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1. OBJECTIVES

This paper is intended to develop an algorithm for solving a
mixed integer programming (binary) in dealing with capital budgeting
problems. First, the Weingartmer's capital budgeting model which
deals with the problem of allocating fixed budgets among competing
investment proposals is reviewed briefly. Next, we discuss some
problems inherent in the model along with some insight gained from
the above review. Last, we try to develop some heuristic rules or
an algorithm to solve the capitél budgeting problem allowing some

extension of the resources in each time period of the planning horizon.
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By utilizing the implicit (or partial) enumeration technique, the
solution algorithm is to utilize some special features existing in

such problems.

II. MOTIVATION

In dealing with the problem of allocating fixed budget dollars
among competing investment proposals, Weingartner1 suggested an LP
approach to this problem. Since decisions about individual projects
must be made on an all-or-nothing basis due to the indivisibility of
investment projects, integer programming (ILP) method can be used fo

deal rigorously with the indivisibility of investment projects. However,

when there are so many projects to consider, the computer can not handle
a large number of variables. Therefore, the Weingartner's LP method
has some advantages over the usual ILP due to the simplicity in computer-
bility and interpretation.2 The Weingartner's model can be stated

as follows:

n
Maximize 2_ b, X,

j=1
n
subject to 2 c¢. ., X, =¢C s t=1, coeeen.. ,m
by ti j t
j=1
0=X.=<1
]
where ctj = costs of projects
Ct = budget ceilings in year t
bj = present value of all revenues and costs associated with
individual projects
Xj = decision variables (0, 1, or the fraction of project j

undertaken)

The Weingartner's LP model with the constraint Oﬁngzél requires
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n 1's in the values of Xj (decision vaxiables) or slacks qj in the final
solution (n=the number of possible projects). With t more constraints
(t=the number of fears constrained by bddget-ceilings), the total number
of constraints is (n+t). In an LP pfoblem, the m;kimum number of non-
zero solutions is equal to the number of independent vectors (rank);
hence, there is no way to satisfy the n constraints without either Xj

or qj being zero or ome. Therefore, the remaining to solutions should
be either one's in some cases or zeroes. Unless we have very many

years to consider, the number of t years to be constrained will not be
very many; hence, the number of fractional solutions are not likely

to be numerous. In addition, the truncation effects due to considering
a.relatively short time horizon can offer some protection against the
uncertainties in long-range forecasts.3 Each fractional project per
period can be interpreted as directions to try a smaller version of the
same project or can be eliminated completely by using integer programming.
Since in integer programmings, only binary variables will be involved

in this type, an optimal solution may be obtained with some resources
remaining unused as in strict LP models. Contrary to Weingartner's
problems of fractional solutions, however, we may allow the resource
constraints to vary within some reasonable ranges. Thus, in strictly
binary ILP, those projects not previously accepted due to the violation
of integer constraints can be included in the final solution by allowing
some additional resources. Of course, in this case we have to consider
the trade-offs between the amount of benefits resulted from adding some
more projects and the penalty costs associated with borrowing some
additional funds. The objective is to add to the net present value

of income streams, thereby maximizing the total present values of the

investment projects. We want to find out the optimal value of additional
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resource requirements which will more than offset the needed penalty costs

due to the increased resources.

II1. PROBLEM FORMULATION

A firm has n projects that it would like to undertake but, because
of budget limitations, not all can be selected. In particular, project
j’ and réquires an investment of aij dollars
in the time period i, i=1, ....., m. The capital available in time

j has a present value of C

period i is bi' The problem of maximizing the total present value

subject to the budget constraints can be written as:

n
Maximize 2_ C, X,

j=1 i3
n
Subject to 2_ aij Xjébi" i=1,..... ,I
j=1
'xj =0, 1, j=1,..... ,n

where Xj = 1 if project is selected or Xj = 0 otherwise. The above is

a usual capital budgeting problem formulated in terms of integer programming
Now we wish to further consider the possibility of relaxing some resource
constraints as variables. P; 1is the present value of the penalty costs
associated with borrowing some additional funds or the present value

of the opportunity costs of additional capital in time period i. The

reformulated model with some resource flexibility allowed can be written

as follows:

n m
Maximize 2_ C, X, - 2_ P Y
n

subject to j§=:1 a3 xjébi +Y, 5 i=1,..... ,m
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Yi denotes possible additional resources available for each period

xj =0, 1 for all i
Y. =0
i
In dealing with a maximization problem, it is possible. to rearrange

such problem so that ijEO by making the substitution X, =1 - i& for
Cj>-0, where i} is the complement of Xj in the constraint XjéEl. By
. doing this, we assure oruselves that a basic dual feasible solution,
which is used as a starting point, is available.4 The entries Cj

and aij are not required to be integer. The model .is a mixed integer

program (MILP).

Special Features of the Problem

Whenever the left handside of the constraint is less than or
equal to bi’ the value of Yi is zero. On the other hand, whenever the
left handside of the constraint is greater than bi’ a value is assigned
to Yi’ thereby having the constraint be an equality constraint. By
taking advantage of the model's special feature mentioned above, we can

solve the problem using implicit enumeration technique. Before tackling

the algorithm for the above problem, some preliminary discussion of
the notation to be used is in order. This notation is based on Garfinkel,

Robert 5., and Nemhauser, George L., Integer Programming, John Wiley &

Sons, New York, 1972, pp. 122-127.

Separation

Given s, = [ X[aX£b, x binary)
the separation at Vi is determined by choosing a particular variable

xj not chosen previously along the path Pk from Yo to v, and letting

s, = (sN{xlx; = o}, skn{x]xj = 1
-7-
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The path Pk corresponds to an assignment of binary values to a
subset of the variables. Such an assignment is called a partial
solution. Denote the index set of the assigned variables by Wk and
let

+ .
s, ={1]1€w, and % =1 }

s; ={jlj€Wk and x, = 0 }

R ={3 ‘J¢wk )
A completion of Wk is an assignment of binary values to the free variables

specified by the index set Fk'
Bounding

The problem considered at Vi (vertex) is

maxzk=z cjxj+Z+cj
JEF, s,
Zaxfb*-Za =5, i=1, ...... , m
j + i i
jer, M3 es) i

Xj = 0: 1! JEFk

- 0
Since cjéO, xo(k) is obtained by setting xj =0, jéFk. Thus Z =2,
' 0
E ¢.. If, in addition s = (Sl’ ...... , sm)_é 0, then x (k) is
= J
R 2
Jesk
0

feasible and Zk = zk.
Fathoming

The fathoming cases are (a) Z, = z, (b) Zk_é Zy-
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2 5 terenes s P,y e Pi where Pk is for Xj for

3

- m

jEF, and in the increasing order of C./r, where r, = > a,,
k 33 i, 4

According to Zionts,5 the ordering of variables in branch and bound

methods can be particularly important, because many of the methods branch

on- the "next" free variable that is required to be integer. Therefore,

zero—-one variables should appear, from left to right, in order of
increasing costs for a minimizing problems or in order of decreasing
profits for a maximizing problem.

Since in our previous formulation of the problem, we can assume
that cj and aij are positive or better nonnegative and we are dealing

with maximization problems, we can State the problem in the following

way, by replacing X = 1 - ij'

' n n m
Max -2 c X, + 2_ ¢, - P, Y,
=1 33 = 3 ia

n n +Y
subject to —Z a,. x,=b, - Z a, i
ij 73— 1 — ij
. . j=1 J—l
IV. ALGORITHM
Step 1) At Vo> initialize z, = -0 and EO = + 00 . Partition on

Xp where p is the first element of P set. Go to Step 2.

if s 0, let Z‘k = -Z—I- C,. Go to Step 3. Otherwise,
j€es
k

Step 2) At Vk’
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=2 . c
k S+ 5
JéSk

set Yi = - s, for 1 N, and set the other Y, = 0 and let z
i k i =

—z P Y . Go to Step 3.

iGNk i1

Step 3) If ;k;ezo, saje the index of that vertex and the corresponding
values for x and set ;0 = max [zo , zk J » and go to step 6.
Otherwise, go to Step 4.

Step 4) Fathom that vertex. Go to Step 5.

Step 5):(Backtracking): 1If no live vertex exists, go to Step 7. Otherwise,
branch to the newest live vertex and go to Step 6.

Step 6): (Partitioning and Branching): Partition on Xp where p is the
first element of Pk set and renew the Pk set. Branch to the
Xpb= 1 vertex. Go to Step 2.

Step 7):(Termination): 1If z, = —-C0O , there is no feasible solution.
0 .

If g0> - 00 , the solution is optimal.

Some Additional Considerations

In order to make the model more realistic, we can incorporate
into the model the following additional constraints:
D OéYiéMi
In order to guarantee bounded solutions, we can set the upper
limit on the maximum available amount for Yi which is also
reasonable in real world situationms.
(2) x. =1

rELk

To handle mutually exclusive projects, we simply add the above

constraints.
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3) X =X

1f project a is desirable only if project b is adopted,

but not otherwise, then the above constraint will handle

the problem.
In addition, we can incorporate into the model some additional constraints
to be checked at one of the stages: that is, shifting funds between
per&ods,‘shifting projects between periods, inclusion of other bottlenecks

into the model, etc. (See Quirin).
V. AN EXAMPLE

Suppose that we want to maximize the following subject to the

constraints.
Maxim}ze SOOX1 + 450X2 + AOOX‘3 + 200X4 - SYl - 2Y2
Subject to 400X1 + 3OOX2 + 350X3 + BOOXLQQ%,OOO + Y1
<
300X1 + 200X2 + 400x3 + 450X4-_ 900 + Y2

X=0o0rl, Y =0
Since the above is a maximization problem, we replace Xj by
- Xs) and rewrite the above as follows:

Maximize —500)‘(l - 450}'{2 - 400X, - 200X, - 5Y, - 2¢, + (1,550)

3 4 1
z - X. = X - X - ¥ £ -
Subject to 400X1 300X2 350X3 300X4__ 350 + Y1
- X - I - X - X < -
3OOXl ZOOX2 400X3 450X4__ 450 + Y2

Solution Algorithm

(1 - Step 1) Zy = -00 Z0 = + 00 Choose X4 from the P set where
the P set is in the increasing order of 200/750, 400/750, 500/700, and

450/500. (The order of Xj is then X4, X3, Xl, and XZ)
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(1 - Step 2) At Vl’ check whether s = 0 or not.

Max -500X, - 450X, - 400X, - 200 - 5Y, - 2¥

1 2 3 2
Subject to -400X, - 300X, - 350X,==-50 + Y,
-300X. - 200X - X <
300X1 200X2 400X3 = 0 + YZ
Since s; 1is not all’'==0 (s1 = =50 and s, = 0), set Y1 =8, Y2 =
Then at V,, Z, = -200 - 5(50) = -450.
(1 - Step 3) Since -450 = Z,>Z, = - 0O , set Zy = — 450

Go to Step 6.

(1 - Step 6) Choose X3 (the next one in the P set) and branch to

X, =1. Go to Step 2.

Max —SOOXl - 450X2 - SYl - 2Y2 - 600

Subject to

-400X1 - 300X2£E 300 + Y1

- X - X
300X, - 200X,= 400 + ¥,
(2 - Step 2) Since s ={300] > 0, 2, = - Zc = -600. Go to
‘400. 2 J Sk 3

Step 3. (Here we have not considered the (1,550) which is the upper

bound in this case and a constant)

(2 - Sstep 3) Since -600 = §2<:§0 = -450, go to Step 4.
(2 - Step 4) Fathom and go to Step 5.

(2 - Step 5) Branch to the newest live vertex and go to Step 6.

X3

(3 - Step 6) Choose X, and go to Step 2.
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(4 - Step 2)

Max

Since the set s= 350] >0, ga

(4 - Step 3)
(4 - Step 4)
(5 - Step 5)
(5 - Step 6)

Max -650 -5Y1 - 2Y

subject to -600<= ~350 + Y

6

(6

Step 3)

Go to Step 5.

- oo O RTERIL (reeree-

At V4, see if the s se;.>0 or not.
-500 - 450X, - 200 - 5Y - 2Y2', which 1s reduced to
-450’}‘(2 - 700 - 5Y, - 2y, , ~ subject to

-300X, < 350 + Y

27 1

~200X, =350 + Y

2= 2

-700. Go to 8tep 3.
350

Since _Z_4<L0, go to Step 4.
Fathom and go to Step 5.
Branch to the newest live vertex and go to Step 6.

Choose X, and branch to X, = 1 vertex. Go to Step 2.

2
1

-650 £ -450 + Y,

Step 2) Since s>0, Z6 = ~650 and go to Step 3.

Since g6<:§0, go to Step 4 and fathom that vertex.

Branch and go to Step 6.

At V7, we have g7 = -450. Then’this vertex is fathomed.
(9 - Step 2)

Max -SOOX1 - 450X2 - 400 - SY1 - 2Y2

subject to —AOOXi - 300i2e; 0+Y,

--3OOXl - ZOOXZ;:SO + Y2

In the above, since s =0 35;0, Y1 = o and Y2 = 50.

yA =

At Vg, Zg

checking the possible Xj

-400 - 2(50)

r50J

-500 which is smaller than ZO = -450. After

0 brahth, we have found the value at V1 is

the largest, that is, the optimum value is -450, where X4 = 1 and

!

1

Y, = 50. Therefore, choose the projects Xl’ X2, and X3 but not XA'
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In addition, allow the additional amount of Yl = 50.
The above technique so far described checks all the X.j =0

branches. but not all Xj = 1 branches. This fact gives rise to the

advantages of partial enumerations.
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