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Feedback Stabilization of Linear Systems with
Delay in Control by Receding Heorizon
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Abstract

For ordinary systems the receding horizon method has been proved by the author as a
very useful and easy tool to find stable feedback controls. In this paper an cpen-loop op-
timal control which minimizes the control energy with a suitable upper limit and termi-
nal control and state constraints is derived and then transformed to the closed-loop cont-
rol. The stable feedback control law is obtained from the closed-lcop control. The stable
feedback control law is obtained from the closed-loop control by the receding horizon con-
cept. It is shown by the Lvapunov method that the control law derived from the receding
horizon concept is asymtotically stable under the complete controllability condition. The
stable feedback control which is similar to but more general than the receding horizon co-
ntrol is presented in this paper To the author’s knowledge the control laws in this paper

are easiest to stabilize systems with delay in control,

1. Introduction

Feedback stabilization has been one of most
important design objectives for contrel systems.
There exist several well-known stabilization me-
thods for linear time-invariant ordinary systems
The receding horizon method in [1,2,4,5] has b-
een proved a very easy feedback stabilization m
ethod, which has a computational advantage and
is also applilcabe to time-varying systems. There
has been an attempt in [9] to use the result of
4] to stabilize linear systems with delay in state,
but it failed to obtain satisfactory results. In this
paper the receding horizon concept in [1] is ex-
tended to linear systems with delay in control
which are represented as follows:
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F()=Ax(E)+Bwu () + B (t—h) (€))
where x(¢) eR", u(t)eR™, and A,B,, and B, are »
Xn,nXm, nXm matrices respectively. The con-
cept of controllability is in order for the analysis
of stabilization. In [6,7) there are a few similar
controllability concept for the system (1), one of
which is as follows: Definition: The system (1) is
said to be completely controllable if for every
bounded measurable functions v;:[—4,0]1—R™
=0,1, and for everyz,, z,:R", there is an admi-
ssible control « such that x(t., ¢, 20, )=z, whe-
re wre=v, and u:,=v,.

In the above definition «, is defined by u,(s)=
u(t+s), —h<s<0. The linear ordinary system &
(O)=Ax()+Bux(t) will be denoted by [A4,B1. It
is shown in [6> that the system (1) is completely
controllable for any [f,,¢,] with ¢ >#+#k if and
only if [A4,B,+e 43,0 is completely controlla-
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‘ble. Historically a general stable constant feed-
back control has been obtained from the infinite
time quadratic cost problem. In [8] it is shown
that the steady state optimal contrel for the qu-

adratic cost problem is given of the form:

#O=—L(B' Lt B L)z () + [ [B'oLi(0)

+ B\ L()]Bu(t+8)d8] (25

where nXn matrices Lo, Lo, L.(6), and L,(6)
are obtained from operator Riccati equations whi-
ch are represented by partial differential equati-
ons and are extremely difficult to compute. The
strucure of (2) suggests for a form a stable
feedback control law.

Definition: The system (1) is said to be stabili-
zable if the system (1) is asymtotically stable wi-
th a feedback control law of the form

s =K (0)+] Ki(®)u(t+0)d, 3
where K, and K () are mx#» and mXm matri-
ces respectively.

A feedback control will be derived from the
receding horizon notion and its stability will be
proved in Section 1. By the use of 2 transfor-
mation and some results of Section I, a more g-
eneral stabilizing feedback control law will be o-

btained in Section .
1. Stabilization by a Receding Herison.

Consider the fixed terminal control energy pr-
oblem: Find the optimal control of the system(1)
which minimizes a cost

-

J(U)th: hu’(t)u(i), utg=v, and ut,=0 (4)
suject to the terminal constraint

a(t)=0. %)
The constraint (5) can be expressed as

0=z{t,)=er"1'Ox(¢y) v-J‘ Y201 B (z)

to
+Byue(r—h)dz, (6)
which can be rearranged to

- ACF-10)

t
—[x(to) -%Jvt:_heh“:“_tO)Blu<S>dS]:f:;»he
Bu(e)de+ e 40 Byt B, Ju(e)ds (7)

Let
H(t—1)Le A=t B, +g= ¢ =t)g Ak B, ®
The relation (7) can rewritten as

— 15—
t
—[z(ts) +fzz_he_A("’°’e‘A*3121(»‘)dsj

t.-h
=[ " HE—tyu(rras )
Since the system is completely controllable the
optimal solution which minimizes the cost (4) is
given by
ur(E)=—H({—t,) W I(t,—h~1,) [zt
t

%fto e AU oA E i (s)ds (10)

where

t
Wit~ t) [ H e~ t) H! (= 1)

f1=%
=" HGH (s, (11
The control law (10) is an open-laop control
and w:, is a given initial condition. By replacing
to by ¢ from the open-loop control (10) we obtain
the closed-loep control

W ()= (Bot "B Wi t—h=D2(®)+ |
-h

e Mg ARB ¥ (¢-+6)de] (12)

By the receding horizon concept, t,=t+ 7T, we w-

ill define a new centrol law
A()=—(Bot+e 4B W-1(T—1) [ () +f:

e 48 g= 4B A (t+0)de) (13)
It is noted that H(t~#)=H(0)=B,+e 4B, and
that the cost with associated constrainted constr-
aints (4) is chosen so as to give the results in
Theorem 2. By the way the control law (13) is
obtained it is easy to see that the control law

(13) minimizes a moving cost
t+T~p .
J(u)=f. W (Dultdt, «, 7=0 (14)

subject to a moving terminal constraint

z(t+T)=0 (15)
We summarize the above results,

Theorem 1: The receding horizen control law
(13) is the optimal control of the system (1) w-
hich minimizes the moving ccst (14) subject to
the moving constraint (15).

The moving cost like (14) - is unusual but has
often been used for adaptive control systems.
The contrel law (13) is derived by replacing ¢,
and ¢, by ¢ and ¢+ T respectively in order to gi-
ve a clear understanding of the problem. But it
is not difficult to see that by assuming the cur-
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rent time ¢ in (13), (14), and (15) is a fixed va-
lue the control law (13) can be derived directly
from (10). The stability property of the control
law (13) is most important in this paper which
is yet to be proved.
Lemma 1: The controllability matrix W(¢) in
(11) satisfies the following relation:
AW+ WA —[Bo-e 4*B, [ By+e 4*B,
+e A Byt+e B[ By1e 4B, e 4" =0
(16)
Proof: The controllability matrix W(z) is giv-
en by
W) :ﬂe%f[BﬁaMBJ[Bo e ARB, Ve A s

a7
From (17) follows that

fo d‘i [e A" (Bot e B,) (Bo+ e-#4B,) e~ 1dz
= AW(t) —W(t) A’ =e""(By—e"**B,) (B,

T=2

+e 4tB ) e A'c

from which follows the relation (16). This com-
pletes in proof.
It is noted that the optimal cost with the op-

en-loop control (10) is given by
T =2t + [ e 1e e B ()dsIW (2,

h—t) alal)+ [ e hct e B, ()ds1
(18)
The fuaction (18) will be a Lyapunov function
for the system (1) with the control law (13) as
shown in Theorem 2.

Theorem 2: If the system (1) is completely con-
trollable, then the system (1) is asymptotically
stable with the oontrol law (13) with T>h.

Proof: Let y(#) be defined by

Yo+ eaen e mBa()ds (19)
t-k
Then the receding horizon control law (13) is e-
xpressed as
A(t)=—(Byte B W T—h)v(t). 20
From (19) and (20) we obtain an important re-
lation:
t
HO= () +e B ete B~ +Af
e AC-De kB f(s)ds=Ax(t) FBa(t) +B.a¢
—~R)+e-MBLA(E) —Blﬁ(t—h)+Af‘ emaeme
.
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"B (s)ds=Ay(t)+(Byt+e HB)a(L) (21»
=[A—(Bo+e #B,)(By+e 4B)'W-(T—r)]
> 22y
It is noted that the system (21) is an ordinary
system. The system (22) is asymptotically stable
if and only if the transporsed system
jv(t):[A—(Bo+e‘A"Bl)(BDf.Le"“'Bl)’VV“) T—h))"
3@ (23)
is asymptotically stable. Take the following Ly-
apunov function for the system (23):
V=3 @OW(T-h)$(t) 24>
Taking the derivative of (24) yields
V) =3 OW(T -y (&) + 2 (O W(T—h)3(8)
(25)
Combining (25) with (22) and (16) vields
V() ==3"(t) e TB(B 4 e 4*B,)
(Bote 4B} e " Tb 1 (B, + o 44B,)
(Bo+e M B) 19(8)<—5' (1)
(Bote 3,1 Byte *B,7 $(t)
=—¥(t)e[ A— (B, +e 4*B,) (By+e 4B,
W T—R)](t—t,)[Bo+e 4B, ]
[Bore "B, e[ A—(By+e 4B,)
(Byte B W (T—h)1(t—t) 5
(26)
Since [A, (By+e *B)]is a completely controll-
able pair,[ A—(By+e **B,) (B, +e - 4*B) W (T—h)
(Bo+e **By)] is a completely controllable pair.
Thus the right hand side of (26) is not identica-
lly zero and there exists a nonzero constant a s-
uch that
V)~V {(yt))<i—aly(t) |? @n
for ¢;>¢,-+0, where §>0. This indicates that the
system (23) and thus the system (22) are symp-
totically stable. From (19) and (20) follows that
2 <11 (BoFe B WH(T—h)||-13(t)! (28)
and
fx(l‘)lély(l‘)l%-h[ma;-

R

[le* T 18, ]-]a,]
<0

SO

—h<e<
B WHT—h)| -]yl (29)
Since the system (22) is asymtotically stable, »

()l le4¢] T« [ Bil |- |1 (Bote4

(#) and thus y, decrease exponentially. Therefore
x(t) decreases exponentially from(29). This com
pletes the proof. Theorem 2 canb considered

as a generalized result of [4] in the sense that
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the result in [4]can be obtained by assuming
B,=0 from Theorem 2. The stable feedback
control law of (13) is shown in Fig. 1.

"~ The Plant

The Controller

x<«t)

Fig. 1. Feedback Structure of the Receding
Horizon Control.

The result of Theorem 2 is applied to a linear
system with delay in control:

23 I 2\
.i(t)=l 2(8) 4 \u(t)+{ ju(t—h) (30
02 2/ 4)

The state trajectorics and the control value are

shown in Fig. 2.

u x| ~ == — control
state xl
———— = statE X,
S (6Y = 78
\'L(
0, (0) = 12,
b =0
U\ v

(

405 7T

Fig. 2. Responses of the system(30).

By closely investigating the proof of Theorem
2 an unexpected good stabilization method has be
en found, which will be given in the next section

. A General Stabilization Method.

For the linear system with delay in control (1
let x(¢) be defined by

y®=a@) [ e-ac0gBu(s)ds(31)

for an arbitrary control =,. For an arbitrary
control u, the system (1) is transformed

to

¥R =Ay () +(Bot+e *B)ult) (32)
If the system (1) is completely controllable, the
system (32) is completely controllable. There ex-
ist several well known stabilization method ‘for
completely controllable ordinary systems. Let the
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control
w(®)=Fy(¢) (33>
be a stabilizing control for the system (32) Themn:
¥(t)—0 and from (31) and (33) we have
[z <1y(&) | +-hlapx] [€22} 111 By - FV - el
8<<0

Zh<

(34

From (34) z(#)—0 as y(¢t)—0. The above result
can be summarized as follows:

Theorem 3: The completely controllable system

(1) is stabilized by a control law
u(t>=F[x(t)+ffhe‘ﬁve-“31u(t+o)doj (35)

where F is a feedback gain which stabilizes the
completely controllable ordinary system{ A4, B+
e 4B, 7,

The control law (13) can be obtained from the
control law (35) with F=—(B,+e 4B W-(T—
).

IV. Conclusion

Though the stabilization of linear systems with
delay in control has known to be difficult, easily
computable stabilizing feedback control laws (13)
and (35) are suggested in this paper under the
ocmplete controllability condition. The upper limit
t,—h in the cost and the control constraint ws,=(
in (4) are the author’s deliberate choice in ordet

?
to give the result in Theorem The usual Costf w
t

(Hu(t)d will lead to unsatisfactory results. The
stabilization of linear systems with delay in state
is known to be more difficult [3]. Though the
receding horizon concept can be applied to lineas
systems with delay in state, its stability property
has not yet proved.
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