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It is a fundamental fact in probability theory that the abstract integral of a
random variable with respect to a probability measure can be expressed as a
[ ebesgue Stieltjes integral on the real line [1, Proposition a, p.166]. This result

has an analogue for random vectors which assume values in the real z-dimen-

sional Euclidean space R” [1, p.169]. In this note, via the notion of equidistribu-
tivity, we give a unified approach to these results, showing that these two
- results, one seemingly more general than the other, are in fact equivalent.

In what follows, inequalities between z-vectors in R" are defined component-
wise,

For any probability space (£, ¢z, P), we denote by M (@, ¢z, P) the collection
of all real valued finite random variables on (2, oz, P). If »=>1 is an Integer,
let M"(Q, ¢z, P) denote the Cartesian product of M(RQ, ¢, P) with itself # times.
Let (2, ¢, P’) be another probability space. Two random vectors X eM"(Q,
o, P) and YEM"(Q', a¢’, P’) are said to be equidistributed (written X~Y) with

respect to the probability measures P and P’ whenever they have the same
joint distribution functions, i.e.,

(D Pl{w: X(w)<zx}] =P [{w Y (w)<x}]
for all n-vectors xER".

It is well known [1,p. 166 and p.169] that any given random vector XEM "
(Q, ¢¢, P) induces on its range space a corresponding probability space (R", &,
P,), where Z" denotes the o-field of all the #-dimensional Borel subsets of R,
and P, : Z"—[0,1] (called the probability distribution of X [1,p.166]) is the
probability measure defined by

(2) PylB]=P[XEB]

for all B&€Z",

THEOREM 1. Two random vectors XEM"(Q, 2, P) and YEM" (', 0¢', P’) are
equidistributed if and only if
(3) P{XEB]=P’'[YEB]
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for all n-dimensional Borel subsets BCR", i.e., if and only if they induce the
same probability distributions on R

PROOF. Clearly, the condition is sufficient.

Conversely, assume that X~Y. Let & denote the collection of all finite
disjoint unions of sets of the form [g, §) = {*ER" : ¢<x<b}, where ¢, bER", a <.
Then it is easy to see that ¥ is a field (that is, closed under finite unions and

complementation) and that it generates the Borel o-field Z&" of R". Let P y and
P, be the probability distributions of X and Y respectively, which are defined
as in (2). Since X and ¥ are equidistributed, it is not hard to see that P,

and Py agree on sets of the form [g, b), where ¢, 8ER", ¢<b, and hence on

all the sets in %, by the additivity property of measures. Thus, by the
extension theorem for measures [1, Theorem A, p.87], we conclude that P X

and Py agree on all the Borel sets in &', i.e., condition (2) holds.

COROLLARY 2. If XEM(Q,0,P) and YEM" (', 0¢,P’) are equidistributed,
then

(4 F(X)~f(X)

for all Borel measurable functions f: R"—R" where m is any natural number not

necessarily distinct from n.

PROOF. Let BCR™ be an m-dimensional Borel set. Then f_l(B)CR" is an
n-dimensional Borel set, and so

PIXef (B]=P[Ysf '(B)] or PIf(X)EBI=P [fY)EB].
Hence f(X)~f(Y), by Theorem 1.

COROLLARY 3. Let X&EM"(R, oz, P) be any random variable and let I : R'—R"
be the identity map of R". Then

(5) X~I
whenever R is provided with the probability (distribution) P X (of X) on its Borel
o-field F".

Thus, if f: R'—R"™ is any Borel measurable function, then

(6) S(X)~f
with respect to the probability measures P and P..

PROOF. The assertion (5) is an immediate coﬁsequence of Theorem 1 and the
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definition of P,, i.e., (3) and (2). With (5), the assertion (6) then follows
directly from Corollary 2.

THEOREM 4. If XEM(Q, 02, P) and YEM(Q',0¢', P) are random wvariables
which are equidistridbuted, then E[X]=E[Y] in the sense that both sides may be
infinite and that if either side is finite, so is the other and ithey are equal.

PROOF. Since it is clear from Corollary 2 that X~Y implies both X Tyt

and X~ ~Y~, where XT=XV0 and X " =(—-X)", we need only prove the
assertion for nonnegative random variables X and ¥ such that X~Y.
Suppose X=>0, ¥Y>0 and X~Y. Then X and Y can be approximated respect-

* and [Y ”}

o0

ively by an increasing sequence {X ﬂ} of elementary functions

defined by

n=1 n=1

k
2?3
for all £,#=1,2,3,--, and so E[X |=E[Y ]. By

and similarly for ¥, #=1,2,3,+. But Theorem 1 implies that P[ X<

n
k11 k+lJ
2??-
the monotone convergence theorem, we therefore infer that E[X]=FE[Y].

| :P’[—;—%—- <Y<

COROLLARY 5. If X&M(Q, oz, P) is any given random variable and if f . R—R
ts any Borel measurable function, then

(7) ELfQO) = fdPy=[" f(x)dFx()
where Fy . R—[0,1] is the distribution function of X, t.e., Fy(x)=P[XZx],
1ER.

PROOF. The left-hand equality of (7) follows immediately from Corollary 3

and Theorem 4.
The right-hand equality of (7) is a consequence of the fact that P, is the

Lebesgue Stieltjes measure on R generated by £, [1, p.167].

COROLLARY 6. If X&EM"(Q, ¢, P) is a random vector and if f . R"—R is any

Borel measurable function, then

&) E[f(X)]= R,fdpgZI:f_Z":f_:fol,xz, o, X, IAF g (%, 25, 0, %),
PROOF. This follows as in Corollary 5 on noting that P, Is the Lebesgue
Stieltjes measure on R” generated by F, (1, p.168].
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REMARK. Theorem 4 and Corollary 5 are in fact equivalent, since Corollary
5 can be established on its own as in [1, Proposition a, p.166] and Theorem 4
can then be derived as a particular case. In this way, Corollary 6 can be
regarded as a particular case (and hence an equivalent form) of Corollary 5.
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