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ON F-STRUCTURE MANIFOLD 

By M. D. Upadhyay and Lovejoy S. K. Das 

Summary 

The first part of this paper is devoted to the study of F-structure satisfying: 

FK+(-)K+lF=O and Fw +(-)W+1F#0, for 1<W<K. The case when K is 

odd and K(르3) has been considered. 1n the later part some structures involv

ing Lie-derivatives. exterior and co-derivatives have bee끄 studied. 

1. Introduction 

Let F be a non zero tensor field of type (1.1) and of class COO on ~ such 

that [(2)] 

(1. 1) r+(_)K+1 F=O and FW +(_)W+1 F~O for l<W<K. where K>2. 

Such a structure on M n is called an F-structure 01 ra째 ‘r ’ and degree K. If 

the rank of F is constant and r=r(F). then M n is called an F-mamfold 01 degree 
K(르3). 

Let the operators on Mn be defined as follows [(2)] 
γ‘K -1 ... , p ,/ , K +1 . K-1 

(1. 2) π=(-rF’‘ and m=I+(-)'" '<F‘4ι , where 1 is the identity operator 

on Mn. 

Now we state the folIowing theorems 

THEOREM 1. 1. From the operators dζfz-ned by (1. 2) ψe have π+m=I. π2=π 

and m
2
=m. For F satislying (1. 1). there exist complementary distribμUons L and 

M corresponding to the ψrojectz'on operators π and m respectively. 11 the rank 

01 F z-s constant aηd is equal to r everywhere on n-dz-ηzensional mamfold M n then 
dim L=r and dim M=(n-r). 

THEOREM 1. 2. We have (a) Fπ=πF. and Fm=mF=O. (b) r-1π=-π and 
F K

-
1 m=O m=() 

K-1 
Thus F-강 acts on L as an almost comPlex structure and on M as a nμII 

oþerator. 

PROOF. The proofs of theorems (1.1) and (1.2) are obvious in view of equa

tions (1. 1) and (1. 2). 
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Let .Ý캉(M) be the ring of real valued differentiable fU Ilctions on M and 

X (M) be the module of derivatives of ‘중 (111). Then X(M) is Lie algebra 

over the real numbers and the elements of X(M) are called vector jields. 

Then M is equipped with (1,1) tensor field F which is a linear map such that 

F: X(M)-• X(M). 

Let M n be of degree K and let K be a positive odd integer greater than 2 

then we consider a positive definite Riemannian metric w. r. t. which L and 

M are orthogonaI. so that 
K-l 

(1. 3) g(X, Y)=g(HX, HY)+g(mX, Y) , where H=F-강-’ 

for all X , YεX(M). 

Since the distributions L and M are orthogonal, using theorem (1.2) b, we 

obtain 

(1. 4) 

(1. 5) 

g(HX, Y) = g(H2X, HY) and 

g(X, HY)=g(HX, H2Y)+g(??ZX, HY). 

A 2- form has been defined as follows [(2)J 

(1. 6) H(X, Y)= -H(Y, X)=g(HX, Y). 

In view of the definition of a Riemannian connection on M n and Lie deriva

tive LX we have 

(1. 7) a) "ï1 x (F)(Y)= "ï1 x (FY)-F "ï1 XY. 

b) (L XF) (Y) = [X, FYJ - F [X, YJ • 

Making use of the theorem (1. 2) a, and equations (1.7) a. b. we obtain 

ηz("ï1 xF) (mY) =0, and m(LXF)(mY)=O. 

Since F
K

-
1 is a (1, 1) tensor field we have 

(1.8) "ï1 X(F K- 1)(y)= "ï1 X(r-1(y) )-r-1"ï1 xY • 

The covariant and exterior derivative in Mn are defined as 

(1. 9) 

(1.10) 

"ï1x (H)(Y. Z)옆 g("ï1 x(F) (Y) , Z) and 

dH(X, Y， Z)옆 ("ï1 xH)(Y, Z)+CVyH)(Z, Y)+("ï1 zH)(X. Y). 

In view of equation (1. 7) a, we have the following. identities, 
K -1 _, 'r""7 .1' ...... , .I' ..... K-1 (1. 11) "ï1 x(H) (FY. F L>. -'Z)= "ï1 x(H) (FL>. -'y, FZ), 

(1.12) "ï1x (H) (r-1y , FK-IZ) =-"ï1X(H)(FY.FZ). 
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2. We have the following definitions [(1)] 

(2.1) F-Kählerz"an manzfold iff V FX F 옆;f o. 

(2.2) F-almost Kählerz"an manzfold iff dH(FX, FY, FZ)빨 o. 
(2.3) F-nearly Kählerz"an maηzfold iff 

V Fx(F)(FY)+V Fy(F) (FX)빨 。

(2. 4) F -quasz" K ä hl erz"an manzf 01 d iff 

V Fx(F)(FY) 十VFK -lX(F)(r- 1y)옆 。

(2.5) F-Hermz"Han manz"fold iff N(FX, FY, FZ)빨 0, 
for all X , Y, ZεX(M). 
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THEOREM 2. 1. The necessary and suffiâent condz"tz'on for aη F-strμctμre 

manz.ofold to be an F-nearly Kählerz"aχ ηzanzfold Z"S that 

(2.6) (_)K r-2 {V x(F(FY))+V Fy(F(FX))} =π{V Fx(FY) + V Fy(FX))}. 

PROOF. We have 

(VFxF)(Fγ) = V FY(F(FY)) - FV F x(FY). Thus, 

V Fx(F(FY))+V FY(F(FX)) = (V FXF)(FY)+FV Fx(FY) 

+ (V FyF) (F X) + FV Fy(FY). 

In view of equation (2.3) we get 
V Fx(F(FY))+V Fy(F(FX)) =F{V Fx(FY)+V Fy(FX)}. 

Operating above equation by (_)K댐-2 and on using (1.2) we obtain the 

result. The converse follows in and obvious manner. 

THEOREM 2. 2. T he ηecessary and suffiâent condzïz"on for an F-structure. 
manzfold to be an F-quasz" Kählerz"an manzfold z.s that 

(2. 7) (-) K+lr-2 {V Fx(F(FY))+V FK -lX(F(r- 1y)} + 

π{V Fx(FY) + V FK -lx(Fκ-ly)} =0. 

PROOF. In consequence of (1. 7) a, we get; 

V Fx(F(FY)) = (VFxF) (FY) + FVFX (FY) , and 

V FK -lX(F(r- 1y)) =(V FK -lxF) (r- 1Y) +FV FK -lX(r-
1
y). 

Adding the last two equations and making use of (2.4) we get 

V FX(F(FY))+V FK -lX(F(r- 1y)) =F{V FX(FY) +VFK:"" l X(r-
1
y)}. 

Which on operating by (- )K+l r-2 yields the result. 

/ 
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THEOREM 2.3. The necessary and sμ:fficient condz'#on for an F-quasi Kählerian 

mamfold 10 be F-Kählerian is that 

(2. 8) VFx(FY) +PFK-1x(FK-1Y) =0 

PROOF. By virtue of (2.4) we have 양xF(FY) +V FK -lx (F)(r- 1
y)) =0 

which in consequence of (1. 7) a, yields 

V Fx(F(Fy)) - FV FX(FY) + V FK -1 x(F(r-1
y)) 

K-l - FV FK -1x (r'-T)=O 

which in view of definition (2.4) gives the required result. 

THEOREM 2.4. For an F-structure mamfold, if any two of the following 

þroþertz'es hold, the thz'rd z's als J satisfied, 

a) zï z's F-nearly Kählerian, 

b) it is F-qμasi Kiihle서an， and 

c) it z's F'strμctμre manifold for which 

(2.9) V FyF(FX) = V FK -1x F(r-1y). 

PROOF. From definitions (2.3), (2.4), on substraction and making use of (2.9) 

we get the result. 

THEOREM 2.5. The necessary and suf/z"cient condzïion for an F-structure 

mamfold to be an F-almost Kiihlerian z"s that 

VFK-1x (H) (FK- 1Y , FZ)+VFK-1y (H) (FK- 1Z , FX) 

+VFK-Iz(H) (FK-lx, FY)=o. 

PROOF. By virtue of equation (2.2) we obtain 

V FK-1x (H) (FK- 1Y , FZ)=-VFK-1y (H)(FZ, r-1x) 

-V FZ(H) (r-1x, r-1Y), 

(2.10) V FK -lx (H)(r- 1y , FZ)= -V FK -ly(H) (FZ, F K- 1X) 

+ V FZ(H) (F x , FY). 

Similarly we get 

(2.11) VFK-ly(H)(pK-lZ, FX)=-VFK-lz(H) (FX, r-1y) 

+VFX(H) (FY, PZ) , and 



、

<(2.12) 

On F-Strμctμre Manifold 

'V FK-1Z(H)(r-1X, FY)= -'VFK-1X(H) (FY, FK-IZ) 

+ 'V FY (H) (FZ, FX). 

Adding (2. 10), (2, 11), (2. 12) and using (1. 11) we get 
-1 

2{'V FK -1x (H) (F"'-<Y, FZ)+'V FK -1yCH) (F"," -LZ, FX) 

+'i7 FK -1ZCH)(FK-
1
X , FY)} =dH(FX, FY, FZ) 

which on using (2.2) yields 

'VFK-1X(H)(r一 ly， FZ)+'i7pK-1y (H) (FK- 1Z , FX) 

+'V FK -1z(H) (YC-IX , FY) =0. 
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Gray [(1)] defined connection preserving structures for a Hermitian manifold. 

-"We shall now define an F-structure which is connection preserving as follows 

(2.13) 'i7 FK -2x (Fκ-상〕빨 'VxY 

THEOREM 2.6. If F-strμcture z's connectz'on þreserα~ng then F-quasi K á"hlerz'an 

,.manzfold is F-Kälzlerian. 

PROOF. Let the manifold be F-quasi Kählerian then 

'V FXF(Fy) = -'V FK -1xF(YC-Iy) 

which with the help Of (1. 7)a, gives 
K-l 'V FX F(FY) = - {'V FK -1x F(Fß. -'Y)-F'V pK-1x (Fn- ,Y)}. 

which on arrangement of r- 1 etc. becomes 

= - {FFK-2(FX) F2(FK-2Y)-FFFK-2(FX)F(FK-2Y)} 

This equation on using (2. 1), (2. 13) and (1. 7) a, yields 

VFxF(FY) = - {FFx(F2Y) -FFFx(FY)} 

= - 'V FxF(FY), or 2 'V FxF(FY) =0, 

which in view of definition (2.1) shows that the manifold is F-Kählerian. 

3. Operators P(X, Y , Z) and Q(X, Y , Z) 

Let us define the following operators 

(3.1) 

(3.2) 

P(X， Y， Z)옆 'V x (H)(Y, Z)+'Vy(H)(X, Z) and 

Q(X， Y， Z)않! 'V x(H) (Y, Z)+'Vy(H)(Z, X)+'V z(H) (X, Y). 
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THEOREM 3. 1. For an F-almost Kählerian maηzfold we have 

(3.3) P(FX, F K- 1y , FK一lZ)+p (FY, FK-1Z, FK-1X) 

+P(FZ, F K- 1X , F K- 1Y) =ü. 

PROOF. In view of (3. 1) we get 

P(FX, FK-1y, FK-1Z)=V
FX 

(H) (FK- 1y , FK-IZ) 

+FFK-1y(H)(FX, FK-lZ); thus 

P(FX, F K- 1y , FK-1Z)+p (FY, r- 1z , F K.-1X) 

+P(FZ, F K- 1X , F K- 1Y) 

=-{'VFX(H) (FY, FZ)+ 'VFY(H) (FZ, FX)+VFZ(H) (FX, FY)} 

=-{'VFK-1X (H) (FK-1y, FZ)+VFK-1 y (H) (r- 1Z , FX) 

+ VFK-lz(H)(FK-lx, FY)}· 

Now in consequence of the theorem (2.5) and the equation (2.2) we obtain 

theorem (3.1). 

THEOREM 3.2. If an F-structure manifold has the following two þroþertz'es. 

a) it is an F-almost Kählerz'an manzfold. 

b) it is an F-nearly Kählerian manzfold then 

(3.4) V FK-1z (H) (FX, F K-
1Y) =2VFX(H) (FY. FZ). 

PROOF. 

(3.5) 

(3.6) 

In view of equation (2.2) we have 

Q(F X , FY. F Z) = 'V FX(H) (FY, F Z) + V FY(H) (F z. F X) 

+VFZ(H) (FX, FY) 

P(FX, FY.FZ)=VFX(H) (FY.FZ)+VFy(H) (FX.FZ) 

Adding (3. 5) and (3. 6) we obtain 

Q(FX, FY.FZ)+P(FX, FY. FZ)=2VFX(H) (FY.FZ) 

+V FZ(H) (FX. FY) 

which for an F-almost K감hlerian and F-nearly K갑hlerian manifold gives 

2 V F x(H) (FY, F Z) + V FZ(H) (F X , FY) = O. 

or, 2'VFX(H) (FY, FZ)=-VFZ(H) (FX, FY) 

or, -2V Fx(H) (FK-1y, r一lZ)=FFK-1z (H) (FX，폼-ly) 

or, 2V FX(H) (FY, F Z) = V FK -1 z (H) (F X , r -ly). 

Z. e‘ 
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COROLLARY. For an F-nearly Kählerian manifold we haνe 
K-1 (3.7) 'VFK-1x (H) (FK

-
1y , FZ)+ 'V FK-ly (H) (FK

-
1X , FZ)=O 

PROOF. The proof follows immediately, making use of (1 .11). 

THEOREM 3.3. For an F-nearly Kählerian manzfold we have 

(3.8) Q(FX, r-1y , r-1Z)+Q(FY, FK - 1X , pK-1Z) 

='V~-lX(H) (r-1y , FZ) +'VFK-1y (H) (FK
-

1Z , FX). 

PROOF. In consequence of equation (3.2) we have 

Q(FX, r-1y , F K - 1Z)+Q(FY, r一1X， r-1Z) 
=-{'VFx(H) (FY, FZ)+ 'VFY(H) (FX, FZ)} 

-1 +'VFK-1y (H) (Fn. -.Z, FX)+'V~-lx(H) (FY, Fn. -.Z) 

+'VFK-1Z(H)(Fy,r-1X)+ 'VFK-1Z(H) (FX, r~1y) 

which with the help of (1. 11) and (2.3) give the result. 

THEOREM 3.4. For an F-nearly Kählerz-an manzfold 

p(r-1x , r-1y, FZ)+P(FX, FK - 1y , r-1Z) 

+P(FK
-

1X , FY, r-1Z)=o. 
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PROOF. The proof follows at once after making use of equations (3.1), 0.11), 
(1.12), and (3.7). 

COROLLARY. In an F-strμcture manzfold following identiUes hold 

(3.9) Q(r-1X , r-1y , FZ)=Q(FY, FX, FZ), 

(3.10) Q(FX, r-1Y , FZ)=Q(Fy,r-1X , FZ), 
(3.11) Q(Fx-1x, FK-1y, FX-1Z)=Q(FY, FX, FX-1Z). 

PROOF. The proof is obvious. 

Lucknow University (U. P.) 
India. 
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