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A Scismic Excitation on Floating Platforms

Y. K. Chung*

Abstract

The method of computing a hydrodynamic force induced by a random seismic motion of

boundary is presented and a sway force acting on a platform during an earthquake is shown.

Nomenclature

D=domain of water
oD=boundary of water
H=depth of water
TI'w=rigid walls ab and cd
I's=boundary of platform
I'=Iry+Ty

Introduction

A floating platform inside a semi-circular break-
water is subject to a sway hydrodynamic excitation
due to a horizontal motion of the breakwater during
an earthquake. Since the excitation induces a motion
of the platform as well as a force, the present study
is undertaken to study the sway exciting force
during and after an earthquake.

An earthquake is transient in nature, and the
problem is formulated with a time-dependent Green’s
function in a linear wave theory and the random
seismic acceleration is applied for the boundary
condition. The sway exciting force is to be evaluated

numerically by solving an integral equation.

Formulation

We consider a platform 1is floating in a harbor
closed by breakwaters. Initially the platform and
water are at rest. As an earthquake occurs and

proceeds, the walls of the breakwaters induces a
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motion of water and the platform becomes excited.
In order to evaluate the sway force, we treat the
present problem two-dimensionally.

The motion of the fluid, which is assumed irrota-
tional, may be described by means of a velocity
potential ¢(x,2), x=x(,2), satisfying Laplace’s
equation

4¢=¢:s+¢:.=0 for x=D, >0 (1)
and the linearized boundary condition on the undi-
sturbed water surface

Pu(x,8) +g¢.=0 at 2=0 (2)

. .
S $(&0=ax(x) TG for s=T ] ®

=0 at z=—H and 2zl
Here 2 is the unit normal pointing into the domain.
and I'y is the submerged body boundary. The fluid
is assumed to start from rest
¢=¢:=0 at t=0 4
The hydrodynamic pressure is determined by
P& ) =~pd
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Fig. 1 Schematic diagram
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The problem defined by (1) to (4) can be conven-
iently treated with a acceleration potential ¢=g:.
It is easy to verify that ¢ satisfies Laplace’s equation
and the following boundary conditions which are
analogous to (2) and (3):

dulx, ) +gd.(x,8)=0  at z2=0 (5)

a .
p ¥ 0=a (0T for 2= } (6
=() at z=—H and el

where

T(@)= ’5{ T(t)

The dynamic pressure p is given in terms of the
acceleration potential as

plat)=—pg(x,0)
Solution via Green’s Function

Let G(x,&.¢), x=(x,2), £=(4&0), be a time-
dependent Green’s function which satisfies the

following:
4G=8(x—§, y—0
Gu+gG.=0 for z=0
G.=0 for z=—h (7)
G=G:=0 for t=r, 2=0

Such G(x,&,¢t) exists and is given explicitly by

the following expression:

G="-log(R/R")

__Lj‘"" e KH ginh(Kz) sinh(KE&) cos(Kr)dK
x Jo Kcosh(KH)

1 (mcoshK(z+H)coshK(C+H)[1—cosw(t~7)]
T ox _Yo Kcosh?(KH)tanh(KH)
cos(Kr)dK (8)

R={(z- 8%+ (-0 ¥
R=((z—8)™ @ +0H *
r=|z—§|
w?=gKtanh(KH)

We apply the Green’s theorem to the functions
¢(x,¢) and G(x, §,¢—7)

2rg(r. 0= (G(x &1-Dgals0)

—Gn(.xv §, t_T>¢<§v t)]ds;
for all z=D). 9

where

where @D is the boundary of water. Integrating (9)
with respect to ¢ between ¢=0 and ¢=7 we find

2n($(x. 1) —¢(x,0)]
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—Gaulz, §, t——T)g[J(é, t)]d.fgdt. (10)
Using the initial and free surface conditions, we
write (10) as
2alp(x,7) (2, 00= [ | (G(x 2-0)a(OTW
—Galz, & t—7)¢(&, 1) Jdsedt. x (11)

Now we differentiate equation (11) with respect to

7. Then we have
202, )={ (G(x.800a (T
-Gn(-Zt §, O>¢(§v T)jdsE

P PRI

—Gy(z, &, t—)a,(§)T (1) )dsidr. a2
Next we let z&D in (12) approach a point on the
boundary I'. This results in the following integral

equation for the boundary potential:

MDP(x PV [ Gulr 0096 e

-§f Gl & =) (& Ddsedt (1),
, (13)

where

e n==[ Gl &0a®Tds

£, t"T)dn(é)ngj‘dt.

+§T® | Gt
Here P.V. indicates the Cauchy principal value
integral and 2(x)/27 is the part of an infinitesimal
circle centercd at the boundary point x, which is
contained in D, i.e. 2=x if the boundary is straight.
The convolution with respect to time in the right-
hand side of (13) is approximated by some quadr-

ature formula, e.g. the trapizoidal rule:

j ;jrc;,, (z, 8, t—1)¢(E, 8) dsdi=~

At
= jrc,,, (£, & O)¢(& m)ds

I~
F 405 | Guule, 8,140¥ &, (LD 41)ds:

where L=t/4t.

Next we discretize (13) with respect to space by
dividing the boundary I" into intervals 4;, 1<<i<N.
We use a piecewise constant approximation to ¥;

the constand values are ¥/=¥(x;, 14t) where z; is

the center of 4.
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W ith this discretization (13) becomes a system of

N linear equations

L-1
Agt= Ath’f’-"%r’- (14)
where ‘l’i '
=
v,

and A is an NXN constant matrix whose entries
are

Ai=3i3 (2 +P.V. 4 Gali, 6,00
At
- —2—5 A,—G"’(Zi’ £,0)ds:
B; is an NX N matrix whose entries are
Bij={ 4 Gulzi, .100ds
7L is an N vector whose components are

L .
7, =c(zi, Ldt)=—a;T(LAt)

—%ET(O),S;LJrT(LAz)ﬁ,-o]

—a Elji TO(L—D) o) 64

where we have introduced

ai={ Glxi & 00a(§)ds,
r

H
b= [ Guzt e (@ds.
Now we take H=13.7m, ae=90. Im, bc=315m, ef=
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Fig. 2. Horizontal seismic acceleration along I's
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Fig. 3. Sway force on platform
0.46m and fg=114.4m. The horizontal seismic

acceleration along ab and cd is given in Fig. 2.
The computed sway force per unit length is shown
in Fig. 3.

Discussion and Conclusions

We observe that the matrix A and the vector «
are independent of time and therefore have to be
computed only once. The number of operations
needed to compute L time-steps of the potential on
I is proportional to L2N3, The quadratic dependence
on the number of time steps is due to the need to
evaluate the convolution integral in (13). Hence,
the present method requires a large memory alloca-
tion because of this convolution.

It was tacitly assumed that the walls are rigid and
the seismic acceleration is only time-dependent.
Hence two walls are in the same motion during the
earthquake and the present work is an extension
of the classical dam theory.

The sway exciting force in Fig. 3 agrees fairly
well with the spline method [3]. The histories of
the acceleration in Fig. 2 and the sway force in

Fig. 3 are closely similar except for the sign. It was
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found from computations that the maximum sway
force occurs during the earthquake, while the
maximum surface wave appears after the earthquake

and interacts with the platform.
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