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Abstract

This paper is concerned with not only the transformation cf the logic diagrams to the
NAND and the NOR forms but also the inverse transformation deriving the simple Boolean
function from a logic diagram. The conversions of the algebraic expression from the
AND, OR and NOT operations to the NAND and the NOR operations are usually quite
complicated, because they involve a large number of repeated applications of De Morgan’s

Theorem and the other logic relations.

For the derivation of the Boolean function,

it becomes difficult because the Boolean

function is determined from the De Morgan’s theorem in consecutive order until the output

is expressed in terms of input variables (9).

But, these difficulties are avoided by the use of new techniques, called the TWO-NOTs
method and the MOVING-NOT method, that are presented in this paper.

1. INTRODUCTION

In the practical cases, any Boolean function
can be realized exclusively in terms of NAND or
NOR gates. For the two-level forms, the transf-
ormation from the AND-OR to the NAND-NAND
or from the OR-AND to the NOR-NOR is simply
obtained, If the logic networks with more than
two levels are used, the situation becomes consi-
derably more complex. For the multi-level forms,
the available transformation methods [1]~[9]
are developed. And the inverse transformation
methods are represented in references (1], (2] and
[9]. But, these methods lack the simplicity and
the general adaptation to specific functions such
as functions including the Exclusive-OR gates.

New techniques are developed to handle the

dogic diagram simply and directly, and shown in
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Section II. A theorem is generated from the
property of the EXCLUSIVE-OR operation and
By
applying these techniques shown in Section II,
general and simple transformations of logic
dagram to the NAND and the NOR forms are
presented in Section III and IV,

is applied to its graphic transformations.

respectively,
and the inverse transformation from a logic
diagram to a Boolean function is introduced in

Section V.

[I. NEW TECHNIQUES FOR THE LO-
GIC GATES

The key of the transformation procedure is
based on the De Morgan’s Theorem. Shannon
suggested De Morgan’s theorem in the functional
notation as follows:

F X Xoo o X+, =X X0e s Xmyn ). (1)
By modifying Eq. (1) to Eq. (2), the De Morg-
an’s theorem becomes

f(X.‘,“X’,.)l:f(X,',).(,’jr), fOI' i=1,2,...,7’l. (2)
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For the any number of complementations, Egq.
(2) can be further generalized into Eq. (3).
The generalized De Morgan’s Theorem:
AX o+, 0 ) =X 4500007
= f(X;,+,.,(...)), when 2 is even,
=£(X1).(,+,(..)), when = is odd. (3)
Symbolically the De Morgan’s theorem becomes
F":[ F, when n is even
F', when » is odd
where » is equal to the number of complement-
ations acting on the variables or operations. This
theorem is proved in [9].

From the generalized De Morgan’s Theorem,
new techniques are derived as follows:
TECHNIQUE 1 (The TWO-NOTs method):

If » is even, the output function F" is equal to
the function F. Therefore two NOT gates can be
inserted into the output line of any gate and,
conversely, two NOT gates on the same line can
be eliminated. These techniques are illustrated by
the logic diagram in Fig. 1.

F=F Fap® _{Af
—0—0— —_—
{ {
~O0—0—

Fig. 1. The graphic representation of the TWO-
NOTs method.

TECHNIQUE 2 (The MOVING-NOT method for
the AND and the OR)

The well-known form of De Morgan’s Theorem
is a special case of Eq. (3) when = is equal to 1.
In this case, the variables and the operations are
changed and can be expressed in the algorithmic
forms as follows:

X, — X
+—3)(—)(
o —>,

From these relations, new techniques of the
logic diagram transformation are developed and
used in the following Sections.
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Fig. 2. Graphic representation of the MOVING-
NOT method for the AND and the OR

operation.

At first, a complementation (NOT operation)-
on the output of a gate is moved leftward through
the gate along all the ¢ branches as shown in
Fig. 2. On moving the NOT through the point
called the changing point, all the input variables-
are complemented and the operation is changed
to the dual form: for example, from the AND to

]
_ pu +7= £0x1xe,% |

D

B | I
i

The Expressions of the

Fig. 3. De Morgan’s theorem by the MOVING-
NOT method

#x xz.oY = 0G X2 )
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the OR and from the OR to the AND, respecti-

vely. This procedure is illustrated in Fig. 2.

Therefore, the De Morgan’s theorem can be

handled by the MOVING-NOT method as shown

in Fig. 3.

TECHNIQUE 3 (The MOVING-NOT method for
the EXCLUSIVE-OR):

In order to treat the EXCLUSIVE-OR cperation
in the logic diagram, the property of the EXCL-
USIVE-OR operation is given as a Theorem Lelow:
THEOREM-The property of the EXCLUSIVE-OR

operation:

FIX @) =F(X(K),@) weverermseersrenrrenss “@
where n is equal to the number of complementa-
tions on the logic output function f(X.@®), and
K (Whére X(K) means that the number of com-
plemented variables of all X.’s is equal to K) is
even number iff » is even and K is odd number
iff n is odd.

PROOF:

The EXCLUSIVE-OR operation has the follo-
wing properties: By the definition of the EXCL-
USIVE-OR, we obtain

X DX =X Xt X1 X eoeeeeereesensenenne 5)
Let X, be logical 1 and substituting this value
of X, into Eq. (5), we find that

X @OI=X,.0+ X, L=X, o erererarvernenns (6)
Using the associative law of EX-OR and Eq. (6),
we obtain

X, ®1e1=(X,®21)21 (by using associative

law)
=X,®1 (from (6))
=X, (from (6))
=X, (from (3)). D

By applying Eq. (6) and Eq. (7), the property
of the EXCLUSIVE-OR operation is derived as
follows:
(X, ®)=(X,0X,®...0X,)
=(....(((X1®Xz(-E...@XJ@I)@I)....@1)(frogsl)l)3q.

The number of the EX-OR operation is 7.

(.. (X ®X0...2X,)0Dd1)...21) %roén))
~— - (7
The number of the EX-OR operatign is

—| K (even number), if n is the even nu-

mber.

—59 —

(. (X, &XE.".®X)B1®1)...®1) (from
——— Egq. (7))
The number of the EX-OR operation is
K (odd number), if n is the odd num-
ber.
=f(X(K),®) (from the commutative law and
the associative law of the EX-OR)
Q.E.D.

Using the thecrem, the MOVING-NOT method
is developed for the EXCLUSIVE-OR. The only
differences in comparison with the Technique 3
are that no operation Change is made on the
EXCLUSIVE-OR and one NOT moves along one
branch when it is moved through the EXCLUS-
IVE-OR operator. These are illustrated in Fig.
4. Note that the CHANGING POINT is removed
in this case. For the EXCLUSIVE-OR operation.
the TWO-NOTs method and the MOVING-NOT
method can be used as shown in Fig. 5.
TECHNIQUE 4 (The MOVING NOT method for

BRANCH)

In the logic diagrams, gates often have the
common input. The MOVING-NOT method is also

inputs el meving directicn

P of the not
—— output

no vperatien change
4

/]

/
/ |
/

{

T —  cutput

mputs ——f

inputs

Fig. 4. Graphic representation of the MOVING-
NOT method for the EXCLUSIVE-OR
operation.
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applicable to this case. It is clear that the rela-
tionships as shown in Fig. 6 are given.

Using these techniques, the transformations
of the AND, OR and EXCLUSIVE-OR gate to
NAND and the NOR forms are shown in the
the Appendix.

Pig. 5. The TWO-NOTs method and the MOVI-
NG-NOT method in the EXCLUSIVE-OR

operation.
{f"%‘** T =
T fo—— |
b
— —o—
5 -——t—ﬁ—A§ [ S

Fig. 6. The MOVING-NOT method for the bran-
ching.

II. TRANSFORMATION TO NAND FO-
RMS
Combinational logic circuits are more frequen-
tly constructed with the NAND and the NOR
gates, Because of the prominence of the NAND
and the NOR gates in the logic design, the tran-
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sformation techniques have been developed [1)~
[9]. Existing transformation techniques lack the
general adaptation and the simplicity. New tech-
niques for the NAND forms are presented in this
Section and for the NOR forms in the next Sect-
ion.

The conversion of a given logic diagram to the
NAND forms is achieved by following steps:

Step 1 (TWO-NOTs method): Insert two NOT's
into the output of the OR gates.

Step 2 (MOVING-NOT method): Using Techni-
que 2. in the Section II, move one NOT leftward
through the OR gates and obtain the NAND for-
ms.

Step 3 (TWO-NOTs method): If the AND still
remains in logic diagram, insert two NOT’s into
the output of the AND gate,

Otherwise, go to the Step 4.

Step 4 : NAND realization.

EXAMPLE 1:

This procedure is illustrated in Fig. 7. for the

function that is taken from reference [2]:
F=(CD+B)A+BC

(a) The AND/OR forms of a funCtion
F=(CD+B) A+BC

(c) Applying the MOVING-NOT method to fig.
7-(b)
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(d) The NAND realization from fig. 7-(c)
“fig. 7. Transformation of F=(CD+B) A+BC to
NAND forms. (Example 1)
EXAMPLE 2:

For a specific function F=(A+B)2CD--CDE,
the NAND realization is achieved as illustrated
in Fig. 8.

In Fig. 8-(D), a EXCLUSIVE-OR gate can be
“transformed to four NAND forms as in the

nDal

- /

. Appendix.

(a) AND/OR/EXCLUSIVE-OR forms of F=(A+
.B)®CD+CDE

R
3

¥ a

‘B

«b) Applying the TWO-NOT method to Fig. 8-(a)

o1 ™

{c) Applying the MOVING-NOT method to Fig.
8-(b)

{d) Applying the MOVING-NOT method for EX-
CLUSIVE-OR

(e) Applying the MOVING-NOT method for Br-
anch to Fig. 8-(d)

(f) NAND realization by substituting four NANDs
for the EXCLUSIVE-OR

Fig. 8. Tranformation of F=(A+B)®CD+CDE
to NAND forms. (Example 2)

[V. TRANSFORMATION TO THE NOR
FORMS

Since the NOR operation is the dual of the
NAND, the procedure for the NOR forms is the
dual of that for the NAND forms.

The procedure consists of following steps:

Step 1 (TWO-NOTs method): Insert two NOT’s
into the output of the AND gates.

Step 2 (MOVING NOT method): Using Techni-
que 2. in Section II, move one NOT Ileftward
through the AND gates and obtain the NAND
forms.

Step 3 (TWO-NOTs method): If the OR still
remains in logic diagram, insert two NOT’s into
the output of the OR gate.

Otherwise, go to the Step 4.

Step 4: NOR realization.

EXAMPILE 3:

This procedure is illustrated in Fig. 9. for the
same function of the EXAMPLE 1.

EXAMPLE 4:

For a specific function that is the same as
that given for EXAMPLE 2, the NOR transform
is illustrated in Fig. 10.
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(a) The AND/OR forms of a function F=(CD+ B)
A+BC

i)
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(b) Applying the TWO-NOSs method to Fig. 9-(a)
D - + /
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(c) Applying the MOVING-NOT method to Fig.
9-(b)

TN

D

A —C

(e) NOR realzation.

Fig. 9. Transformation of F=(CD+B) A+BC to
NOR forms (Example 3)
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(a) The AND/OR forms of a function F=(A+RB)
@&CD+CDE
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(b) Applying the TWO-NOT's method to Fig.10-(a}x
DL, [
2 TN
R 4

(c) Applying the MOVING-NOT method to Fig..
10-(b)

(d) Applying the TWO-NOTs method to Fig. 10--
©
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(e) Applying the MOVING-NOT method for the-
EXCLUSIVE-OR

*
C_f“ ED
i — o
T ;‘_ ) />O“ A L—\_\ - J
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(f) NOR realization by substituting the EXCLU-
SIVE-NOR to four NOR forms

Fig. 10. Transformation of F=(A+B)®CD+CDE
to the NOR forms. (Example 4)
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V. INVERSE TRANSFORMATION F-
ROM A LOGIC DIAGAM TO BOOLE.-
AN FUNCTION

It is more complex to find the sum-of-products
terms from the logic diagram realized with NA-
ND and NOR forms,

The conversion of the NAND and the NOR
forms to the AND/OR/NOT forms is directly
achieved by applying the MOVING-NOT method
and the TWO-NOTs method.

The inverse transformation procedure is as
follows.

Step 1 (MOVING-NOT method): Move leftward
the rightmost NOT through the gate.

Step 2 (TWO-NOTs method): If there exist two
NOT's on the same line, they are eliminated.
If the NOT re mains in logic diagram, go to the
Step 1.

Otherwise, go to the Step 3.

Step 3 : Find the sum-of-products terms.

EXAMPLE 5

The procedure for logic diagram of F=(A+ B(3
+T)+D(B(MK)))+RP
This example is taken from [9].

From Fig. 11-(d), the sum-of-products terms

is illustrated in Fig. 11.

are obtained,

F=(5+ T+B)A(K+M)B+D)+RP
=(§+T+B)A(KB+MB+D)+RP
=(5A+TA+BAYKB+MB+D)+RP
—=ABKS+ABMS3S+ADS+ABKT+ ABMT+

ADT+ABD+RP.

(a) Given logic diagram.
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A

b1

X _]r\'¥::{»\/‘-f—lﬂ'
e - i e
i

(b) Applying the MOVING-NOT method to the-
rightmost NOT.

ST
- \c~—l 0

,4 B %/L,
' LP*ﬂJ

¥ D—o— -

P

11-(b)

e

(d) Applying the TWO-NOTs method and the:
MOVING-NOT method to Fig. 11-(c)

Fig. 11. Inverse transformation of the Example 5.

CONCLUSIONS

New techniques presented in the section II are-
very convenient and simple to transfer logic dia-
grams to the NAND and the NOR forms. These
techniques require two methods, the TWO-NOT's.
method and the MOVING-NOT method, is gene-
rated in the Section II and used in every trans-
formation. For a specific logic diagram including
the EXCLUSIVE-OR gates, these methods are also:
applicable from the theorem presented in the-
Section II. In general, conclusions are summarized:
as follows.
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1) When the logic diagram has many levels,
techniques using the TWO-NOTs method and
the MOVING-NOT method are more efficient
than existing methods [1]1~[9].

:2) For the logic diagrams including the EXCL-
USIVE-OR operation, two methods are also
applied without difficulty

.3) De Morgan’s theorem is simply applied to
the logic diagram.
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4) Because of the graphic transformation, it is
very obvious that the procedure is simple and
straightforward.

APPENDIX

The transformations of AND, OR and EXCLU-

SIVE-OR operations to the NAND and the NOR
forms are given as follows.

MAND realrsation | NOR yealizatisn.

BXCLUSTVE | 4 o~ [
-~ t:}
x| o

—O__/ T
DD
Sy
A
5 B —
p— =1
B
B0 ey e .
L TWO-E2Ts methed
A —o
h—o £ 3
3
Iy
TX0-NOTs method B0

LOVING-LCT method,
TWO-NOTs nethod

I0R realization

]
3
i’ NAND realization
i
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PROOF:

......

There are only two cases satisfying 7Td—Bd=2' (i=0, 1,2,
without loss of generality.

9 W& obelsh gel MEFH

, #—1) among minterms

PROOF:

There are only two cases satisfying two conditions that Td—Bd=2 (=0, 1,2,
and the distance between the 7d and the Bd is not more than 2 when they are chosen
arbitrarily among the given minterms without loss of generality.

( 611)



