — 1 (4-3)
Then
boo=lo 11, pro=11 p11 and po=1; pyy,
where [;’s are defined as follow:

l,= QA4 w)ugu,

B A2 A+uyrytuyry)
l= u, (A+ury)
A(A+uyry+usry)
. — u (Atury)

2T ARt urratury)
Therefore, by using the last balance equations the proof follows.

Remark 4.2. The normalizing condition gives

2_p_p2(M‘+1)
p(1—p)

If we consider the states at the total numbe of the items in system, then

P11:lo+

this r.v. is the same as the r.v. defined in the S.S.S.R. (2,r,b,a) where r
is the same, ;=0 and
bp=1 if k<2M,+1
0 if £F>2M,+1
Therefore,

E(Nw) :(—1—%?~{1_2M1+3)p2M1+2+2(M1+2)p2Ml+3}
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5. Self-optimizing System

Consider the system with the same r and % as the overflow system. In
addition we have the jockeying rule depending on the following quantities
(Yeichi, 1972).

Definition 5. 1. Define the following quantities,
R;; The reward obtained on the successful completion of the service by it
server, for i=1, 2,

xi3 The service charge paid for the service by it* server, for =1, 2,

x; The rate of waiting time (including the time in service) cost per unit

time for each item which joins the system.

Assume that 7P =R, —x,>r® =R,—x,>0, then

Rm”):{r‘“—<wm>x} for m=0,1, -, M, if i=1 and

Uj
m=0,1,..-) M, if i=2 ~where R, is the expected net gain for the item
at the m'* position in the i** queue.

Definition 5.2. If an item waiting in the second queue can get at least the
same expected net gain, it will move into the first queue. If an item wai-
ting in the first queue can get a better expected not gain, it will move into
the second queue. If the above jockeying happens instantaneously, we define
the above jockeying as self-optimizing jockeying rule. The system with this
jockeying rule is called the self-optimizing system.

Definition 5.3. Define En:[r<1>—r<2>+(n+1).%] for n=0, 1, .+, My+1,
where [ ] is integer function, i.e., [ »] is the largest integer which doesn’t
exceed y.

Since we have the instantaneous jockeying, the possible states are (if M, and
M, fare infinite):

{(m, 0) : m <L Eq}

{(m, 1) :m < Ey)

{(m, n) : E,_; < m<L E,} for m, n=2, .-
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The size of the waiting rooms will give three different cases as follows:
(a) Mi+1 < E,
(b) My+1> Ey,,,
(c) Ey <<M+1< Ey,iq
Remark 5.1. The structure of the state probabilities are unaffected by a
change in the value of r and also by which item changes queue due to the
instantaneous jockeying. However, these factors do affect the waiting times.
5.1 Mi+1< E,
If M,+-1<E,, then RVy > R,®. Hence, an item in the second queue
makes a jockeying whenever it is possible. Therefore, the possible states are
{(mn) : m=0,1,---, M;+1 and n=0, 1}
{(My+1,n) : n=2,3, -+ M,+1}
The balance equations become
Apoo=11 prot+z for
(Atuy) piyo=uy pir1r0-tts piyy+ A pi_1,o for 0 i AM+1
(Atuz) por=11 p1a
(A+w) piyy=uq pis1,1+A pi_y,y for 0<G<M, 1
(A+wy) prsvo=tz pu,+ 1,11 A Do
(A+u) purr 1= puysrat A{ bry 0+ pual
(A+u) pus1,n = pus1ont A pauys1,m1 for 1<nTMp+1
U P11 =4 P s 1

Theorem 5, 1. phll+1yn:pn‘1pM,+1;1 for n= 1, 2, ey zMz—l—l (5—1)

bm1= /-7Ml+1:1< p e'f") (5-2)

Mi+1

{ UM, _ [4
p””O: ﬁM1+1:1{<1+p2——j_1—>‘01Ml+1 m__ m

€M, +1 eM,+1
for m=0,1, ..., M 4 1. (5-3)
(Proof> The last two equations are the same as those of a birth-death
process, therefore Equation (5-1) follows. Using Eduation (5-1), we have
whi,e11=A{ pw.s 1,07 P} (5-4)
Let pr={( piy, pr;) for k=01, +0c, M 4 1.
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Then A matrix has the structure defined as the Definition 2. 1. with the
following submatrices:

A= A 0
| — s, Atu, |
Ay=As=—u I, A;=— 21
Ay=TA+u,, 0 7

L _'uzy /2+u _
ASZHR—-}—L{I’ —‘2 ]
L —Us u |

Therefore, /A matrix is the same as the one we had for the overflow system

M,=0. Using Corollary 3.1, the proof follows.

Remark 5.2 If we take M,=0, then the steady state probabilities are those
of Krishnamoorthi system (Ahn). Since py,.,,; can be derived from the
normalizing condition, Theorem 5.1 gives the complete structure of the
steady state probabilities.

5.2 Mi+1>Ey
Let N; be the r.v. of the total number of items and
ba'=Pr(Ni=n) for n=0,1, ... M+ M,+2,

Choose any integer £ such that F,+1 <k < M,+14E,, then there is a

unique positive integer n; which satisfies
B <k-N.<E,
Since the possible states for N are
{(m,0) : m < Eg}
{(m, 1) : m < Ej}
{(m,n) : £, , <m <L E,, for n=2, ..., M,}
{(m, My+1) : m > Ey},
we have
D= pr iy, if Eg+ 1 < k< My+14+Ey,
Pa_isiey A B> My4-1+Ey,

Therefore, as in Section 5. 1., we have

(5-5)
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prt= pr, pFEY for k=Eg+1, o, M+ My-2.
/)Iz;IZ‘bEQ:1< Ck >

CE,

Pro= [)Ea,l<1+p2_’;§a,>plsq—k_lk_ for £=0,1, .-, E,.

¢n,

5.3 By, < M4+1 < Ey, sy
We can choose a positive number k; such that

Epy < Mi+1 < Ey,
The differences in this case from Section 5.2 are in Equation (5-5) and in
the possible states. The possible states are

{(m, 0) : m < Ey)

{m, 1) :m< E})

{(mn) + E,., <m<E,, for n=2, -+, kp}

{((M,+1,n) : n > ky+1}
Since we have a unique n; such that

E.<k—ny<E, for k=E;+1, -+, M+ 14k,
we have

Pt = Prompm A k=Ey+1, e, M- 114k,

Prspi- sy it B My 1+ko-1
Remark 5.3. Except for the two sets of the states, {(m, 0) : m < E;} and

{(m, 1) : m < E,}, the total number of items uniquely determine the state
of the system. This is intuitively clear, since the self-optimizing jockeying
rule moves any item in the queue instantaneously.
Furthermore, if we allow an item in service to move, then we can drop

the set {(m, 1) : m < E} from the above.
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