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Abstract
This paper describes a new systematic and straightforward method for constructing an
-optimal observer system for the optimal load frequency controller. The methed is based on
Vthe iterative minimization of the newly defined performance measure in regard to the
- estimate error of - the reduced order Luenberger observer system which identifies unm-
) easurable states and system disturbances, and uses the previous results of the author’s pa-
per already published such as the optimal load frequency control policy, exponential dist-

~urbance model, etc..

The procedure -employing the method is illustrated with a simplified two-area load-freg-
uency system example which can be interpreted as being a generalization of any multi-area
system. The results demonstrate the remarkable advantages and feasibility of the method

presented herein.

1. INTRODUCTION

Load-frequency control(LFC) in electric power
systems has gained in importance with the grow-
th of interconnected systems. Particularly, the
’i‘equirements for constant frequency, economic
dispatch control and security control schemes de-
mand the LFC system as a prerequisite.

Conventional LFC is mainly based on tie-line
bias contrel where each area tends to reduce area
control error(ACE):

ACE=A4P;.+kAf €))
and the control law m is determined by the pro-

portional integral:
m()=ky ACE+4; | ACE-dt @

where 4f and 4P,;. are, respectively, the reque-
ncy deviation from the desired value and the tie
line power deviation from the predetermined va-
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lue and parameters k,,k;, and k; are determined
empirically or intuitively. With the development
of modern control theory, new concepts have be-
en introduced for the design of the optimal LFC
system and they have involved the use of more
exact mathematic models and the applications of
optimal control theory, currently receiving inc-
reasing attention.

The basic LFC system dynamics is nonlinear,

but are usually approximated by the linear state

equation:
s=Ax+Bm4-Dp 3)
y=Czx (4)

where z(t), m(t), p(¢t) and y(t) are, respactively
nX1 state, »x1 control, ¢x1 disturbance (load di-
sturbance), and <1 output {(mezsurable state) ve-
ctors, and A4, B,C and D are matrices of appro-
priate dimensions.

The performance measure J, for Egs. 1 and 2
could be taken to have the quadratic form:
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Ji=3 [ Ue—zr)Qa—a0) +(m—ms) R(m—

m’)]d¢t (5)
if p isa known constant vector, and accordingly
xf8xlee and my2ml, .. are known a priori, wh-
ere Q and R are, respectively, nxXn and »X#» po-
sitive definite constant matrices. Then, the feed-
back gains of interest are the ones which rlesut
from the minimization of J, in Eq 5.

Despite years of theoretical research on the lin-
.ear quadratic design methology, the LFC system
requirements still suffer from the following pro-
“blems

i) Identification of unmeasurable sta:zs:

For most cases in real LFC system, o1iy rarti-
al information (») of the system states such as
frequency deviation, tie-line power deviation, etc.
is available for measurement, and so the feed-
back gains for optimal control need to extract or
identify the unmeasurable states by some proper
means.

ii) Identification of load disturbances:

Like above, information of load disturbances (p)
isalso unmeasurable and unpredictable, presenting
the same problem as above.

iii) Unknown x and my:

The performance measure(J,) in Eq. 5 can be
minimized on the assumptions that p remain
.constant within the time period considered and
that 2r and ms accordingly be known apriori.
But neither is p constant, nor z; and =, known
in advance.

iv) Smoothness of control actious:

The first derivative of control vector(dm/d¢t)
4s regarded as a criterion for control action sm-
wothness. One of the LFC system requirements is
to maintain smooth control signals for the reas-
-ons of preventing the governor demages, securing
economic and reliable unit operations, etc.. But
Jy in Eq. 5 does not reflect this constraint.

v) Local availability of state and disturbance
information:

A multi-area or multi-pool system actually ado-
pts the decentralized or hierarchical LFC system
and so it is unrealistic for a local system to uti-
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ize information of other areas’ states and distur-
bances within reach of its own area, even tho-
ugh available for measurement.

The first work based on modern ccntral theory
in this field was done by Fosha and Elgerd 2],
assuming that the entire states be completely
available for measurement and that disturbances
be known a priori. Therefore, it is =zpparent
that the control is not feasible for thic roasons
cited above.

Cavine et al. [3], introducing a medi{icd Kzl
man filter, performed the load disturbance iden-
tification, but the approach has distinct shortco-
mings by assuming that the tie-line power devia-
tion be known and also that statistical noise data
be available.

Miniesy and Behn [4] suggested the use of a
rable st-
ates and disturbances, but their work nceds fur-
ther improvements,

Luenberger observer to identify unmeasu
since the disturbances,
represented by step functions are poorly modelled
by simply setting their first derivatives to zero.

The author’s former work [1] suggested an
iternative method for constructing the optimal
LFC system, which achieved some improvements
in ghe derivation of the optimal control law and
the identification of unmeasurable states and di-
sturbances. The concepts presented herein was
based cn a new disturbance madel represented by
a sequance of exponential functions and on the sa-
me Luecr berger observer as above for the identi-
fication. Fut the work was confined to a single
area problem, and the parameter determination
in conjunction with constructing the observer
systzm resorted intuitively to trial -and-error me-
thod. ’

It is, therzfore, the aim of this paper to ext-
end the former work to a multi-area LFC prob-
lem, and to construct the observer system opti-
mally according to a newly defined performance
index rather than relying on the trial-and-error
method. In addition, the method suggested her-
ein may be useful answers to the aforesaid pro-
blems except v) which is beyond the scope of this
paper.
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. EXPONENTIAL DISTURBANCE
MODEL AND OBSERVER

For the direct use of the former work [1] done
by the author in later sections this section brie-
fely cites its main results.

i) Exponential disturbance model:

So far as the load disturbance model suggested
by Miniesy and Bohn is concerned, each element
of the disturbance vector p is represented by a
succession of step changes. This is not, however,
very satisfactory, since differentiation of » then
gives rise to impulse functions. This difficulty is
overcome in the former treatment by represent-
ing p by exponential approximation in the man-
ner indicated in Fig. 1 and as describe by Eq. 6.

tiy ti2 ti3

Fig. 1. Disturbance and its derivative.
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u(#),5(¢) : unit step and impulse functions, resp-

ectively

t;; : the j-th arival time of the i-th disturbance

a @ arbitrarily selected positive number suffici-

ently large.

The inclusion of p and p in the z leads to the
augmented states £=[z’! p’ p’}’, and accordin-
gly, Egs. 3 and 4 are also augmented as
2+Bm+aVr (14)
15

&

=4
y=C
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L Vi )n+2q— g

I, O;:identity and null matrices with appro--
riate dimensions

ii) Optimal control with all measurable states:
and known disturbances:

Assuming that the entire system states = and
disturbance p be completely available for mea-
surement and p remain constant to infinite time:
and also that the LFC system be asymptotically
stable and completely controllable, even though.
actually not feasible, it can be shown that there:
exist E and S such that

xzy Eps (20)

mr=3Sps D
where E,S : nXq and rXg¢ constant matrices, re--
spectively and the optimal control wvector ;;z,
which minimizes J, in Eq. 5 by solving a steady"
state Riccati equation, is given by

m=Hz+(S—HE) po~Hz+(S—HE)p  (22)
where H: rXn constant gain matrix

PrePleas
It is noted that in Eq. 22 p, is inevitably repl--
aced by the present, p, since future information
of p is unpredictable.

iii) Observer system and identification:

For identifying unmeasurable state z, and di--
sturbances p, the augmented statss £ is {uther
partitioned as

goly i ip i Y (23)

where z, ! (n—g) X1 unmeasurable states

Assuming that the LFC system be observable..

(44)
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the reduced order Luenburger observer system [5]

is expressed as

F=Fi+Gyv+Mm+aVyr 24

s~z Ly 25)
where

F&An—LA,, Go(An—~LA)L+A,—LA,

M#&E,—LB,

L: (n+29—g)Xg constant matrix to be arbitr-
arily selected

wA T, L w, L wp) ¢ unmeasurable state, di-
sturbance and disturbance derirative estimate
vectors to be identified

However, neglecting the fourth unmeasurable
term aVyr in Eq. 24, Egs. 24 and 25 are approxi-

mated by
g=F:+Gy+Mm (26)
n—g q q
s=w—Ly=w—[LS} L’ i L/Ty @7

where walw,”  wy” P w5, approximate w
It can be shown that the error contributiondzw
=w'—w) is negtigible if the observer system in

Eq. 24 is asymptotically stable [1]. Therefore,

the unmeasurable =, and p are reasonably iden-

tified by the relations:

(28)
pEWy=Wy 29
Consequently, the optimal contrel # can be im-

plemented with the use of the obesrver system

(Egs. 26 and 27) and Eq. 22 as

DWW,

M= H,»+ Hyw,+(S—HE)w, (30)
where H2[H,, H.] and the structure of the

-

composite plant and controller is illustrated in™

Fig. 2.
P

Power System

Fig. 2. Power system with a load-frequency
controller.

- [I. OPTIMAL OBSERVER SYSTEM

It is the primary concern of this paper to for--
mulate an optimal(n+2g— g)th- order observer fr-
om the (n-~2¢)th LFC system by choosing a mat--
rix L in Eq. 27 such that it achieves desired.
(optimal) response characteristics of the ohserver.
The observer response time chicsen sheuld be fast
enough to provide convergence of the estimates
within the time interval of interest.

In a deterministic system, it has, however, been
not clearly defined up to now on a quantitative
basis, what the observer is optimal or what the
fast response time means, while in stochastic cases.
the observer system design has been shown to be
optimized in the presence of measurement noise
in a sense of minimizing the mean square esti--
mation error.

In the former cases, the conventional way of
designing the observer system is to choose arbi-
trarily any desired set of (2+2¢—g) eigenvalues-
of F in Eq. 26 or its equavalents in a sense of
a sympotical stability in try-and error approaches.

So far as the deterministic observer system is.
concerned, the fellowing difficulties bother the
system designer:

1) The desired set of F’s eigenvzlues is not
clear in a quantitative sense.

2) Even though the desired set is chcsen, the
corresponding matrix F orL is not unique and so
the determination of L resorts to try-and-errcr
approaches.

3) It is probable that the matrix L thus deter-
mined is subject to hardware limitations, say,.
L.iy<<L<Lp. in the case of actual implementa-
tion of physical system.

The concept to be present herein, as a possible
answer to that, will define a new performance
measure for the deterministic cbserver system,
and then suggest the procedures for constructing
the optimal observer system on the defined basis.

That is, Eq. 26 can be solved for = from Egs.
14 and 26 as

z=[z),#’, p’Y —Ly+exp{(An—LA:)1)

« (o= L& uos 25 D)+ Lyo) 31»
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where 2022li-0, Y2 ¥ =00 Tuo2Tulezo Po2P iy
bo=pl..> And, accordingly, the estimate error
vector of unmsasurable states and disturbances,
e(=[z./p' b’ l—o), from Eq. 27 and 31, results in

e=exp((4..—LA Nt e 32)
where ¢,2¢| -0

The performance measure J, for the observer
system to bz minimized for L is defined by

JiLo L me’edt:—,l;ea’f:exp {(ds—LA0t)exp
~a 0 <

{(An— LAt dte (33)

subject t0 Lpipn<lL<L &)

where each element of Lg,, and Ln;, is, respe-
«ctively, the prescribed upper and lower limit of
the corresponding element of L.

In order to use the performance mzasure J.Eq.
33 for the cas= of unknown Initial states it is us-
ually necessary to eliminate this depsndence on
&. A simple way for this is to average the per-
formance obtained for a linearly independent set
-of initial states.

Therefore, assuming the initial states e, to be
random variables uniformly distributed on the sur-
face of the n-dimensional unit sphere, Then,
the expected value J, is

72(L)=21,-25:tr[exp{(AZZ—L;L;:'t}exp{(Au

— LA} d¢ (35)
.and »J.is an upper bound on the worst case per-
formance obtained in the case that e’e=1, since
At is apparant for an arbitrary matrix A and an
.arbitrary vector x with the condition z’z=1
that

max{Ae) <tr(A’A) (36)

For this reason, the performance measure Js
vused hereafter is defined by
Js( L) éf:fr[exp[(Azz—Lsz)’t]eXp{ (Azz_‘LAu)
1} 1di=trQ(L) 37
subject 10 Ly, <L<Lyay
Consequently, next task is to construct the op-

timal observer system such that
f;:mjn]a(L):.Ia(L*) (38)

The optimal values of parameters L will be fo-
wnd numerically by the well-behaved computa
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tional procedures described below rather than by
analitical apprcaches.

The procedures censist of two computational
a lgorithms, the prccedures consist of two com-
putational algorithms.

The {irst algorithm may be powerful for {ind-
ing the rough values of L*, while the szcond one
is used for more accurate determinaticn of L*.

A. The first stage ¢f computation of L*

Considering Eq. 37, the assumption ¢f the asy-
mptotical decaying behavior of exp{(i..—LA,,)¢}
makes it possible to approximate the infinite time
interval of integration by some definite time r
properly choosen, and also due to the convergen-
ce characteristics of J; for L the high-order ter-
ms in the elzm nrs of L hirher ‘han the second
order could be truncated in cach element cf L.
The approximated J, thus formed is defin:i Ly
J.. That is,

J(L)=J(L,7) (39)

subject to L nia<L<L,.,

Then, instead of minimizing J, (L, J.(L,z)
are minimized for L and r but the optimality is ev-
aluated by J. (L). It is noted that too large sca-
lar value of z causes J(L, z) to deviate far
from J;(L) since J,(L,7)’s highest order terms
Jo(L,7) is
unbound as z—>o, and contrarily too small r me-

are the second order and accordinly

ans to cover the only small portion of the integ-
ral area resulting in the same situation as the
former cases. Therefore, it is apparent that there
exist the optimal z* such that

min lJa(L*)de(L*,r)]=|J3(L*)——J4(L*,z(~zg);

For a given 7z, J,(L, z) is quadratic in L and
the necessary condition for minimizing J, (L,7)
for L is the following linear equation:

ol (Ly7) _
B (1)

The solution L of Eq. 41 is L, as the guess of
L* in this iteration. Then, its optimality is eval-
uated by substituting L, in to J..

Before substitution, L, should be checked for
constrains in Eq. 34, and in the case of being
outside the admissible ranges modified by fixing
L. to the limit values, L., or Lg;,.

(446 )
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The actual value of J; in Eq. 37 is obtained
from the solution of thLe following linear equa-

tion:

(An—L.A;)Q+Q(A—L A;)+J=0 42)
and by

Js(L)=trQ (43)

Then, in order to improve Js, the present z is
changed properly. For changes of 7 it is very ef-
ficient to employ the symmetrical two-point sea-
rch method [7] which is applicable to one-direc-
tional search problem.

The iterative scheme is summarized as below:

i) Guess initial 7. 7 : terative count

ii) Solve L.: from Eq. 41, and modify L. by
the constraint check in Eq. 34, if necessary. If
all the element of L. are constrained, go to vi)
other wise, go to iii).

iii) Solve Q' from Eq. 42, and evaluate J,(L.")
from. Eq. 43.

iv) Test |J(L.)—Js(L ") |<error limit

True : Go to vi). False : Go to V)
v) Change % to ¢i*! by the STPSM. and incre-
ase 7 to z+1. then go to ii).

vi) If the optimal values thus obtained are met
for practical use, terminate the iteration. If more
accurate results are needed, proceed with the se-
cond stage of computation bescribed below.

It is noted that for F2 A,,—LA,; in Eq. 25, the
structural sparsity of A, makes F to be irrele-
vant of some portions of L’s elements, and such
elements vanishing are set to arbitrary values.

B. The second stage of computation L*. .

The {first computational scheme is very power-
ful to get the approximate L*, but it has the ob-
vious shortcomings that the exact optimal values
are never reached due to its inherent approxima-
tion algorithm. ‘

For more accurate L*, it is suggested to use
the following gradient method which may attain
theoretically the exact optimums with infinite
number of iteration.

In the gradient methed, the improved Li*! is
determined by

L-’+1:Li_p.ﬁ'%.2&’

L=Lf

4o

where p : calculating step size(scalor)
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i : iteration count ‘
and then L**' is modified by the constraints im
Eq. 34.

The procedures for the evaluation of J (L'*')
and its convergence test are the same as in the
first stage of computation.

For deriving the fomula for 8J;(L) /3L, a Kleim-
an’s lemma [6] is useful and, therefore, quoted as

“Let f(x) be a trace function. Then if one can.
write f(zx+edzx)—f(z)=etr[M(z) dz] (45)
as ¢—0, where M(z) is an »X» matrix and z is:
an rXn matrix, then

RACIR V) (46)

f(-) is a trace function of the matrix = if f(z)
is of the form

f)=tr[F(x) 1" “n
and another useful formula for this purpose cam
be found and cited as [6]

exp{(A—FC—edFC)t}=exp{(A—FC)t}

- f:exp{A~FC) (t—0)AFC-exp{(A—FC)as}do

(48
With the use of the Kleiman’s lemma and Eq.
48, 8J;(L)/oL can be derived as

aJaSI(JL)_‘:_J‘:eXp[(Azz_LAlz)’t] 'CXP{AZB
—LAp)t}dt - j :eXp{(An— LA -exp{ (A
—LA”)’t}dt.A,”:_—QI'QZ'A,lz (49)

where @, and Q,, respectively, are the solution
of the following linear equations:

(Ae—-LA5) Qi+ Q(A— LA +I=0 (50)

(Ay—LA;)Q+Q.(An— LA, +I=0 (51)

Consequently, the iterative scheme is summari-
zed as below:

i) Take initial L* from the result of the first
stage above

ii) Eq. 51 is solved for Q.; Qi has been already
calculated at the preceding time of iteration.

iii) Calculate 8J3;(L)/oL|L=L* from Eq. 49.

iv) Calculate Li** from Eq. 45.

v) Modify Li** by the constraint check in Eq.
34, if necessary. If all the elements of Li** are
constrained, go to viii) Otherwise, go to vi).

vi) Solve Q,"*! from Eq. 50 and then evaluate:
J3(Li*Y) from Eq. 43.

(47 )
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vii) Tzst | S (L) —Js(L) | <error limit
“True : Go to viii). False : Increase : to ;+1

and go to ii)
viii) Terminate the iteration.

. EXAMPLE

The preseatzd method is tested on a simplified
tw0 area power system.

The augmented state vector £ consisting of
measurable 3 states, unmeasurable 4 states, un-
.measurable 2 disturbance and 2 first-denratives of

#he disturbances are as follows:

1 4f.
y z, \ af,

Za APlu

P RIRERRE i R J EETPRUIPR

oy Ax.l
Zu Zs APn
Ze dz,,
Xz Apes
P b2 dpn
P2 Apas
L j) 1.71 Aﬁ.dx
’ b dpyz

¢/ area-1 frequency deviation
area-2 frequency deviation
tie-line power deviation
governor-1 position
generator-1 output change
governor-2 position
generator-2 output change

.............................................................

area-l load disturbance
area-2 load disturbance

............................................................

area~-1 disturbance derivative
\ area-2 disturbance derivative /

.and ths control vector m is m="m,,m,]’. The
observer system matrix F(=A4A,,—LA4,;) and L
are, respectively, of the structure;

a, ely, 0, fli, 0, —fl,, 0
F__( ¢, ctels,0, fla, 0, —flyy 0O
l 0, elsy by, flss 0, —flay 0O

0, ely, dy dtflas 0, —flyy 0

BRI R28% oW 19794 6 5

Q, elsy, 0, fls. 1, —flss O
0, elsy, 0, fley —d, ~flazy 0O
0, eln, 0, fln, 0, —fl,, 1
0, elsy, 0, flga 0, —flsz, —Q

L’— lll: lZlJ laly 141, lSlr lSl! l71! lBl
- llZs 122: l32y 1421 1527 1621 [727 IBZ
113, 1231 l331 l43: l531 1631 l73’ lsa
In this example, two cases of load disturbance
are assumed as
case A p,=4p,;=0.1 sin(27£/10)+0.05 sin
(27X 9t/10)+0. 02sin(2z X 81¢/19)
pr=dps,=0, for all ¢

case B:(p,=(=0.01, 0<¢<2.5
=0.1, 2.5<t<5
=0, 5<¢

p.=0, for all ¢

At first, computations were done for Eq. 22 in
either disturbance cases without the observer, as-
suming that all the states and disturbance be a-
vailable for feedback information to the in-
put controller. and then, next comtations were
for Eq. 30 which corresponds to the optimal LFC
with the optimal observer system suggested here-
in. How the suggested method is an efficient one
is shown in Figs. 3~6 below which compare bo-
th results. Fig. 3 and 4 demonstrate the observer
system’s performances. The computed results for
actual (p,) and estimated (w,;) load disturbances
and actual (4Ps,) and estimated (W3,) power
changes are compared in Figs. 3 and 4, respectiv-
ely.

On the other hand, one could make a judge-
ment on the suggested method’s applicability by
reviewing Figs. 5 and 6, since Fig. 5 compares
the optimally controlled frequency deviations for
Eq. 22’s and Eq. 30’s scheme, and Fig. 6 compares
the optimal control signals for both scheme. In
Fig. 3 and 4, the real line and dotted line repre-
sent real and estimated values, respectively, while
in Figs. 5 and 6, the former those for Eq. 22 2nd
the latter those for Eq. 30.

The comparisons for the results are summari-
zed as

i) The observer system errors were very small
in a sense of its practical opplicability.

(48)
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ii) Unmeasurable states and disturbances were
smoothed due to the filtering characteristics of
the observer system and it was accordingly pos-
sible to maintain smooth control octions favora-
ble for the LFC requirements.

iii) The overall performance measure J defined
by Eq. 5 was not so much increased with the use
of the observer system(12% for case A and 7%

P cPun

case A
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for case B), and the observer error J, defined

by Eq. 33, was increased to 7% for case B.

Iv. CONCLUSTIONS

The main conclusions of this paper are summ-
arized as

i) The exponential disturbance model developed
in the former work by the author with the aid

PrcPuny

ey

case B

Fig. 3. Real and estimated disturbances.

_Iﬁ’ -

case A

AFrtHz) .

%0

<l
=10

case A

.
SPypun *

| L
.B 0

case B
Fig. 4. Real and estimated generating power changes.

case B

Fig. 5. Frequzncy deviation by the optimal control with all states and disturbances measurable

and with nbserver information.

(449)
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E1
LTSy

case A

of the optimal observer suggested here in demon-
strated its efficient performances in the LFC sys-
tem

ii) The optimal observer system for the LFC
was mathematically defined in terms of its per-
formance measure newly defined herein.

iii) Efficient algorithms were derived for con-
structing the optimal observer system.

iv) Smooth frequency control actions were rea-
lized by the method presented here in.
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