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ABSTRACT

The rate of gravitational quadrupole radiation is derived in the formalism of source theory. It is
also shown that gravitational superradiance is theoretically possible.

L INTRODUCTION

We study in this paper the gravitational radiation in
the phenomenological approach of source theory
(Schwinger). This theory was shown to be very ef-
fective in dealing with electromagnetic radiation
(Schwinger et al, 1976), gravitational interaction
energy (Cho eral, 1976) and other processes (Kim,
1979). These results are usually obtained by applying
the formula for transition rate given as the imaginary
part of phase function of the so-called vacuum per-
sistence amplitude.

For gravitational interaction the vacuum persistance
amplitude has the phase integral

W (T) = 47G f(dx) (dx) [T, (x) D, (xx') T (x')
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where D, (xx') is the appropriate gravitational propa-
gator function and the integration is four-dimensional.
T,, (x) is the total energy-momentum tensor and

T (xﬁlis the contraction By Tuv,

II. GRAVITATIONAL SYNCHROTRON RADIATION

We will consider the synchrotron gravitational radia-
tion. In this case the imaginary part of the phase integral
tums out
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The terms in the bracket of expression (1) can be
written
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And the spectrum of radiated power P (w, t) for
gravitational wave is given by
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For a particle rotating in a circular orbit with fre-
quency W, and at radius R, we set

B(t) - T(t)=R2wW2 coswoT  «oovvvnnn... (8)
and
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Putting exp. (8) and (9) into exp. (7), and carrying
out the integration as Tsai and Ebber (1976) we obtain
finally
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ST 0 ) dx =287 (1-26%) i () + 46" J"z'n(n)} ]
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This is the results similar to that contained in the
reference (Price efal. 1973). From (10) we can make
approximation for various limiting cases such as high or
low energy particles to obtain required formulas for
appropriate power spectrum.

HL GRAVITATIONAL SUPERRADIANCE

We now consider gravitational superradiance which
may be more conveniently handled in a momentum
representation of the vacuum persistence amplitude.
In momentum space the phase integral W (T) is given by
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Hence its imaginary part Im W (T) is
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Hence the radiated power spectrum P (w, t) is obtain-
ed from the relation
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now we apply this relation to the case of gravitational
sources distributed uniformly in a cylinder such that
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where R‘]‘h s the position of the center of the individual
sources. The fourier transform THY (k. w) is
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We assume n sources TMV (r, t) to be 1dentlcal and

equal to TUV except the' phase difference of ko R,
Then we can write down the total source function as
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Substituting this expression for the source function
into eq. (13) we obtain the radiated energy
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Within the quadrupole approximation we can in-
troduce moment tensor
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And the angular distribution of radiated energy can
be expressed
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Here H/K is the height of cylinder and A/K= 7 its
radius. Now the function I* has a sharp peaking in the
forward direction at # = 0° along the axis of cylinder.
The numerical calculation shows the ratio of the energy
densitry at 8 = 0° and # = 45° to be almost 10°. In
addition the radiated energy is proportional to the

square of the number of the sources. These are the
features of superradiance in the electromagnetic radia-
tion and our results show that superradiance may take
place also in gravitational radiation.

IvV. CONCLUSION

The source theory provides a convenient and ade-
quate method of calculation for various gravitational
radiative processes such as synchrotron radiation and
superradiance and others within the limit of linear
approximation. The theoretical results show that the
gravitational superradiance is one possible way of
producing intense directional gravitation wave. How-
ever its experimental feasibility and detailed numerical
analysis awaits further investigation.
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