WRESBABAMRAEE &

HREEHEE

—57 —

St BhER#E B X
Eib

28—3—3

Power System State Estimation and Idenification in
Consideration of Line Switching
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Abstract

The static state estimation are divided into two groups; estimation and detection &
identification. This paper centers on detection and identification algorithm. Especially, the
identification of line errors is focused on and is performed by the extended W.L.S. algo-
rithm with line swithching states. Here, line switching states mean the discrete values
of line admittance which are influenced by unexpected line switching. The numerical
results are obtained from the assumption that the noise vector is independent zero mean

Gaussian random variables.

1. Introduction

Recently, it has been indispensable to give a
reliable data base for power system control and
security monitoring e.t.c. in the large saledlc
power system.

To give the reliabe data base, the W.L.S.(we-
ighted least square) algorithm has been widely
used in the power system state estimation.

Firstly, Schweppe F.C. suggested the use of
W.L.S. algorithm in for that purpose.>®»®

But one of the dominant problems in the field
of W.L.S. algorithm in power system is the pr-
esence of bad data in either the telemetered me-
asurements or the power system configuration
and unaccurate results are obtained under the
influence of bad data.

So it is important to detect and identify the
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bad data. To detect and identify the bad data,
Schweppe Suggested a bad data suppresion algo-
rithm (especially to aid in identification)®.

But especially in cases of large bad data or
large line errors, bad data suppresion algorithm
could lead to oscillations of the estimates and a
consequent diversion of the solution.

Lately, a statistical bad data detection algori-
thm was suggested, but an identification algori-
thm of line errors was performed by trial and
error method®®,

In order to identify line errors, this paper em-
ploys the extended W.L.S. algorithm which in-
cludes suspected conditions of line switching in
power system state. and also to save computer
storage and computing time |it introduces the
P-Q, Q-V Decoupling method™.

2. The Basic W.L.S. Algorithm

The porblem is to find the best estimate X of
the state Xof the power system(voltage modules
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and angles at every bus of the power system)
i.e. the one which minimizes the weighted sum
of squared residuals;
J(B)=min(Z—~n(z)ITR[Z —h{z)] 2.1)
To obtain the best estimate £ which satisfies

@D

L J@) =2 @R MZ-h))=0  (2.2)

The £ is determined by (2.2), using an appro-
ximate Newton optimization technique

ie.

zi+ 1=z +(H ()R *H(z:) 1 H ()

R Z—h(z)] (2.3)
where z; is the computed values of = in the i-th
it erative stage and =z, is initially guessed.

But the above basic W.L.S. algorithm requires
the inverson of a gain matrix 3(z;)

Z(z)=Hx)R'H(x;)

Hence, the above algorithm requires large co-
mputer memory storage and much computing
time.

For overcoming these difficulties, the P-Q and
Q-V decoupling method is used in this paper.

3. P-Q, Q-V Decoupling Methed

Let N be the number of buses of the power
system whose state is
zT=[07,v"]
where
BT ==[0,, 0 err Oy, JoT=[0;, 50+ y-1]
represents the bus voltage angles and modules,
respectively.
Note that the Nth bus is the reference bus
with Qy=0 and Vy is assumed to be 1.
Then, the measurement vector Z is partitioned
into the active and reactive parts:

[Z ] [f ('0,0)] [e,. J
= —_ +

z, g(v,0) &,
With the above definitions, we obtain the Jaco-
bian:

G.D

'O o5 ( G¢ 0
5 ° D e
H(,0)=| ~ 0 (3.2)
¢ O¢ ' 0 D¢
\os | 0, * o,/

Accordingly, from (2.3) we obtain
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vt Lot [0 R Z ] L R Z, g0

a, d, /. d,
3.3y
+1=0,+[ 2 R 2 )T gy
b:+1=0.+ (35 R 2T 2L R Z~ fl00)]
6.4

where

r= (B0 ]
0, R,!

The optimal state estimate [#7, ©7] is obtained
by interlacing it erations of (3.3), and (3.4) and
iteration proccess terminats if]|40]}.=4d, and
|1dv! =8, consecutively, where d,,8, reflect de-

sired accuracies i~ ~and ¢, respectively.

4. Bad Data Detection

Let 7 be the m z 1 residue vector
r=Z—h(%)
then,
J(Z)=TTRT 4.1y

If random error ¢ is zero mean, Gaussian ran-
dom variables, then the residve vector 7 is also
zero mean Gaussian random variable i.e. E(7T]=0
and have a chi-square distribution with degree of
freedom K=m—n. Hence detection can be per-
formed by the following hypothesis testing with
two hypothesis:

H,; The measurement is not a bad data and

is not related to any line errors

H,; H, is not true

Accept H, if J(&)=T1,

Reject H, otherwise

Where 7, is threshold level which is determined

from false alarm probability P, (the probabi-

lity of rejecting H, when H, is true) and degr

ee freedom K

Assuming that e is Gaussian (and 7 is small),
the distribution of J(£) can be evaluated and P,
computed for any 7, By the above hypothesis
testing, we can detect the measurement bad date
or line errors cccurring in the power system.

5. Measurement Bad data detection and
Identification

5.1 Detection Criteria
As E(7.7TJ=WR=2,, 7=We (see ref. 5)
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where W=I—H(H'R'H)-*H'R"!
We can normalize the residue into zero mean
random variables with unit variance. i.e.
7:
Vi
where 27;; is the ith diagonal element of

7;1:

2, matrix

Consequently, we can detect bad data by per-
forming the hypothesis test on each of the m
residues (see ref. 5).

Since the residual sensitivity matrix Walwaxs
has many large off-diagonal elements, in the

event of a large interacting bad data or line

errorrs, through interaction, the magnitudes of
all the residues will be raised, increasing the
size of the set of suspected bad date.

Because of these importaht drawbacks, which
are due to the assumption of being random er-
rorrs of known variance in the mathmatical de-
rivations, the follogwing algorithm is suggested
by N.Q. Le. (see ref. 6).

a) The suspected measurement must have the
largest residu for the particular measurement
type (since the errors in voltage and power, for
example, can’'t be directly compared). That is,

{741 >17;*] for all 7;* in measurement type K
Here, the measurements are divided into five
types; voltage, active power flow, active power
injection, reactive power flow and reactive powe
infections.

b) As well as satisfying criterion a) for the
absolute value of "%, the same test must be
satisfied as followings.

] .
>] ;’, ( for all 7;* in measurement
i

7
%
type. 4.

In the above algorithm, at each stage, there
exist at most five suspected bad data.

In the case of multiple suspected bad data, the
one which has the largest residue is selected as
the first suspected bad data to test.

5.2 Detection and Identification Scheme

Since, in the 5.1 criteria, the suspected bad
data set contains at most five suspected bad data,
one from each type of measurements, there is
the possibility of the less severe error being

left out of the set (especially if this is the same
type as the more severe error).

However, since a new selection of suspected
data is made after each identification, it is suffi-
cient that the less severe bad data is incldued
in the suspected data set after one or more iden-
tification.

Since all cff-diagonal elements of W were
found to be smaller than 0.5, J(z,)/2 was chosen
as the threshcld of detection for multiple bad
data.

The measurement bad data detecticn and iden-
tification scheme is shewn in Fig. 1.

6. Line error Detection and Identification

6.1 Line Error Detection

After measurement bad data detection and
identification is completed by means of bad tata
scheme, in the case that J(£) is greataer than
the threshold level (for reduced degree of free-
dom), line error detection is performed by the
following algorithm.

a) selection level 1

Since a line error directly affects the power
flow on that line, the largest flow residue corr-
esponds to the line in error.

The selection level 1 selects the line with the
laegest flow residue as the suspected line.

b) selection level 2

In the case that not all the lines are monito-
red, geometrical correlation of the residues is
necessary to locate the area containing the line
in error.

Geometrical correlation is a procedure which
pool the subscripts of all the large residues.

6.2 Line Error Identification

After the set of suspected line error is deter-
mined by line error detection algorithm, line
error identification can be performed by the
following extended W.L.S. algorithm.

Y4
Al -Za
Let Z,,._[ v ]
Z
Dl Zr
SESS
where Y; the nominated admittance vector of
the suspected line error

(233)



EHBEE #1288 H3W 19795 3 A

X, J(X)

]
[e)]

i

X e——Xk

* Mgasurenent bad dabz

Then from (3.3), (3.4)

og g )" tog  0g)
(- o [0 o
' o I) oM lo I

2g og [ -
[a—f %J R, "J (Z.. 8V:0,Y)] .

0 M

Rr5 threshelid

g.(V,ﬁ,Y):g(V,IgY) : (m,+4&)+1 vector

-1

f.(V,0,Y)=f(V,€,Y) P (mat+k)+1 vector

M; k x k weighting diagonal matrix such that
Mi>ra;; and Mu>>Rr;, for all
1=i=%, 1=j=m,, l=I=m,

1

But in the actual case, it is assumed that line

N~ N §
[ 0;+1 ]:[i——i- —g{— aa—Yf\'T (R’ 0 % 56{;7 error is caused by th abrupt change of admitta-
Yorl Ys 0 I J L0 M, 0 I J nce (i.e. unexpected line switching) and is assu-
af af . (R,0Y! med that the maximum number of parallell
{3—0 _B—J [ ]EZa.—f.(Vﬁ:Y)] (6.2) circuits on each line is known.
0o I 0 M For example, thenumber of the possible value
where of line admittance is limited to three states in
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the case that the maximum number of parallel
circuits is two.
ie, Y
Y.=Y//2
0
Hence from the calculated results by (6.1),

(6.2), the value of the estimated admittance can
be readjusted by the following method.

{ 2n— Y. <Y 771 )

Y—‘ l RERC T 27n =t Im Y
=1 n—1 v o 2m—=1
U Im Y if Im VsV = 2Im Y

where Im; the maximum number of parallel circu-
its on ith ith line in the suspected line errcr set.

n; integer, 1<Ln<lm

7. Sample Test

Several cases involving bad data and single
line errors are performed on a simulated 5 bus
7 line system shown in Fig. 2. A set of 24 mea-
surements are used, comprising 4 voltages, 8
power injections and 12 line porew flows as
shown in Fig. 2.

The computer program is divided into three
blocks.

1) Given the desired network and bus powers,
establish the true bus voltages by a conventional
load flow.

2) Construct the meter readings by adding
random’ errors which is generated from random

— 61—

3) Calculate the best mean square estimate £
In this paper, the standard deviation of meas-
urement ¢ is 0.02 (in the case of no bad data)

and 1.4 {in the case of bad data) Some results
are shown in Table 1,2,3,4, Fig. 3,4,5.
Table 1.
Bus %I%ggie Voltage Angle % Error
# True ];‘:‘;e True Estimate] V ‘ Q
1 (0.98490.9851 —0.0551 —0.0551 0.02 0182
2 0 9583i0. 9584] —0.098 } —0.099 : 0.01 | 1.02
3 10.9556/0.9557, —0.104 | —0.1049 0.01 | 0.865
4 10.9557/0.9564] —0.122 \ —0.1213] 0.073| 0.574

Jo(2)=5.16 ry=12.6(P,=0.05)
J(2)=5.36 r,=18.3(P,=0.05)
*% The case of no measurement bad data and no

line errore

Table. 2. Before detecticn
Bus k%gilgee Voltage Angle ¥ Error
E= Esti- | el -
True! mate True JEstlmate ", Q
1 lo.o849l0. 0848 —0.055 | —0.0557] 0.01 | 1.273
2 |0.9583(0. 9583 -—0.098' —0.0992| 0.0 | 1.21
3 10.9536(0.9552] —0. 104! —0.1063| 0.042| 2.212
4 [0.95570.9558| —0.122 | —0.123 | 0.01 | 0.82
Jp(£)=39.9 r,=12.6(P,=0.05)
Jo(2)=b.51 r¢=18.3(Pe=0.05)

** The case of measurement bad data (P..,;) and

no line error
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Table 2-2. After detection Table 3-1. Before identification
Bu &%l(ﬁlgee Voltage Angle ‘[ % Error Bus 1\\1%153]%: Voltage Angle l % Error
# ’I‘tue] ?r?;lte True ‘ Estimate‘; A% i (_Q__ ¥ True %;Ite True | Estimate’J \ ‘ Q
1 |0.9849(0. 9851‘[ —0.055 —0.0549‘ 0.02 ‘ 0.182 1 10.98490.9857] —0.055 1 —0.054 | 0.081} 1.818
2 10.9383)0.9584/ —0.098 | —0. 09895’ 0.01 l 0.97 2 10.958210.9534| —0.098 | —0.1072 0.522 9,388
3 10.9556/0.9558 —0.104 | —0.1046| 0.021] 0.577 3 0.9556{0.9516] —0.014 —0-1117 0.419] 7.404
4 10.9557|0. 9565 —0.122 ] —0. 1211‘0.0837 0.738 4 10.9357/0.9555 —0.122 | —0.1229 0.021] 0.738
Jo(z)=5.21 re=11.1 (P,=0.05) Jo(x)=48.2 r»=12. 6(P,=0. 05)
Jo(x)=5. 43 re=16.9 (P,=0.05) Jo(x)=9.1 r4==18.3(Pe=0. 05}
** The case of measurement bad data (P,-s) and *% The ease of line error (Y,.)
nc line error
Y ] . Table 3-2. After identification
4vi_ \J;(:{)Z.Ei).s(?g_g datect .
\ Bus Ri%ldtglgée ’ Vcltage Angle % Error
T \ * True Eﬁ%e‘ True i Estimate] V Q
Z¢- 1 0. 9849!0.9849“ —~—0.055 | —0.05495(0.0 10.091
ry=12.6 2 10.95830. 95’78[ ~—0.098 | —0.09893[0. 0522(0. 0949
ek e R Y 3 |0.9556/0.9553 —0.104 | —0.1048 |0.0314/0.769
Tp(R)=5. 21 (P toens 4 0. 95570. 9563' —0.122 | —0. 1213 (0.06280. 574
. , ) ) . ,  tifisz
o 1 2 3 “ : itaratior count Jp(X):].O 0 rq=12. 6 (P.=0. 05)
#%  The cgse of nmeasurement bezd data Jo(x)=6.2 r,=18.3 (P,=0.05)
\'pj_,s) end no line error True Y,.=5.2705 Estimat Y,,=5.28
Fig. 3 ** The case of line error (Y,.)
Table 4. The case of line error (Y;.)
% Error
Voltage Module Voltage Angle
Bus # A | B
1
A B A B Vv Q ] v Q
1 0. 9869 0. 9863 —0.05493 | —0.0553 0.2 0.13 0.14 0.55
2 0. 9531 0.9579 —0. 1064 —0.0991 0.54 8.57 0.042 1.12
3 0.9510 0. 9554 —~0.1123 —0.1048 0.48 7.98 0.021 0.77
4 0. 9550 0.9564 —0.1243 —-0.1211 0.07 1.89 0.73 0.74
A: Before detection and identification Tp () e seont
Lo X =N e(Pop et

Jo(£)=114.5
J(2)=13.6
B: After detection and identification
Jo(£)=5.2
J(£)=8.2
True Y,,=5.2075
Estimate Y,,=5.213
** The case of measurement bad data (P,-s)
and line error (Y..)

(236)



mEHAREE 28t BORMRERE & A

5
4
»
1
n
-

8. Conclusions

from the test result it could be conluded that

1) though the line admittance was changed by
unexpected line switching, the power system
state with the suspected line admittance could
be accurately be accurately estimated.

2) and it is possible to estimate without incoe-
asing of the matrix dimension and decreasing of
the redundancy.

To sum up, it could be said that the algorithms
for identification of line errors operate efficien-
tly and satisfaciorily.

Nomenclature

Z; a given redundant mx]| measurement vector
set of measurements (the activeand reactive
line power flows, the bus injections and voltage
magnitudes).

X; nxl state vector of the power system (the
voltage magnitude and angle at each bus).

e; mx]l measurement noise evctor of zero mena
Gaussian random variables

R; mxm covarince matrix of the measurement
noise vector and is assumed to be diagonal

h{z); mx] vector (the active and reactive line
power flows, the bus injections and the voltage
magnitudes which are the function of the state)

H(z); mxn Jacobian matrix

(- 242

ma; the number of the active line power flow
and the active injection measurements

— 63—

mr; the number of the reactive line power
flow the reactive bus injection and the voltage
magnitude measurements

Za; maxl vector of the active line power flow
and the active bus injection measurements

Zr; mrxl vector of the reactive line power
flow, the reactive bus injection and the voltage
magnitude measurements

k; the number of the line admittances of the
suspected line error

Zae; (ma +k)x1 vector of the active line power
flow, the active bus injection measurements and
the admittances of the suspected line error set

Zre; (mr+k)xl vector of the reactive line
power flow, the reactive bus injection measure-
ments, the bus voltage magnitude measurements
and the admittances of the suspected line error

Y; k-1 admittances vector to be estimated.
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Appendix

The state estimate £ is a value which minimizs
(A1)

Iz=[z—h{z)JT R [2—h(x)] (A.1)
Thus
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H(x) =f_iT(i)-R~"Ez—h(i)]

0 z =1
=H(2)r [Alx)+e—h(£)3=0
where z, is the true state value
The linearization of A(x,) using a Taylor series
expansion about? yields
HT(2)rr 0 [h(2)+ H(x) (2 —2)Te—h(2)]=0
ze=d=—[H(z)RH(z)]"* H(z)R™" ¢
r=z—2%
=h(z)+e—h(E)
ShE)+H(E) (x—2)+e—h(2)
=[1—H(£)-(H'(2)R-! H(£)* H(Z)TR T ¢
=We
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