ON A DIFFERENTIABLE MANIFOLD WITH $\boldsymbol{f}(3,-1)$-STRUCTURE OF RANK r, (II)

By M.D. Upadhyay and K. K. Dube

1. Introduction

Let us consider an n-dimensional C^{∞} differentiable manifold and a tensor field f of type $(1,1)$ such that

$$
\begin{equation*}
f_{i}^{h} f_{h}^{k} f_{k}^{j}-f_{i}^{j}=0, f \neq 0,1 ; \tag{1.1}
\end{equation*}
$$

where the indices $i, j, k, \cdots, h, \cdots$ vary from 1 to n. Let L and M be the complementary distributions corresponding to the projection tensors l_{h}^{i} and m_{h}^{i} re spectively, where

$$
\begin{equation*}
\text { a) } l_{h}^{i} \xlongequal{\text { def }} f_{r}^{i} f_{h}^{\gamma} \text {, b) } m_{h} \xlongequal{\text { def }} l_{h}^{i}-f_{r}^{i} f_{h}^{r} \text {. } \tag{1.2}
\end{equation*}
$$

If the rank of the structure tensor f is r, then such a structure is called an $f(3,-1)$-structure of rank r [1]. Also a manifold with an $f(3,-1)$-structure of rank r always admits a positive definite Riemannian metric g, such that

$$
\begin{equation*}
f_{j}^{r} f_{i}^{s} g_{r s} \stackrel{\text { def }}{=} g_{j i}-m_{j i}, \tag{1.3}
\end{equation*}
$$

where

$$
m_{j i}=m_{j}^{r} g_{r i}
$$

Thus if an $f(3,-1)$-structure of rank r admits a positive definite Riemannian metric defined by (1,3), then such a structure will be called ($f_{r}(r,-1), g$). structure. If this $\left(f_{r}(3,-1), g\right)$-structure also satisfies the following relations::

$$
\begin{aligned}
& N_{j i} \stackrel{h \text { def }}{=} f_{j}^{l} \nabla_{l} f_{i}^{h}+f_{i}^{l} \nabla_{l} f_{j}^{h}-\left(\nabla_{j} f_{i}^{l}-\nabla_{i} f_{j}^{l}\right) f_{l}^{h}=0, \\
& F_{j i h} \stackrel{\text { def }}{=} \nabla_{j} F_{i h}+\nabla_{i} F_{h j}+\nabla_{h} F_{j i}=0, \\
& M_{j i h} \stackrel{\text { def }}{=} \nabla_{j} m_{i h}+\nabla_{i} m_{h j}+\nabla_{h} m_{j i}=0,
\end{aligned}
$$

then we call manifold M^{n} as a pseudo-manifold with $\left(f_{r}(3,-1), g\right)$-structure.
A vector field \dot{v}^{i} in a pseudo manifold with $\left(f_{r}(3,-1), g\right)$-structure is called to be invariant with respect to the structure tensor f_{j}^{i}, that is f_{j}^{i}-invariant if the Lie-derivative of the structure tensor w.r.t. the vector field v^{i} is zero [2].

2. Infinitesimal projective transformation

Now we consider infinitesimal projective transformation with respect to f_{j}^{i}-invariant vector field v^{i}. We have [4],

$$
夫\left\{\begin{array}{c}
i \tag{2.1}\\
j k
\end{array}\right\}=\delta_{j}^{i} \phi_{k}+\delta_{k}^{i} \phi_{j}
$$

therefore

$$
\begin{equation*}
夫_{v} R_{l k j}^{i}=\delta_{p}^{i} \nabla_{l} \phi_{j}-\delta_{l}^{i} \nabla_{k} \phi_{j} \tag{2.2}
\end{equation*}
$$

where ℓ_{v} stands for the Lie-derivative w.r.t. the vector V^{i}. The scalar ϕ is defined as $\nabla_{\nu} V^{\nu} / n+1$ and ϕ_{i} is grad. ϕ. Now we apply Ricci identity to the structure f_{j}^{i}. We have [5],

$$
\begin{equation*}
\nabla_{p} \nabla_{j} f_{i}^{h}-\nabla_{j} \nabla_{p} f_{i}^{h}=f_{i}^{l} R_{p j l}^{h}-f_{l}^{h} R_{p j i}^{l} \tag{2.3}
\end{equation*}
$$

THEOREM 2.1. In a compact pseudo-manifold with ($\left.f_{r}(3,-1), g\right)$-structure, an infinitesimal projective transformation with respect to an f_{j}^{i}-invariant vector field is necessarily an isometry.

PROOF. Now taking Lie-derivative of (2.3) w.r.t. V^{i}, we get

$$
\begin{equation*}
f_{i}^{l} \ell_{v} R_{p j l}^{h}-f_{l}^{h} \AA_{v} R_{p j i}^{l}=0, \tag{2.4}
\end{equation*}
$$

because for a pseudo manifold with $\left(f_{r}(3,-1), g\right.$)-structure

$$
\nabla_{p} f_{j}^{i}=0 . \text { Also } \AA_{v} f_{j}^{i}=0
$$

Now by virtue of (2.2) and (2.4) we obtain

$$
\begin{equation*}
f_{i}^{l}\left(\delta_{j}^{h} \nabla_{p} \phi_{l}-\delta_{p}^{h} \nabla_{j} \phi_{l}\right)-\left(f_{j}^{h} \nabla_{p} \phi_{i}-f_{p}^{h} \nabla_{j} \phi_{i}\right)=0 \tag{2.5}
\end{equation*}
$$

Transvecting(2.5) with $g^{j i}$ and multiplying the resulting equation by f_{h}^{p}, we get

$$
\begin{equation*}
l^{p l} \nabla_{p} \phi_{l}=-\frac{1}{2} l_{i}^{i} \nabla_{a} \phi^{a}, \tag{*}
\end{equation*}
$$

in view of (1.2)a.
Applying Ricci identity to the projection tensor m_{j}^{i}, we have

$$
\begin{equation*}
\nabla_{p} \nabla_{j} m_{i}^{h}-\nabla_{j} \nabla_{p} m_{i}^{h}=m_{i}^{l} R_{p j l}^{h}-m_{l}^{h} R_{p j i}^{l} . \tag{2.7}
\end{equation*}
$$

For a pseudo-manifold, $\nabla_{p} f_{j}^{i}=0$ implies $\nabla_{p} l_{j}^{i}=0$; hence $\nabla_{p} m_{j}^{i}=0$. Also $\AA_{v} f_{p}^{2}=0$ implies that $\AA_{v} l_{p}^{i}=0$. Thus $\AA_{v} m_{p}^{i}=0$. So the left hand side of (2.7) vanishes. hence we get

$$
\begin{equation*}
m_{i}^{l} R_{p j l}^{h}-m_{l}^{h} R_{p j i}^{l}=0 . \tag{2.8}
\end{equation*}
$$

Taking Lie-derivative of (2.8) w.r.t. V^{i}, we obtain

$$
\begin{equation*}
m_{i}^{l} \AA_{v} R_{t j l}^{h}-m_{l}^{h} \AA_{v} R_{p j i}^{l}=0 . \tag{2.9}
\end{equation*}
$$

By virtue of (2.2) and (2.9), we get

$$
\begin{equation*}
m_{i}^{l}\left(\delta_{j}^{h} \nabla_{p} \phi_{l}-\delta_{p}^{h} \nabla_{j} \phi_{l}\right)=m_{j}^{h} \nabla_{p} \phi_{i}-m_{p}^{h} \nabla_{j} \phi_{i} \tag{2.10}
\end{equation*}
$$

Multiplying (2.10) by $g^{j i}$ and contracting h and p in the resulting equation we obtain

$$
\begin{equation*}
n \cdot m^{j} \nabla_{j} \phi_{l}=m_{i}^{i} \nabla_{a} \phi^{a} . \tag{2.11}
\end{equation*}
$$

Adding (2.6) and (2.11) we get

$$
\begin{equation*}
-2 l^{l k} \nabla_{k} \phi_{l}+n \cdot m^{i l} \nabla_{j} \phi_{l}=n \nabla_{a} \phi^{a} \tag{2.12}
\end{equation*}
$$

or

$$
\begin{equation*}
(n+2) m^{j l} \nabla_{j} \phi_{l}-2 \nabla_{a} \phi^{a}=n \nabla_{a} \phi^{a} . \tag{2.13}
\end{equation*}
$$

This gives us that $m^{j l} \nabla_{j} \phi_{l}=\nabla_{a} \phi^{a}$. Hence from (2.11) and (2.13) we obtain

$$
\left(1-m_{i}^{i} / n\right) \nabla_{a} \phi^{a}=0 .
$$

Since $m_{i}^{i} \neq n$, therefore we have

$$
\nabla_{a} \phi^{a}=0 .
$$

Hence if the space is compact and applying theorem of E. Hopf, we get $\phi=$ constant. Thus the transformation is necessarily an affine. Also in a compact manifold, an affine transformation is necessarily an isometry. Hence the theorem is proved.

3. Holomorphic projective transformation

Now we consider a Kählerian space W in a product manifold, that is, d Kählerian, where d means decomposible, which is an enveloping space of the pseudo-manifold with $\left(f_{r}(3,-1), g\right)$-structure. We have [5]

$$
\frac{d^{2} X^{a}}{d \mathscr{G}^{\prime 2}}+\left\{\begin{array}{c}
a \\
c d
\end{array}\right\} \frac{d X^{c}}{d \mathscr{G}^{\prime}} \frac{d X^{d}}{d \mathscr{G}^{\prime}}=\alpha^{\prime} \frac{d X^{a}}{d \mathscr{S}^{\prime}}+\beta^{\prime} f_{b}^{a}-\frac{d X^{b}}{d \mathscr{S}^{\prime}}
$$

where α^{\prime} and β^{\prime} are certain functions. We call such a curve a holomorphically planer curve and f_{b}^{a} is a product structure in W. a, b, c vary from 1 to the number which is the dimension of W. The H-plane curve in W gives rise to an H-plane curve in M^{n} which can be written as

$$
\frac{d^{2} X^{h}}{d \mathscr{G}^{2}}+\left\{\begin{array}{l}
h \\
i j
\end{array}\right\} \frac{d X^{j}}{d \mathscr{G}} \frac{d X^{i}}{d \mathscr{T}}=\alpha_{1} \frac{d X^{h}}{d \mathscr{T}}+\beta_{1} f_{r}^{h} \frac{d X^{r}}{d \mathscr{G}}
$$

where f_{r}^{h} is $\left(f_{r}(3,-1), g\right)$-structure and α_{1} and β_{1} are suitably chosen functions. So holomorphicaliy projective transformation can be defined in the pseudo($f_{r}(3,-1), g$)-manifold.

Now under this transformation, we have

$$
\ell_{v}\left\{\begin{array}{l}
h \tag{3.1}\\
i
\end{array}\right\}=\delta_{j}^{h} \rho_{i}+\delta_{i}^{h} \rho_{j}-\widetilde{\rho}_{j} f_{i}^{h}-\widetilde{\rho}_{i} f_{j}^{h},
$$

where ρ_{i} is an arbitrary covariant vector field, and

$$
\widetilde{\rho}_{i} \stackrel{\text { def }}{=} f_{i}^{r} \rho_{r^{\circ}}
$$

Consequently, we have

$$
\begin{equation*}
\AA_{\nu} R_{k j i}^{h}=\rho_{k i} \delta_{j}^{h}-\rho_{j i} \delta_{k}^{h}-f_{i}^{r}\left(\rho_{k r} f_{j}^{h}-\rho_{j r} f_{k}^{h}\right)-f_{i}^{h}\left(\rho_{k r} f_{j}^{r}-\rho_{j r} f_{k}^{\gamma}\right) \tag{3.2}
\end{equation*}
$$

where $\rho_{j i}$ is a symmetric tensor defined by

$$
\rho_{j i}=\nabla_{j} \rho_{i}-\nabla_{i} \rho_{j}+\widetilde{\rho}_{j} \tilde{\rho}_{i^{*}}
$$

THEOREM 3.1. If the f_{j}^{i}-invariant vector field in a pseudo- $\left(f_{r}(3,-1), g\right)$ manifold admits a holomorphically projective transformation, then

$$
\nabla^{i} \rho_{i}=m^{r l} \rho_{r} \rho_{l}
$$

PROOF. Let the holomorphically projective trasformation be taken with respect. to f_{j}^{i}-invariant vector field. Putting the value of $\AA_{v} R_{k j l}{ }^{h}$ and $\AA_{v} R_{k j i}{ }^{l}$ from (3.2) in (2.4) and then multiplying the resulting equation with $g^{j i}$, we get

$$
\begin{equation*}
l^{j r} \rho_{j r}-g^{j r} \rho_{j r}=0 \tag{3.3}
\end{equation*}
$$

Now by virtue of (2.9) and (3.2) we get

$$
\begin{equation*}
m_{i}^{l}\left(\rho_{k l} \delta_{j}^{h}-\rho_{j l} \delta_{k}^{h}\right)-m_{l}^{h}\left(\rho_{k i} \delta_{j}^{l}-\rho_{j i} \delta_{k}^{l}\right)=0 \tag{3.4}
\end{equation*}
$$

Contracting h and j in (3.4), we get

$$
\begin{equation*}
(n-1) m_{i}^{l} \rho_{k l}-m_{l}^{l} \rho_{k i}+m_{k}^{j} \rho_{j i}=0 \tag{3.5}
\end{equation*}
$$

Transvecting (3.5) by $g^{i k}$ and using (3.3), we obtain

$$
m_{l}^{l} g^{i k} \rho_{k i}=0,
$$

thus either $m_{l}^{l}=0$ or $g^{i k} \rho_{k i}=0$.
Let $m_{l}^{l} \neq 0$, therefore we have

$$
g^{i k} \rho_{k i}=0
$$

and hence

$$
\nabla^{i} \rho_{i}=m^{\prime l} \rho_{r} \rho_{l}
$$

which proves the theorem.
Acknowledgement. The second author is thankful to C.S.I.R., New Delhi for financial support by awarding Post Doctoral fellowship.

Lucknow University, Lucknow, India

REFERENCES

[1] Dúc, Tong Van, Sur les structures defined par une 1-forme vectorielle F lette que $F^{3}= \pm F$. Kōd. Math. Sem. Rep. 25(1973), 367-376.
[2] Baik, Yong-Bai, On a pseudo-manifold with (f_{r}, g)-structure. Kyungpook. Math. J. 7(1967), 15-30.
[3] Sumitomo, T., On some transformations of Riemannian spaces. Tensor, 6(1956), 136 -140 .
[4] Yano, K., The theory of Lie-derivatives and its applications. Amsterdam 1957.
[5] Yano, K., Differential geometry on complex and almost complex spaces. Pergamon Press, New York, 1965.

