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ON F-STRUCTURE MANIFOLD
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Summary

The first part of this paper is devoted to the study of F-structure satisfying:
FK—I—(-)K“LIF:O and F" +(—)W+1F#O, for 1<W <K. The case when K is
odd and K(=3) has been considered. In the later part some structures involv-
ing Lie-derivatives, exterior and co-derivatives have been studied.

1. Introduction

Let F be a non zero tensor field of type (1,1) and of class C_~ on M" such
that [(2)]

(1.1 F4+(=)** F=0 and F¥ +(=)" 1 Fx0 for 1<W<K, where K>2.

Such a structure on M" is called an F-structure of rank ‘r and degree K. If
the rank of F is constant and r=7(F), then M" is called an F-manifold of degree
K (=3).

Let the operators on M~ be defined as follows [(2)]

(1.2) :r=(—)KFK_1 and m=I-I—(-—-)K+1FK“1, where [ is the identity operator
on M",

Now we state the following theorems

THEOREM 1.1. From the operators defined by (1.2) we have nw+m=I, =1

2 o : o er g
and m =m. For F satisfying (1.1), there exist complementary distributions L and

M corresponding to the projection operators m and m respectively. If the rank
of F is constant and is equal to r everywhere on n-dimensional manifold M~ then
dim L=r and dim M= n—7r).

THEOREM 1.2, We kave (a) Fr=rF, and Fm=mF=0, (b) F b= —n and

Al m=.

K—1
Thus FF~ 2 acts on L as an almost complex structure and on M as a null

operator,

PROOF. The proofs of theorems (1.1) and (1.2) are obvious in view of equa-
tions (1.1) and (1. 2).
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Let # (M) be the ring of real valued differentiable functions on A and
X (M) be the module of derivatives of % (M). Then ¥(M) 1s Lie algebra
over the real numbers and the elements of X (M) are called vector fields.

Then M is equipped with (1, 1) tensor field F which is a linear map such that
F.:XM)—X(M).

Let M” be of degree K and let K be a positive odd integer greater than 2

then we consider a positive definite Riemannian metric w.r.t. which L and

M are orthogonal, so that

K1
(1.3) g(X,Y)=g(HX,HY )+ g(mX,Y), where H=F 2 ,

for all X, YEX(M).

Since the distributions L and M are orthogonal, using theorem (1.2)b, we
obtain

(1. 4) g(HX, V)= g(H*X, HY) and

(1.5) g(X, HY)=g(HX, HY)+gmX, HY).
A 2- form has been defined as follows [(2)]

(1.6) HX,Y)=—HY,X)=g(HX,Y).

In view of the definition of a Riemannian connection on M~ and Lie deriva-
tive LX we have

(1.7 a) Vy (FX)=Vy (FY)—F V,7,
b) (LyFX)=[X,FY]-FI[X,Y].

Making use of the theorem (1.2) a, and equations (1.7) a,b, we obtain
m(V  F)(mY)=0, and m(Ly,F)(mY)=0.

Since F*1is a (1,1) tensor field we have

(1.8) Vi EETH@ =V (F @) ) - FF v, v.

The covariant and exterior derivative in M" are defined as

(1.9 Vi (HXY, Z)% g(V,(F)(Y), Z) and

(1.10) dH(X,Y, )X (V,HI,Z)+(V,H)(Z, )+ ,H)X,Y).
In view of equation (1.7) a, we have the followingidentities,

(1. 1) V (H)(FY,F* ' 2)=V (I (F" 'Y, F2),

(1.12) V(D E Y, F*7'2) =~V (H)(FY, FZ).
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2. We have the following definitions [(1)]

(2.1) F-Kdhlerian manifold iff V,, F % 0.
(2.2) F-almost Kdhlerian manifold iff dH(FX,FY,FZ)% 0,
(2.3) F-nearly Kdahlerian manifold iff

Vox (FYEY) +V . (F)(EFEX)E 0
(2.4) F-quasi Kahlerian manifold iff

Vo (B FY)+V K ~1,(F)(F ' o
(2.5) F-Hermitian manifold iff N(FX, FY, F Z)El_if 0

for all X, Y, Z&X(M).

THEOREM 2.1. The necessary and sufficient condition for an F-siructure
mantofold to be an F-nearly Kdhlerian manifold is that

@2.6) (=Y FE ANV (F(FY)) +V oy (FFX)} ={V 5y (FY) + V oo (FX}.

PROOF. We have
VpxF)FY) =V oy (F(FY)) —FVpx(FY). Thus,
Viex(FFY))+V ey (FFX)) = (Voo P (FY) +FV py (FY)
+(Vpp F)(FX)+FV oo (FY).

In view of equation (2.3) we get
Vex(F(FY )4V (F(FX) =F{V_ ,(FY)+V ., (FX)}.

Operating above equation by (—=)*F%~% and on using (1.2) we obtain the
result, The converse follows in and obvious manner.

THEOREM 2.2, The mnecessary and sufficient condition for an F-structure
manifold to be an F-quasi Kdhlerian manifold is that

@7 (=) PV (F(FY)) +V K — 1 (F(FE )+
TV (FY) +V K —1,(F" 'Y)} =0

PROOF. In consequence of (1.7) a, we get;
Vox (F(FY)) =(VpyF)(FY)+FVx(FY), and

V K—1,(FFEY)=(V,K—1,F) (FX'Y)+FV,K-1,(F* D).
Adding the last two equations and making use of (2.4) we get
Vor (FCFY ) +V oK =1 (F(FE YY) = F{V ,,  (FY) +V K =1, (F*~'1)}.

Which on operating by (—)K'Jr1 Fr 7 yields the result.



280 M.D.Upadhyay and Lovejoy S. K. Das

THEOREM 2.3. The necessary and sufficient condiiion for an F-quas: Kdhlerian
manifold to be F-Kdhlerian is that

(2.8) Vox FY)+V, K ~1,(F" Y)=0

PROOF. By virtue of (2.4) we have V exF(FY)+V . K—1 X(F)(FK —IY))=O
which in consequence of (1.7) a, vields
Vex(FFY))~FV . (FY)+V K -1 (F(FE 7))
— FV K—1,(F Y)=0

which in view of definition (2.4) gives the required result.

THEOREM 2.4. For an F-structure wmanifold, if any two of the following
Droperties hold, the third is als) satisfied,

a) it is F-rnearly Kdhilerian,

b) it is F-quas: Kdhlerian, and

c) it is F-structure manifold for which

(2.9) Voy F(FX) =V K —1, F(F*'Y).

PROOF. From definitions (2.3), (2.4), on substraction and making use of (2.9)

we get the result.

THEOREM 2.5, The mnecessary and sufficient condition for an F-structure

manifold to be an F-almost Kdhlerian ts that
Ve K—1,(H) (F*7'Y, FZ2)+V, K~1, (H) (F* 'z, FX)
+V,K—~1,(H) (F*7'X, FY)=0. |

PROOF. By virtue of equation (2.2) we obtain
VK—1,(H) (F' 7Y, FZ)=-V K—-1,(H)(FZ, FX'x)
~V,,(H) (F*'x, F*'v),
@2.10)  VK-1,()(F 7Y, FZ)=~V K—-1,(H) (FZ, F*'x)
+V,,(H) (FX, FY).
Similarly we get

@11)  VK-1,EEFE 2, FX)=-V,K~1,H) (FX, F*'v)
+Vgo(H) (FY,FZ), and
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212  V E-1,EF X, FY) =~V K~1,(H) (FY, F*'2)
+Vypy (H) (FZ,FX).

Adding (2.10), (2,11), (2.12) and using (1.11) we get
2{V K—1,(H) (F*7'Y, FZ)+V K-1,(H) (F* 'z, Fx)

+V K —~1,(H)(F" X, FY)} =dH(FX, FY, FZ)
which on using (2.2) yields
VK—1,(E)(FY, FZ)+V K—1,(H) (F" 'Z,FX)
+V,K-1,(H) (F'~'X, FY)=0.

Gray [(1)] defined connection preserving structures for a Hermitian manifold.

"We shall now define an F-structure which is connection preserving as follows

(2.13) VK—2, (F 1) V. ¥

THEOREM 2.6. If F-structure ts comnnection preserving themn F-quasi Kdhlerian
manifold is F-Kdhlerian.

PROOF. Let the manifold be F-quasi Kzhlerian then
Vo F(FY) =~V ,K—1, F(F*~'7)
which with the help of (1.7)a, gives
Vox FFY)=={V K~1, F(F" ') =FV K1, (F*T'D)).
'which on arrangement of FK I_l etc. becomes
= — (VoK ~2 gy F(F" V) =FV K~2, F(F
‘T'his equation on using (2.1), (2.13) and (1.7) a, yields

VexF(FY) = — {Vpy(F°Y) —FV o, (FY))
=~V F(FY), or 2V, F(FY)=0,

which in view of definition (2.1) shows that the manifold is F-Kzhlerian.

K—ZY)}

3. Operators P(X,Y,Z) and Q(X,Y,Z)

Let us define the following operators

@B.1) PXY, ) V, (¥, Z)+V,(H)(X, Z) and

3.2 QX Y,2)X V(&) ¥,Z)+V,(H)(Z,X)+V,(H) (X,Y).
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THEOREM 3.1. For an F-almost Kahlerian manifold we have
(3.3) P(Frx, oy, FE T oy P Fy, FE Yz, FElx)
+P(FZ, F*'x, F¥lyy=o0.
PROOQF. In view of (8.1) we get
P(Fx, F* 7y, F* 'y=v,, @ F* 'y, F*'2)
+V K ~1,(H)(FX, F* ~'Z); thus

prx, FA 7y, FE 1oy p ry, FE -z PR LY
+P(FZ, F*'x, F¥ 1y
=~ {Voy(H) (FY, FZ)+Vyy(H) (FZ,FX)+V,,(H) (FX, FY)}

=—{V,K—1,(H) (F*7'Y, FZ)+V K-1,(H) (F"'Z, FX)
+ VK —1,(E)(F" X, FY)}.

Now in consequence of the theorem (2.5) and the equation (2.2) we obtaim
theorem (3.1).

THEOREM 3.2. If an F-structure manifold has the following two properties, i.e.
a) it 1s an F-almost Kcdhlerian manifold,

b) it ts an F-nearly Kdhlerian manifold then
(3.4) VK—1,(H) (FX, F*7'Y)=2V, (H) (FY, FZ).

PROOF. In view of equation (2. 2) we have
(3.5) QFX,FY,FZ)=V  (H)(FY,FZ)+V,(H) (FZ, FX)
+V,.,(H) (FX, FY)
(3.6) P(FX,FY,FZ)=N y(H) (FY,FZ)+V y(H) (FX,FZ)
Adding (3.5) and (3.6) we obtain
QFX,FY,FZ)+P(FX,FY,FZ)=2V y(H) (FY,FZ)
4V (FX,FY)
which for an F-almost Kzdhlerian and F-nearly Kdhlerian manifold gives-
2Voy(H) (FY,FZ)+V5,(H) (FX, FY)=0.
or, 2Vpy(H) (FY,FZ)=~V,(H) (FX, FY)

or, —2Vp (H) (F*7'Y, F*7'2)=V k-1, (H) (FX,F*7'Y)
or, 2V x(H) (FY, FZ)=V K~1,(H) (FX, F*~'7).
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COROLLARY. For an F-nearly Kdhlerian manifold we have
(3.7) VeK—1,(H) (F*7Y, FZ)+V  K—-1,(H) (F*'X,FZ)=0

PROOF. The proof follows immediately, making use of (1.11).

THEOREM 3.3. For an F-nearly Kdahlerian manifold we have

3.8) Q&Fx, Frly, FF 'y +quEy, FR T, FEl2)
=V K—1, (H) (F*7'Y, FZ) +V,K-1,(H) (F*7'Z, FX).

PROOF. In consequence of equation (3.2) we have

QFX, FXly, FE'2y+quEy, F*'x, FX12)
=—{Vex(H) (FY, FZ)+V_ ,(H) (FX, FZ)}

+V K—~1,(H) (F*7°Z, FX)+V K~1,(H) (FY, F"'Z)
+V K ~1,(H)(FY,F" X)+V K—1,(H) (FX, F*7'Y)
which with the help of (1.11) and (2.3) give the result.
THEOREM 3.4. For an F-nearly Kdhlerian manifold

p(FE'x, F*7Yy, FrYy+P(Fx, FEly, FE 1

+P(F X, FY, F" Z)=0.
PROOF. The proof follows at once after making use of equations (3.1), (1.11),
(1.12), and (3.7).

COROLLARY. In an F-structure manifold following identities hold

(3.9) oFfx, FE7y, FZ)=Q(FY,FX,F2),
(3.10) QFX, FX7 Yy, FZ2)=QY,F*'x, F2),
(3.11) oF*x, FE Yy, FA'y=qwry, Fx, FX 1.

PROOF. The proof is obvious.
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