ON \boldsymbol{F}-STRUCTURE MANIFOLD

By M.D. Upadhyay and Lovejoy S.K. Das

Summary

The first part of this paper is devoted to the study of F -structure satisfying: $F^{K}+(-)^{K+1} F=0$ and $F^{W}+(-)^{W+1} F \neq 0$, for $1<W<K$. The case when K is odd and $K(\geqq 3)$ has been considered. In the later part some structures involving Lie-derivatives, exterior and co-derivatives have been studied.

1. Introduction

Let F be a non zero tensor field of type $(1,1)$ and of class C^{∞} on M^{n} such that [(2)]
(1.1) $F^{K}+(-)^{K+1} F=0$ and $F^{W}+(-)^{W+1} F \neq 0$ for $1<W<K$, where $K>2$.

Such a structure on M^{n} is called an F-structure of rank ' r ' and degree K. If the rank of F is constant and $r=r(F)$, then M^{n} is called an F-manifold of degree $K(\geqq 3)$.

Let the operators on M^{n} be defined as follows [(2)]
(1.2) $\pi=(-)^{K} F^{K-1}$ and $m=I+(-)^{K+1} F^{K-1}$, where I is the identity operator on M^{n}.

Now we state the following theorems
THEOREM 1.1. From the operators defined by (1.2) we have $\pi+m=I, \pi^{2}=\pi$ and $m^{2}=m$. For F satisfying (1.1), there exist complementary distributions L and M corresponding to the projection operators π and m respectively. If the rank of F is constant and is equal to r everywhere on n-dimensional manifold M^{n} then $\operatorname{dim} L=r$ and $\operatorname{dim} M=(n-r)$.
THEOREM 1.2. We have (a) $F \pi=\pi F$, and $F m=m F=0$, (b) $F^{K-1} \pi=-\pi$ and $F^{K-1} m=0$.
Thus $F^{\frac{K-1}{2}}$ acts on L as an almost complex structure and on M as a null operator.

PROOF. The proofs of theorems (1.1) and (1.2) are obvious in view of equations (1.1) and (1.2).

Let $\mathscr{F}(M)$ be the ring of real valued differentiable functions on M and $\mathscr{X}(M)$ be the module of derivatives of $\mathscr{F}(M)$. Then $\mathscr{X}(M)$ is Lie algebra over the real numbers and the elements of $\mathscr{X}(M)$ are called vector fields. Then M is equipped with $(1,1)$ tensor field F which is a linear map such that

$$
F: \mathscr{X}(M) \longrightarrow \mathscr{X}(M)
$$

Let M^{n} be of degree K and let K be a positive odd integer greater than 2 then we consider a positive definite Riemannian metric w.r.t. which L and M are orthogonal, so that

$$
\begin{equation*}
g(X, Y)=g(H X, H Y)+g(m X, Y), \text { where } H=F \frac{K-1}{2}, \tag{1.3}
\end{equation*}
$$

for all $X, Y \in \mathscr{X}(M)$.
Since the distributions L and M are orthogonal, using theorem (1.2) b, we obtain
(1.4) $\quad g(H X, Y)=g\left(H^{2} X, H Y\right)$ and
(1.5) $\quad g(X, H Y)=g\left(H X, H^{2} Y\right)+g(m X, H Y)$.

A 2- form has been defined as follows [(2)]

$$
\begin{equation*}
H(X, Y)=-H(Y, X)=g(H X, Y) \tag{1.6}
\end{equation*}
$$

In view of the definition of a Riemannian connection on M^{n} and Lie derivative L_{X} we have
(1.7)
a) $\nabla_{X}(F)(Y)=\nabla_{X}(F Y)-F \nabla_{X} Y$,
b) $\left(L_{X} F\right)(Y)=[X, F Y]-F[X, Y]$.

Making use of the theorem (1.2) a, and equations (1.7) a, b, we obtain

$$
m\left(\nabla_{X} F\right)(m Y)=0, \quad \text { and } m\left(L_{X} F\right)(m Y)=0
$$

Since F^{K-1} is a $(1,1)$ tensor field we have

$$
\begin{equation*}
\nabla_{X}\left(F^{K-1}\right)(Y)=\nabla_{X}\left(F^{K-1}(Y)\right)-F^{K-1} \nabla_{X} Y \tag{1.8}
\end{equation*}
$$

The covariant and exterior derivative in M^{n} are defined as

$$
\begin{equation*}
\nabla_{X}(H)(Y, Z) \stackrel{\text { def }}{=} g\left(\nabla_{X}(F)(Y), Z\right) \text { and } \tag{1.9}
\end{equation*}
$$

(1.10)

$$
d H(X, Y, Z) \stackrel{\text { def }}{=}\left(\nabla_{X} H\right)(Y, Z)+\left(\nabla_{Y} H\right)(Z, Y)+\left(\nabla_{Z} H\right)(X, Y)
$$

In view of equation (1.7) a, we have the following identities,

$$
\begin{equation*}
\nabla_{X}(H)\left(F Y, F^{K-1} Z\right)=\nabla_{X}(H)\left(F^{K-1} Y, F Z\right) \tag{1.11}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{X}(H)\left(F^{K-1} Y, F^{K-1} Z\right)=-\nabla_{X}(H)(F Y, F Z) \tag{1.12}
\end{equation*}
$$

2. We have the following definitions [(1)]
(2.1) $\quad F$-Kählerian manifold iff $\nabla_{F X} F \stackrel{\text { def }}{=} 0$.
(2.2) $\quad F$-almost Kählerian manifold iff $d H(F X, F Y, F Z) \stackrel{\text { def }}{=} 0$.
(2.3) $\quad F$-nearly Kählerian manifold iff

$$
\nabla_{F X}(F)(F Y)+\nabla_{F Y}(F)(F X) \stackrel{\text { def }}{=} 0
$$

F-quasi Kählerian manifold iff

$$
\begin{equation*}
\nabla_{F X}(F)(F Y)+\nabla_{F} K-1_{X}(F)\left(F^{K-1} Y\right) \stackrel{\text { def }}{=} 0 \tag{2.4}
\end{equation*}
$$

F-Hermitian manifold iff $N(F X, F Y, F Z) \stackrel{\text { def }}{=} 0$,
for all $X, Y, Z \in \mathscr{X}(M)$.
THEOREM 2.1. The necessary and sufficient condition for an F-structure maniofold to be an F-nearly Kählerian manifold is that
(2.6) $\left.(-)^{K} F^{K-2}\left\{\nabla_{X}(F(F Y))+\nabla_{F Y}(F(F X))\right\}=\pi\left\{\nabla_{F X}(F Y)+\nabla_{F Y}(F X)\right)\right\}$.

PROOF. We have

$$
\begin{aligned}
\left(\nabla_{F X} F\right)(F Y) & =\nabla_{F Y}(F(F Y))-F \nabla_{F X}(F Y) . \text { Thus, } \\
\left.\nabla_{F X}(F(F Y))\right) & +\nabla_{F Y}(F(F X))=\left(\nabla_{F X} F\right)(F Y)+F \nabla_{F X}(F Y) \\
& +\left(\nabla_{F Y} F\right)(F X)+F \nabla_{F Y}(F Y) .
\end{aligned}
$$

In view of equation (2.3) we get

$$
\nabla_{F X}(F(F Y))+\nabla_{F Y}(F(F X))=F\left\{\nabla_{F X}(F Y)+\nabla_{F Y}(F X)\right\}
$$

Operating above equation by $(-)^{K} F^{K-2}$ and on using (1.2) we obtain the result. The converse follows in and obvious manner.

THEOREM 2.2. The necessary and sufficient condition for an F-structure manifold to be an F-quasi Kählerian manifold is that

$$
\begin{gather*}
(-)^{K+1} F^{K-2}\left\{\nabla_{F X}(F(F Y))+\nabla_{F} K-1_{X}\left(F\left(F^{K-1} Y\right)\right\}+\right. \tag{2.7}\\
\pi\left\{\nabla_{F X}(F Y)+\nabla_{F} K-1_{X}\left(F^{K-1} Y\right)\right\}=0 .
\end{gather*}
$$

PROOF. In consequence of (1.7) a, we get;

$$
\begin{aligned}
& \nabla_{F X}(F(F Y))=\left(\nabla_{F X} F\right)(F Y)+F \nabla_{F X}(F Y), \text { and } \\
& \nabla_{F} K-1_{X}\left(F\left(F^{K-1} Y\right)\right)=\left(\nabla_{F} K-1_{X} F\right)\left(F^{K-1} Y\right)+F \nabla_{F} K-1_{X}\left(F^{K-1} Y\right) .
\end{aligned}
$$

Adding the last two equations and making use of (2.4) we get

$$
\nabla_{F X}(F(F Y))+\nabla_{F} K-1_{X}\left(F\left(F^{K-1} Y\right)\right)=F\left\{\nabla_{F X}(F Y)+\nabla_{F} K-1_{X}\left(F^{K-1} Y\right)\right\} .
$$

Which on operating by $(-)^{K+1} F^{K-2}$ yields the result.

THEOREM 2.3. The necessary and sufficient condition for an F-quasi Kählerian manifold to be F-Kählerian is that

$$
\begin{equation*}
\nabla_{F X}(F Y)+\nabla_{F} K-1_{X}\left(F^{K-1} Y\right)=0 \tag{2.8}
\end{equation*}
$$

PROOF. By virtue of (2.4) we have $\left.\nabla_{F X} F(F Y)+\nabla_{F} K-1_{X}(F)\left(F^{K-1} Y\right)\right)=0$ which in consequence of (1.7) a, yields

$$
\begin{aligned}
\nabla_{F X}(F(F Y)) & -F \nabla_{F X}(F Y)+\nabla_{F} K-1_{X}\left(F\left(F^{K-1} Y\right)\right) \\
& -F \nabla_{F} K-1_{X}\left(F^{K-1} Y\right)=0
\end{aligned}
$$

which in view of definition (2.4) gives the required result.
THEOREM 2.4. For an F-structure manifold, if any two of the following properties hold, the third is als) satisfied,
a) it is F-nearly Kählerian,
b) it is F-quasi Kählerian, and
c) it is F-structure manifold for which

$$
\begin{equation*}
\nabla_{F Y} F(F X)=\nabla_{F} K-1_{X} F\left(F^{K-1} Y\right) \tag{2.9}
\end{equation*}
$$

PROOF. From definitions (2.3), (2.4), on substraction and making use of (2.9) we get the result.

THEOREM 2.5. The necessary and sufficient condition for an F-structure manifold to be an F-almost Kählerian is that

$$
\begin{aligned}
& \nabla_{F} K-1_{X}(H)\left(F^{K-1} Y, F Z\right)+\nabla_{F} K-1_{Y}(H)\left(F^{K-1} Z, F X\right) \\
& \quad+\nabla_{F} K-1_{Z}(H)\left(F^{K-1} X, F Y\right)=0
\end{aligned}
$$

PROOF. By virtue of equation (2.2) we obtain

$$
\begin{align*}
\nabla_{F} K-1_{X}(H)\left(F^{K-1} Y, F Z\right) & =-\nabla_{F} K-1_{Y}(H)\left(F Z, F^{K-1} X\right) \\
-\nabla_{F Z}(H)\left(F^{K-1} X,\right. & \left.F^{K-1} Y\right) \\
\nabla_{F} K-1_{X}(H)\left(F^{K-1} Y, F Z\right)= & -\nabla_{F} K-1_{Y}(H)\left(F Z, F^{K-1} X\right) \tag{2.10}\\
& +\nabla_{F Z}(H)(F X, F Y) .
\end{align*}
$$

Similarly we get

$$
\begin{align*}
& \nabla_{F} K-1_{Y}(H)\left(F^{K-1} Z, F X\right)=-\nabla_{F} K-1_{Z}(H)\left(F X, F^{K-1} Y\right) \tag{2.11}\\
& +\nabla_{F X}(H)(F Y, F Z), \text { and }
\end{align*}
$$

(2.12)

$$
\begin{aligned}
& \nabla_{F} K-1_{Z}(H)\left(F^{K-1} X, F Y\right)=-\nabla_{F} K-1_{X}(H)\left(F Y, F^{K-1} Z\right) \\
& \quad+\nabla_{F Y}(H)(F Z, F X) .
\end{aligned}
$$

Adding (2.10), $(2,11),(2.12)$ and using (1.11) we get
$2\left\{\nabla_{F} K-1_{X}(H)\left(F^{K-1} Y, F Z\right)+\nabla_{F} K-1_{Y}(H)\left(F^{K-1} Z, F X\right)\right.$
$\left.+\nabla_{F} K-1_{Z}(H)\left(F^{K-1} X, F Y\right)\right\}=d H(F X, F Y, F Z)$
which on using (2.2) yields

$$
\begin{aligned}
\nabla_{F} K-1_{X}(H)\left(F^{K-1} Y, F Z\right) & +\nabla_{F} K-1_{Y}(H)\left(F^{K-1} Z, F X\right) \\
& +\nabla_{F} K-1_{Z}(H)\left(F^{K-1} X, F Y\right)=0 .
\end{aligned}
$$

Gray [(1)] defined connection preserving structures for a Hermitian manifold. We shall now define an F-structure which is connection preserving as follows

$$
\begin{equation*}
\nabla_{F} K-2_{X}\left(F^{K-2} Y\right) \stackrel{\text { def }}{=} \nabla_{X} Y \tag{2.13}
\end{equation*}
$$

THEOREM 2.6. If F-structure is connection preserving then F-quasi Kählerian manifold is F-Kählerian.

PROOF. Let the manifold be F-quasi Kählerian then

$$
\nabla_{F X} F(F Y)=-\nabla_{F} K-1_{X} F\left(F^{K-1} Y\right)
$$

which with the help of (1.7)a, gives

$$
\nabla_{F X} F(F Y)=-\left\{\nabla_{F} K-1_{X} F\left(F^{K-1} Y\right)-F \nabla_{F} K-1_{X}\left(F^{K-1} Y\right)\right\} .
$$

which on arrangement of F^{K-1} etc. becomes

$$
=-\left\{\nabla_{F} K-2_{(F X)} F^{2}\left(F^{K-2} Y\right)-F \nabla_{F} K-2_{(F X)} F\left(F^{K-2} Y\right)\right\}
$$

This equation on using (2.1), (2.13) and (1.7) a, yields

$$
\begin{aligned}
\nabla_{F X} F(F Y) & =-\left\{\nabla_{F X}\left(F^{2} Y\right)-F \nabla_{F X}(F Y)\right\} \\
& =-\nabla_{F X} F(F Y), \text { or } 2 \nabla_{F X} F(F Y)=0,
\end{aligned}
$$

which in view of definition (2.1) shows that the manifold is F-Kählerian.

3. Operators $P(X, Y, Z)$ and $Q(X, Y, Z)$

Let us define the following operators
(3.1) $P(X, Y, Z) \xlongequal{\text { def }} \nabla_{X}(H)(Y, Z)+\nabla_{Y}(H)(X, Z)$ and
(3.2) $Q(X, Y, Z) \stackrel{\text { def }}{=} \nabla_{X}(H)(Y, Z)+\nabla_{Y}(H)(Z, X)+\nabla_{Z}(H)(X, Y)$.

THEOREM 3.1. For an F-almost Kählerian manifold we have

$$
\begin{align*}
P\left(F X, F^{K-1} Y, F^{K-1} Z\right) & +P\left(F Y, F^{K-1} Z, \quad F^{K-1} X\right) \tag{3.3}\\
& +P\left(F Z, F^{K-1} X, \quad F^{K-1} Y\right)=0 .
\end{align*}
$$

PROOF. In view of (3.1) we get

$$
\begin{aligned}
& P\left(F X, F^{K-1} Y, F^{K-1} Z\right)=\nabla_{F X}(H)\left(F^{K-1} Y, F^{K-1} Z\right) \\
& \quad+\nabla_{F} K-1_{Y}(H)\left(F X, F^{K-1} Z\right) ; \text { thus } \\
& P\left(F X, F^{K-1} Y, F^{K-1} Z\right)+P\left(F Y, F^{K-1} Z, F^{K-1} X\right) \\
& \quad+P\left(F Z, F^{K-1} X, F^{K-1} Y\right) \\
& =-\left\{\nabla_{F X}(H)(F Y, F Z)+\nabla_{F Y}(H)(F Z, F X)+\nabla_{F Z}(H)(F X, F Y)\right\} \\
& =-\left\{\nabla_{F} K-1_{X}(H)\left(F^{K-1} Y, F Z\right)+\nabla_{F} K-1_{Y}(H)\left(F^{K-1} Z, F X\right)\right. \\
& \left.\quad+\nabla_{F} K-1_{Z}(H)\left(F^{K-1} X, F Y\right)\right\}
\end{aligned}
$$

Now in consequence of the theorem (2.5) and the equation (2.2) we obtaim theorem (3.1).

THEOREM 3.2. If an F-structure manifold has the following two properties, i.e.
a) it is an F-almost Kählerian manifold,
b) it is an F-nearly Kählerian manifold then

$$
\begin{equation*}
\nabla_{F} K-11_{Z}(H)\left(F X, F^{K-1} Y\right)=2 \nabla_{F X}(H)(F Y, F Z) \tag{3.4}
\end{equation*}
$$

PROOF. In view of equation (2.2) we have

$$
\begin{align*}
Q(F X, F Y, F Z)= & \nabla_{F X}(H)(F Y, F Z)+\nabla_{F Y}(H)(F Z, F X) \tag{3.5}\\
& +\nabla_{F Z}(H)(F X, F Y)
\end{align*}
$$

(3.6) $\quad P(F X, F Y, F Z)=\nabla_{F X}(H)(F Y, F Z)+\nabla_{F Y}(H)(F X, F Z)$

Adding (3.5) and (3.6) we obtain

$$
\begin{aligned}
Q(F X, F Y, F Z) & +P(F X, F Y, F Z)=2 \nabla_{F X}(H)(F Y, F Z) \\
& +\nabla_{F Z}(H)(F X, F Y)
\end{aligned}
$$

which for an F-almost Kählerian and F-nearly Kählerian manifold gives

$$
\begin{aligned}
& 2 \nabla_{F X}(H)(F Y, F Z)+\nabla_{F Z}(H)(F X, F Y)=0 \\
& \text { or, } 2 \nabla_{F X}(H)(F Y, F Z)=-\nabla_{F Z}(H)(F X, F Y) \\
& \text { or, } \quad-2 \nabla_{F X}(H)\left(F^{K-1} Y, F^{K-1} Z\right)=\nabla_{F} K-1_{Z}(H)\left(F X, F^{K-1} Y\right) \\
& \text { or, } 2 \nabla_{F X}(H)(F Y, F Z)=\nabla_{F} K-1 z(H)\left(F X, F^{K-1} Y\right) .
\end{aligned}
$$

COROLLARY. For an F-nearly Kählerian manifold we have

$$
\begin{equation*}
\nabla_{F} K-1_{X}(H)\left(F^{K-1} Y, F Z\right)+\nabla_{F} K-1_{Y}(H)\left(F^{K-1} X, F Z\right)=0 \tag{3.7}
\end{equation*}
$$

PROOF. The proof follows immediately, making use of (1.11).
THEOREM 3.3. For an F-nearly Kählerian manifold we have
(3.8) $\quad Q\left(F X, F^{K-1} Y, F^{K-1} Z\right)+Q\left(F Y, F^{K-1} X, F^{K-1} Z\right)$

$$
=\nabla_{F} K-1_{X}(H)\left(F^{K-1} Y, F Z\right)+\nabla_{F} K-1_{Y}(H)\left(F^{K-1} Z, F X\right)
$$

PROOF. In consequence of equation (3.2) we have

$$
\begin{aligned}
& Q\left(F X, F^{K-1} Y, F^{K-1} Z\right)+Q\left(F Y, F^{K-1} X, F^{K-1} Z\right) \\
&=-\left\{\nabla_{F X}(H)(F Y, F Z)+\nabla_{F Y}(H)(F X, F Z)\right\} \\
&+\nabla_{F} K-1_{Y}(H)\left(F^{K-1} Z, F X\right)+\nabla_{F} K-1_{X}(H)\left(F Y, F^{K-1} Z\right) \\
&+\nabla_{F} K-1_{Z}(H)\left(F Y, F^{K-1} X\right)+\nabla_{F} K-1_{Z}(H)\left(F X, F^{K-1} Y\right)
\end{aligned}
$$

which with the help of (1.11) and (2.3) give the result.
THEOREM 3.4. For an F-nearly Kählerian manifold

$$
\begin{aligned}
P\left(F^{K-1} X, F^{K-1} Y, F Z\right) & +P\left(F X, F^{K-1} Y, F^{K-1} Z\right) \\
& +P\left(F^{K-1} X, F Y, F^{K-1} Z\right)=0 .
\end{aligned}
$$

PROOF. The proof follows at once after making use of equations (3.1), (1.11), (1.12), and (3.7).

COROLLARY. In an F-structure manifold following identities hold

$$
\begin{equation*}
Q\left(F^{K-1} X, F^{K-1} Y, F Z\right)=Q(F Y, F X, F Z), \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
Q\left(F X, F^{K-1} Y, F Z\right)=Q\left(F Y, F^{K-1} X, F Z\right) \tag{3.10}
\end{equation*}
$$

PROOF. The proof is obvious.

Lucknow University (U.P.)
India.

REFERENCES

[1] Gray, A., Some examples of almost Hermitian manifolds, Illinois J.Math. Vol, 10, 353-368 (1966)
[2] Kim, J. B., Notes on f-manifolds, Tensor (N.S.), Vol. 29, 299-302. (1975)

