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1. Introduetion

The object of the present paper is to derive the two differential equations
-satisfied by the polynomial set En(x, y) and the general solutions thereof. En(x, V),

‘the generalization of as many as twenty two classical polynomials such as
Laguerre polynomials, Hermite polynomials, Legendre polynomials, Jacobi

-polynomials, Bedient polynomials etc. has been defined by us by means of the
.generating relation
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Further the generalized polynomials R (x,y) will be denoted by R .(%, %) In case

XH
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On specializing the various parameters involved therein some interesting and

rmew results for the classical polynomials are obtained.
The left hand side of (1.1) contain H-function defined by Fox [2].

The following notations have been used for brevity
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2. Differential equations for T?n(x, y)

(i) Case I (m,8=1)
Consider
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For the derivation of the differential equation we define an operator
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Thus we have
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Simplifying a little more, we achieve
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which is one of the differential equations for the polynomial set.
(ii) Proceeding as above lines, we find another partial differential equation
in terms of ¢
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(iii) Proceeding exactly similar as in (1 2) we may deduce results for other
three cases viz.
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(2.6) m45>1, m5<0, and m,B8=0.

3. Other solutions of the differential equations

(i) Case 1 (m,8=1)
The complete solution of the differential equation (2.4) is given by
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(ii) Similarly, the complete solution of the partial differential equation of
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(2.5) is
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where [R.] and [R,] are already defined.

(iii) Proceeding exactly as in (2.6) we achieve the (38.7) results for three
cases viz. m,8>1, m;8<0 and m,S5=0.

Verification

We already know that W0=fn(x, y) and satisfies (2.4), now, we shall show
that W o and W 7. % also satisfy (2.4).

The method of verification is similar to that of Rainville [1, p. 47]
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