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ABSTRACT

Single - period inventory problems such as the newspaper boy problem having quadratic
cost functions for both shortages and overage are examined to determine the optimal order
level under various principles of choice such as minimum expected cost, aspiration level,
and minimax regret. Procedures for finding the optimum order levels are developed for ’

" both continuous and discrete demand patterns .

I. INTRODUCTION

In any decision of interest, there are two or more alternative courses of act-
ion among which the the decision maker must choose. A principle of choice then
indicates which alternative is actually to be selected. (2] In inventory problems
we are concerned with making optimal decisions with fespect to an inventory
system and in particular, with making optimal decisions that minimize the total
cost of an inventory system. (3] _

The purpose of this paper is to identify and relate certain principles of choice
to single- period inventory problems with quadratic cost ‘functions for both short-
ages and overages, in such a manner that the optimal order level could be det-
ermined under each principle of choice. Such principles of choice as expectation,
. aspiration level | and minimax regret will be examined in this paper.

II. THE CLASSIC SINGLE-PERIOD INVENTORY PROBLEM

This chapter is concerned with single-period inventory problems where the
demand for a period is a random variable having either a known or an unknown
probability distribution, and costs are linear. This problem has been studied
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extensively, (1] (2] and forms the basis for the work presented in later cha-
pters.

In an inventory situation in which items are ordered at the beginning of the
period, let C, be the unit cost of shortage (or profit per item as an opportun-
ity cost ) and let Cg be the unit cost of surplus at the end of the period. The
decision variable is S, the quantity on hand at the beginning of the period. Let
demand D be a random variable which denotes the demand during the period,
with probability densify. function f (D) and distribution function F (D).

Th Lo
e cost per period is C. (S-D), 0<D=<S§

©GY=1{¢, (p-sy. s (D,

or alternatively, the profit per period is
C,D-C, (S-D), O< Dx<S,
Co S, S (D
Well known results regarding the optimal order level S, may be summarized
~as follows,

T (S) =

A. OPTIMAL SOLUTIONS FOR CASES WHERE F(D) IS ESTIMABLE

To minimize expected cost or maximize expected profit, the optimal order
level S, is chosen so that

F(So‘l) < Co/(cs+co) < F(So),
if the demand is discrete, or
F(So) =Co/(cs+co),

if the demand is continuous. [1]

To maximize the probability that cost does not exceed the decision maker’s
aspiration level A, where the demand is continuous, the optimum order level
S, is chosen so that (2]

f (Sg-A/Cy) =1 (Se+A/Cy).

B. OPTIMAL SOLUTIONS FOR CASES WHERE Dmax IS ESTIMABLE BUT F(D)
1S NOT

To minimax regret, the optimal order level S, is chosen such that
S0 Co (Dpay +1 )/ (Cs +Co) < So+1,
if the demand is discrete, or
So = Co (Dmax)/(cs+ Co ),
if the demand is continuous. [2]
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The next chapter will be developed in a similar way as we seek solutions for
the quadratic case.

I, SINGLE-PERIOD INVENTORY MODELS HAVING
QUADRATIC COST FUNCTIONS

In order to translate -a realistic inventory problem into a mathematical problem
of minimizing a cost function, both flexible and simple approximations to a wide
range of cost relationships are desirable to allow easy mathematical solutions.
Consideration of the kinds of costs involved suggests that a U- shaped cost
curve is required. (5] For example, the cost of inventory is high when in-
ventory is large , and high also at the other extreme when inventory is so small
that there are frequent runouts of inventory. Somewhere between these extremes,
the combined costs are at a minimum. With these considerations in view, the
cost functions may sometimes be approximated with reasonable accuracy by a
positive definite quadratic form. (5]

This chapter is concerned with single~ period inventory models having quadratic
cost functions for both shortages and overages in connection with both continuous
and discrete demand patterns.

A, CONTINUOUS DEMAND PATTERNS

The procedure developed below is a method for finding the optimal order

level S, when the cost functions can be approximated by

- C, (S-D), O<D <8,
cost per period, C (S) = C.(D-S) S¢p. T TR (1)
(o] - s .

1. Minimum Expected Cost Solution

Suppose that the demand for a period is a random variable having a known
probability distribution. It is assumed that the demand is continuous. The
expected total cost per period of the system is

E(C(S) =jO‘SCS (S-D)* f (D) dD+waO (D-S)* f (D) dD. -..-.. (2)
S

To find the optimal order level S, , the expected cost function is differentiated
with respect to S and the results are set equal to zero. This involves differentia-
tion of an integral. It can be shown that if

B(t)

F(t) = f G(t,x)dx,
A

(t)
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then
B(t)

dF (t) /dt =f aG(t,x)dx ot +G(t, B (£)1dB (t) /dt =Gt ,A(t)]dA (t) dt.

ACt)
This is known as Leibniz Rule. Applying this result to equation (2) yields

S o
dE (C (8))/dS =2C, [ (S-D) f (D)dD=2C, [ (D=S)f (D) dD, oo (3)
. o S

Setting the derivative equal to zero and solving leads to

(ﬁ'so)/[b(so) - So F(So) )= (Co'cs)/co, """"""""""" {(4)

where D = Expectation of demand E ( D), and
- S,
D (Sy) :f Df (D) dD.
o]

To check whether S, satisfying equation (4) gives a minimum, the second
derivative must be examined. From equation (3),

S ©
d2E<c<s>>/dsz=2c5f f (D)dD+2C0f £(D)dD.

Since f (D) is a probability density, the value of the unit cost C; and C,.
Thus the value of S, satisfying equation (4) does indeed furnish an optimal
solution. .

Equation (4) is not tractable in general because of the difficulties imposed by
D (Sy). For the uniform demand distribution, however, it is possible to obtain
S, and the mintmum cost C*in explicit form. This is illustrated as follows.
Let the demand density be

/Dy, O<D<D,, ,

f D =
) o, otherwise.

Then D =D, /2 ad
F(Se) = [ "1(D)dD =S,/ D,
and i
D (S,) =fs° Df (D)dD = So* /2D,,,
Sﬁbstituting these values in ec(;uation {4) gives the optimal order quantity
So =Dmax/(1+\/—(-;s/—co). .................................... (5)
With the uniform distribution and S,, equation (2) gives
C¥= (CsSo" + Co ( Duax = S6"./3 Dnas

as the minimum expected cost.
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2. Aspiration Level Solutions

It is possibly true that some form of éspiration level principle is the most
widely used of all principles in management decision making as alternatives
become increasingly expensive to discover. An aspiration level is simply some
level of cost which the decision maker desires not to exceed. For the inventory
problem we are considering, an aspiration level policy might be expressed as
follows. For a given aspiration level , A select the optimal order level S,
which maximizes the probability that the cost will be equal to or less than A.

(2]

Cost per
period, C (S)

Co(D—8Y
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Figure 1. Quadratic Cost Function v.s. Demand, Showing
Aspiration Level

From Figure 1, it follows that _
pr (cost < A) =pr (S-/ A/C; <D<S+,/AC,)
=F (S+/A/C,) -F (S-,/JA/C).

It is assumed that the probability density function of the demand is unimo-
dal with respect to the maximum of that function defined on the range of dem-
and. To find the optimal level S, , pr (cost <A) is differentiated with respect
to S and the results are set equal to zero : »

dpr (cost<A) /DS =f (S+/A/C,) - (S-/A/C5) =o0.
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This leads to

£ (So+ A/ Co) =1 (So-/A/Cs)

as our basis for choosing an optimal value of S.
It can be easily shown that if f (D) is unimodal and symmetric about D
(as, for example, the normal distribution ), then

Sy =D + % ( JA/C, - JA/C)).

This is shown in Figure 2.

It £(D) is unimodal with mode at o (as, for example, the exponential
distribution ) , then V
So =\/A/Cs
as the aspiration level solution. This is shown in Figure 3. We note that in
the latter case it is unnecessary to estimate the unit outage cost C, to achieve
an optimal solution.
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So=n/A7Cs D $,+%/A/C,s

Figure 2. Application of the Aspiration Level Decision Rule to a Unimodal,
Symmetric Probability Distribution for Demand .

f(D)
A

» Demand, D

JAT,

Figure 3. Application of the Aspiration Level Decision Rule to a Unimodal
Probability Distribution for Demand Having Mode at O.
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3. Minimax Regret Solutions

A decision for which the analyst elects to consider several possible futures,
whose probabilities cannot be estimated is called a decision under uncertainty.
(2] When we are unable to estimate f (D) , the inventory problem may be
treated as a decision under uncertainty. A principle of choice for decisions un-
der uncertainty has been proposed by L. J. Savage, who suggests that a new
matrix called a “
combination of demand and order level | the difference should be computed bet-
ween the actual cost that will occur and the best cost that could be occurred
for the future under consideration. This difference is called “regret.” (4]
This principle of choice may be appropriate for cases where the maximum
demand, D
and bearing in mind that demand takes on any value between o and D it

max »

should be easily seen that the minimum cost will be zero for any given order

regret matrix ” be computed first. For each possible future

is known but f (D) is not. By observing the cost function

max »

level S, when demand turns out to be the order level. The maximum surplus
cost will be CgS*, when demand is zero. The maximum shortage cost will be
Co ( Dpax —S)°, when demand turns out to be D,,,. For any order level S
the maximum cost will simply be the maximum of these two quantities and so
will the maximum regret, It will be noted that the maximum surplus cost CgS°
will increase as order level increases and the maximum shortage cost will dec -
reaseas order level increase. The mininmiax cost will ocgur when they are equal
thus S, satisfying the equation

CSS()2 = C0 (Dmax —80)2

will be the optimal order level . Solving this for S, we have
S0 = Dmax/(1+\/cs/co)

as the minimax regret solution. It should be noted that this result agrees with
equation (5) which gives the minimum expected cost solution when demand is
uniformly distributed between o and D_,,. Accordingly, for the case where
f (D) cannot be estifnated, the same result would occur if we had used
-Laplace’s Principle of Insufficient Reason which suggests computing a simplé
average when probabilities cannot be estimated. [2 ]

B. DISCRETE DEMAND PATTERNS

Suppose that the demand is a discrete random variable having a known pro-
bability distribution. When demand D and order level S are constrained to
discrete units o, u, 2u, -~ and p (D) is the probability mass function of
demand, then the expected total cost of the system becomes
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E(CO) =CS§O(S—D)2p(D)+ CoS' (D=S)’p (D) -weeveem P (6)
D= D=S tu
The necessary conditions for S, to be the optimal order level are
E(C(Seg+u)) ~E(C(Sp)) 2 0 e e (7)
E(C(Se-u)) =E(C(So)) = 0 orervvrrreniiiiiinins (8)

To find the conditions for the system, the differences
E(C(S+u)) - E(C(S))

and -
E(C(S-u)) - E(C(5)

must be evaluated in general first. Here

E(C(S+u)) - E(C(8)=2uC3 (S-D+3u)p(D)
-2uC, Z (D~ S——u)p(D)

D=S+u
and

E (C (S-u)) - E (C(5)) =-zqu§: (S-D-Zu) p (D)
D=0

+2uC0§ (D—S+%u) p(D).

D=S+u
Applying these resulte in equations (7) and (8) and solving leads to
L(SO)S(CO_Cs)/CoSU(So), .................. eaeeeaanen (9)
where : :
— 1 -

L (Se) = (So-3u-D)/(F (Sp) (So-3w -D(So)),

U(So) = (So+5u-D)/(F (Se) (So+5w -D (So),
and

D(Se) =% Dp(D).

It can be easily shown that these are also sufficient conditions for S, to be the
optimal order level . -

- As an example, suppose u=5, Cs=$3, C, = $30, and the demand for the
item for a period is random with probabilities p(0) =005, p() =025, p(10)
— 035, p(15) =030 , and p (20) = 0.05. Computation of the values of L(S)
and U (S) are summarized in Table I. Since

(Co"cs )/Co = 09,
the optimal order quantity is
So = 15,
because
0857 = L(15) < 09 = (Co- C5),/CoCU(15) =098.

As a check on this result, E (C (S)) of equation (6) is calculated for all
values of 'S. This is done in the last column of Table I. As expected, the
least cost of the system occurs when S =

No rule is given for an aspiration level solutlon in. the discrete demand case

) Ly
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because it is straightforward to compute pr (cost < A ) for each order quantity
S, and choose the one which maximizes pr {cost < A). To this, we will con-
sider the previous example. Let A, the aspiration level for cost, be $1,000.
Then the optimal order level S, is easily found as 15 units from Table II.

TABLE |
Tabulation of L (S) and U (S)
D S P(D) F () D (S) L (S) U (S E C(9)
0 0.05 0.05 0 102 - 62 S 3,862.50
1 0.25 0.30 1.25 15.5 - 275 1,503.75
10 0.35 065 475 - 22 0.668 40875
15 0.30 0.95 9.25 0.857 0.98 172.50
20 0.05 1.00 10.25 1.00 1.00 356.25
TABLE |
Computation of pr (cost < § 1,000)
D 0 5 10 15 20 pr(cost<
S
p (D) | 005 025 0.35 0.30 005 | $ 1,000)
0 : 0 750 | . 3,000 6,750 12,000 0.3
75 0 750 3,000 6,750 0.65
10 300 75 0 750 3,000 0.95
15 . 675 | 300 75 0 750 1.00
20 1,200 675 300 75 0| 095

In a discrete demand pattern, the Savage principle ; which suggests comput-
ing a regret matrix first , may also be appropriate for the cases where D_,, is
estimable but p (D) is not. For each possible future combination of demand
D and order quantity S, the difference is computed between the actual cost that
will occur and the minimum cost that could be occurred. Having completed the
regret matrix , the optimal order level is selected which minimizes the maximum
regret .

To illustrate this, we will again consider the previous example. A regret
matrix is completed first as shown in Table [, and the optimal order level S,
is selected as 15 units, since the regret of that quantity is the minimum.

-23-
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TABLE |
Regret Matrix
S.D 0 5 10 15 20 max regret
0 750 3,000 6,750 12,000 12,000
5 75 0 750 3,000 6,750 6,750
10 300 75 0 750 3.000 3,000
15 675 300 75 0 750 750
20 1,200 675 300 75 0 1,200
]

So far, we have examined the cases where both shortage and overage cost
functions are quadratic.

IV. CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER WORK

We have reviewed the classic single - period inventory problem in the second
chapter and in a similar way, procedures for finding the optimal order level
under various principles of choice have been developed when the cost functions:
are quadratic for both shortages and surplus in Chapter [ .

When demand is a continuous random variable, Leibniz Rule becomes a very
useful tod in differentiating of an integral of which the integrand is quadratic
and it is noted that non- negative demand distribution combined with non-negat-
ive shortage and surplus costs assures the second derivative of the expected
cost function always positive and thus the minimum expected cost is easily found
by simply setting the first derivative equal to zero and solving for the optimal
order level S,. When demand is a discrete random variable | the finite differ-
ence inequations become very useful tools to find the minimum expected cost
solution. In a discrete demand case, no rule is given for an aspiration level
solution, because it is straightforward to compute the probability that cost is
less than or equal to a given aspiration level A, for each order quantity S, and
choose the one which maximizes pr (cost <A ). In a continuous demand case,
the assumption of the demand density being a unimodal is a crucial thing to
achieve an aspiration level solution. Also, we have noted that the general rules
for the minimum: expected cost solution are not tractable in many cases because
of the difficulties imposed by the integrals D (Sy) or D (Sy,). We have seen,
however , that for the uniform demand distribution, it is possible to find the
optimal solution, which agrees with that of the minimax regret, when the
maximum demand is estimable. The use of more than one principle of choice
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has resulted in several possible optimal solutions.

In a variety of actual contexts the cost function might be better approxim-
ated by a piece - wise linear or exponential function, It must also be pointed out
that | in decisions under risk, not only the expectation, but perhaps also the
variance and other parameters of the distribution should be taken into account.
For example, if two different order levels have the same expected cost’, then
the one with the smaller variance of the expected cost will be chosen. It is
recommended that further work along these lines be conducted.
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