Kyungpook Math. J. Volume 18, Number 2 December, 1978

T_0 -IDENTIFICATION SPACES AND R_1 SPACES

By Charles Dorsett

1. Introduction

The R_1 axiom was introduced in 1961 by A.S. Davis [1]. In 1975 William Dunham [2] further investigated the R_1 axiom and proved that R_1 spaces, which are weaker than T_2 and regular spaces, preserve many of the properties of T_2 and regular spaces. In this paper T_0 -identification spaces are further investigated, induced maps are introduced and investigated, and the results are used to obtain additional properties of R_1 spaces.

Listed below are definitions and theorems that will be utilized in this paper.

DEFINITION 1.1. A space (X, T) is R_1 iff for $x, y \in X$ such that $\overline{\{x\}} \neq \overline{\{y\}}$, there exist disjoint open sets U and V such that $\overline{\{x\}} \subset U$ and $\overline{\{y\}} \subset V$ [1].

THEOREM 1.1. A space (X, T) is T_2 iff it is T_1 and R_1 [1].

DEFINITION 1.2. Let R be the equivalence relation on the space (X, T) defined by xRy iff $\overline{\{x\}} = \overline{\{y\}}$. Then the T_0 -identification space of (X, Y) is $(X_0, Q(T))$, where X_0 is the set of equivalence classes of R and Q(T) is the decomposition

topology on X_0 , which is T_0 . Let $P_X: (X,T) \rightarrow (X_0,Q(T))$ be the natural map [3].

THEOREM 1.2. A space (X, T) is R_1 iff $(X_0, Q(T))$ is T_2 [2].

THEOREM 1.3. If (X, T) is locally compact R_1 , then (X, T) is completely regular [2]

2. T_0 -identification spaces and induced maps

THEOREM 2.1. The natural map $P_X: (X,T) \to (X_0,Q(T))$ is continuous, closed, open, onto, $P_X^{-1}(P_X(O)) = 0$ for all $0 \in T$, $P_X^{-1}(Fr(\mathcal{O})) = Fr(P_X^{-1}(\mathcal{O}))$ for all $\mathcal{O} \in Q(T)$, and $P_X^{-1}(\mathcal{C})$ is compact or connected iff \mathcal{C} is compact or connected, respectively.

PROOF. For each $z \in X$, let C_z be the equivalence class of R containing z.

Let $O \in T$ and let $x \in P_X^{-1}(P_X(O))$. Then there exists $y \in O$ such that $C_x = C_y$. Thus $\overline{\{x\}} = \overline{\{y\}}$ and $O \in T$ such that $y \in O$, which implies $x \in O$. Hence, $P_X^{-1}(P_X(O)) \subset O$, which implies $O = P_X^{-1}(P_X(O))$. If $O \in T$, then $P_X^{-1}(P_X(O)) = O \in T$, which implies $P_X(O) \in Q(T)$ and P_X is open. If C is closed, then $P_X(C) = X_0 \setminus P_X(X \setminus C)$, which is closed, which implies P_X is closed. Since P_X is closed and $P_X^{-1}(P_X(C)) = C$ for all closed subsets C of X, then $\overline{P_X^{-1}(\mathcal{O})} = P_X^{-1}(\overline{\mathcal{O}})$ for all $\mathcal{O} \in Q(T)$. If $\mathcal{O} \in Q(T)$, then $P_X^{-1}(\mathcal{O}) \cup \operatorname{Fr}(P_X^{-1}(\mathcal{O})) = P_X^{-1}(\mathcal{O}) \cup P_X^{-1}(\operatorname{Fr}(\mathcal{O}))$, which implies $\operatorname{Fr}(P_X^{-1}(\mathcal{O})) = P_X^{-1}(\operatorname{Fr}(\mathcal{O}))$. Since P_X is continuous, onto, and $P_X^{-1}(P_X(O)) = O$ for all $O \in T$, then $P_X^{-1}(\mathcal{C})$ is compact iff \mathcal{C} is compact and since P_X is continuous, onto, closed, and $P_X^{-1}(P_X(C)) = C$ for all closed subsets C of X, then $P_X^{-1}(\mathcal{C})$ is connected iff \mathcal{C} is connected.

THEOREM 2.2. If f is a continuous function from the space (X,T) onto the space (Y,S), then the relation $f^* = \{(C_x, C_{f(x)}) | C_x \in X_0\}$ is a continuous function from $(X_0, Q(T))$ onto $(Y_0, Q(S))$.

PROOF. Let $C_{x_1}, C_{x_2} \in X_0$ such that $C_{x_1} = C_{x_2}$. Then $C_{f(x_1)} = C_{f(x_2)}$, for suppose not. Then $\overline{\{f(x_1)\}} \neq \overline{\{f(x_2)\}}$, which implies $f(x_1) \notin \overline{\{f(x_2)\}}$ or $f(x_2) \notin \overline{\{f(x_1)\}}$, say $f(x_1) \notin \overline{\{f(x_2)\}}$. Then $f(x_1) \in Y \setminus \overline{\{f(x_2)\}}$, $x_1 \in f^{-1}(Y \setminus \overline{\{f(x_2)\}}) \in T$, and $x_2 \notin f^{-1}(Y \setminus \overline{\{f(x_2)\}})$. Since $C_{x_1} = C_{x_2}$, then $\overline{\{x_1\}} = \overline{\{x_2\}}$ and since $x_1 \in f^{-1}(Y \setminus \overline{\{f(x_2)\}}) \in T$, then $x_2 \in f^{-1}(Y \setminus \overline{\{f(x_2)\}})$, which is a contradiction. Hence f^* is a function. Since f is onto, then f^* is onto and since P_X is open, f and P_Y are continuous, and $(f^*)^{-1}(\mathcal{O}) = P_X(f^{-1}(P_Y^{-1}(\mathcal{O})))$ for all $\mathcal{O} \in Q(S)$, then f^* is continuous.

DEFINITION 2.1. If f is a continuous function from a space (X,T) onto a space (Y,S), then the function $f^*: (X_0,Q(T)) \rightarrow (Y_0,Q(S))$ defined by $f^*(C_x) = C_{f(x)}$ is the induced map from $(X_0,Q(T))$ onto $(Y_0,Q(S))$ determinded by f.

THEOREM 2.3. Let f be a continuous function from (X,T) onto (Y,S). If f is open (closed), then f^* is open (closed).

PROOF. Suppose f is open. Since P_Y and f are open, then $f^*(\mathscr{O}) = P_Y(f(P_X^{-1}(\mathscr{O}))) \in Q(S)$ for all $\mathscr{O} \in Q(T)$, which implies f^* is open.

T_0 -Identification Spaces and R_1 Spaces 169

Suppose f is closed. Since P_Y and f are closed, then $f^*(\mathscr{C}) = P_Y(f(P_X^{-1}(\mathscr{C})))$ is closed for all closed subsets \mathscr{C} of X_0 , which implies f^* is closed.

The converse of Theorem 2.3 is false even if f is 1-1.

3. R_1 spaces

THEOREM 3.1. A space (X, T) is T_2 iff (X, T) is R_1 and every topology on X

finer than T is R_1 .

PROOF. Suppose (X, T) is T_2 . Then every topology on X finer than T is T_2 and since every T_2 space is R_1 , then (X, T) is R_1 and every topology on X finer than T is R_1 .

Conversely, suppose (X,T) is R_1 and every topology on X finer than T is R_1 . Then (X,T) is T_1 , for suppose not. Then there exists $x \in X$ such that $\{x\} \neq \{x\}$. Let $S = T \cup \{O \cup \{x\} \mid O \in T\}$. Then S is a topology on X and $T \subset S$, which implies (X,S) is R_1 . Let y be a point in the T-closure of $\{x\}$ such that $x \neq y$. Then x, $y \in X$ such that $\{x\}_{(X,S)} \neq \{y\}_{(X,S)}$, which implies there exist $U, V \in S$ such that $\{x\}_{(X,S)} \subset U$, $\{y\}_{(X,S)} \subset V$, and $U \cap V = \phi$. Since $V \in S$ and $x \notin V$, then $V \in T$. Thus there exists $V \in T$ such that $y \in V$ and $x \notin V$, which contradicts $y \in \{x\}_{(X,T)}$. Hence, (X,T) is R_1 and T_1 , which implies (X,T) is T_2 .

THEOREM 3.2. Let (X, T) be compact R_1 and let $x \in X$. Then the component A_x

of X containing x equals the quasicomponent B_{x} of X containing x.

PROOF. Since (X, T) is compact R_1 , then $(X_0, Q(T))$ is compact T_2 . Let \mathscr{A}_{c_x} and \mathscr{B}_{c_x} denote the component and quasicomponent of X_0 containing C_{x_r} respectively. Then $\mathscr{A}_{c_x} = \mathscr{B}_{c_x}$. Since $\{\mathscr{O} \subset X_0 | C_x \in \mathscr{O} \text{ and } \mathscr{O} \text{ is closed open}$ in $X_0 \} = \{P_X(O) | x \in O \text{ and } O \text{ is closed open in } X\}$, then $\mathscr{B}_{c_x} = \bigcap \{P_X(O) | x \in O \text{ and } O \text{ is closed open in } X\} = P_X(\bigcap \{O \subset X | x \in O \text{ and } O \text{ is closed open in } X\}) = P_X(B_x)$ and since \mathscr{B}_{c_x} is connected and B_x is closed, then $B_x = P_X^{-1}(\mathscr{B}_{c_r})$, which is connected. Hence $B_x \subset A_x$, which implies $B_x = A_x$.

THEOREM 3.3. Let (X, T) be compact R_1 , let D be a closed subset of X, let C be a component of D, and let U be open such that $C \subset U$. Then there exists an open set V such that $C \subset V \subset U$ and $Fr(V) \cap D = \phi$.

PROOF. Since $P_X(D)$ is a closed subset of the compact T_2 space $(X_0, Q(T))$,

 $P_X(C)$ is a component of $P_X(D)$, and $P_X(U)$ is open in X_0 such that $P_X(C)^{\frac{1}{2}} \subset P_X(U)$, then there exists an open set \mathscr{V} in X_0 such that $P_X(C) \subset \mathscr{V} \subset P_X(U)^{\frac{1}{2}}$ and $\operatorname{Fr}(\mathscr{V}) \cap P_X(D) = \phi$. Thus $P_X^{-1}(\mathscr{V})$ is open in X, $C \subset P_X^{-1}(\mathscr{V}) \subset U$, and $\operatorname{Fr}(P_X^{-1}(\mathscr{V})) \cap D = P_X^{-1}(\operatorname{Fr}(\mathscr{V})) \cap D = \phi$.

The next two theorems can be proven by an argument similar to that for-Theorem 3.3.

THEOREM 3.4. If (X, T) is compact connected R_1 and C is a component of \overline{G} , where $G \in T$ and $\overline{G} \subsetneq X$, then $C \cap Fr(G) \neq \phi$.

THEOREM 3.5. If (X, T) is compact connected R_1 and C is a proper closed connected subset of X, then there exists a closed connected subset K of X such that $C \subsetneq K \subsetneq X$.

THEOREM 3.6. Let (X, T) be locally compact R_1 , let D be a closed subset of X with compact component C, and let $U \in T$ such that $C \subset U$. Then there exists $V \in T$ such that \overline{V} is compact, $C \subset V \subset \overline{V} \subset U$, and $Fr(V) \cap D = \phi$.

PROOF. By Theorem 1.3 (X, T) is regular. For each $x \in C$, let $W_x \in T$ such that \overline{W}_x is compact and $x \in W_x \subset \overline{W}_x \subset U$. Then $\{W_x\}_{x \in C}$ is an open cover of C and there exists a finite subcover $\{W_{x_i}\}_{i=1}^n$. Let $Y = \bigcup_{i=1}^n \overline{W}_{x_i}$. Then C is a component of $D \cap Y$, which is a closed subset of the compact R_1 space (Y, T_Y) ,

and $C \subset \bigcup_{i=1}^{n} W_{x_i} \in T_Y$. Thus by Theorem 3.3, there exists $V \in T_Y$ such that $C \subset V \subset \bigcup_{i=1}^{n} W_{x_i}$ and $\operatorname{Fr}_Y(V) \cap (D \cap Y) = \phi$. Then $C \subset V \in T$, \overline{V} is compact, and $\operatorname{Fr}(V) \cap D = \phi$.

THEOREM 3.7. Let (X, T) be R_1 , let A be a closed compact subset of X, let C be a component of A, and let $U \in T$ such that $C \subset U$. Then there exists $W \in T$ such that $C \subset W \subset U$ and $Fr(W) \cap A = \phi$.

PROOF. Since A is a closed subset of the compact R_1 space (A, T_A) , C is a component of A, and $C \subset U \cap A \in T_A$, then by Theorem 3.3, there exists $V \in T_A$ such that $C \subset V \subset U \cap A$ and $\operatorname{Fr}_A(V) \cap A = \phi$. Then V is closed open in A and $V = O \cap A$, where $O \in T$ and $O \subset U$. If $\operatorname{Fr}(O) \cap A = \phi$, then $O \in T$ such that $C \subset O \subset U$ and $\operatorname{Fr}(O) \cap A = \phi$. Thus consider the case that $\operatorname{Fr}(O) \cap A \neq \phi$. If $x \in \operatorname{Fr}(O) \cap A$,

T_0 -Identification Spaces and R_1 Spaces 171

then $x \notin V$ and since (X, T) is R_1 and V is closed compact, then there exists $O_x \in T$ such that $x \in O_x \subset \overline{O}_x \subset X \setminus V$. For each $x \in \operatorname{Fr}(O) \cap A$, let $O_x \in T$ such that $x \in O_x \subset \overline{O}_x \subset X \setminus V$. Then $\{O_x\}_{x \in \operatorname{Fr}(O) \cap A}$ is an open cover of $\operatorname{Fr}(O) \cap A$ and there exists a finite subcover $\{O_{x_i}\}_{i=1}^n$. Let $W = O \setminus \bigcup_{i=1}^n \overline{O}_{x_i} \in T$. Then $C \subset W \subset U$ and $\operatorname{Fr}(W) \cap A = \phi$.

THEOREM 3.8. If (\mathcal{D}, Q) is an upper semi-continuous decomposition of a locally

compact R_1 space (X,T) into closed subsets of X with compact components, $\mathcal{G} = \{C | C \text{ is a component of } D, D \in \mathcal{D}\}, \text{ and } Q_1 \text{ is the decomposition topology on}$ $\mathcal{G}, \text{ then } (\mathcal{G}, Q_1) \text{ is an upper semicontinuous decomposition of } X.$

PROOF. Let $C \in \mathscr{G}$ and let $U \in T$ such that $C \subset U$. Then there exists $D \in \mathscr{D}$ such that C is a component of D. By Theorem 3.6, there exists $V \in T$ such that $C \subset V \subset U$ and $\operatorname{Fr}(V) \cap D = \phi$. Then $D \in \mathscr{D}$ and $X \setminus \operatorname{Fr}(V) \in T$ such that $D \in X \setminus \operatorname{Fr}(V)$, which implies there exists $W \in T$ such that $D \subset W \subset X \setminus \operatorname{Fr}(V)$ and such that if $D_1 \in \mathscr{D}$ and $D_1 \cap W \neq \phi$, then $D_1 \subset X \setminus \operatorname{Fr}(V)$. Then $V \cap W \in T$ such that $C \subset V \cap W \subset U$ and such that if $B_1 \in \mathscr{G}$ and $B_1 \cap (V \cap W) \neq \phi$, then $B_1 \subset V \subset U$. Hence, (\mathscr{G}, Q_1) is an upper semi-continuous decomposition of (X, T).

The next theorem follows from Theorem 3.7 and an argument similar to that for Theorem 3.8.

THEOREM 3.9. If (\mathcal{D}, Q) is an upper semi-continuous decomposition of an R_1

space (X, T) into closed compact subset of X, $\mathcal{G} = \{C | C \text{ is a component of } D, D \in \mathcal{D}\}$, and Q_1 is the decomposition topology on \mathcal{G} , then (\mathcal{G}, Q_1) is an upper semicontinuous decomposition of (X, T).

4. Continuous images of R_1 spaces

Example 13.9 (b) in Willard's book [3] show that if f is a continuous open function from a R_1 space (X, T) onto a space (Y, S) such that $f^{-1}(y)$ is closed compact for all $y \in Y$, then (Y, S) need not be R_1 .

THEOREM 4.1. If f is a continuous open function from (X,T) onto (Y,S), then (Y,S) is R_1 iff $\{(x_1, x_2) | \overline{f(x_1)}\} = \overline{\{f(x_2)\}}\}$ is a closed subset of $X \times X$.

PROOF. Suppose (Y, S) is R_1 . Then f^* is a continuous function from $(X_0, Q(T))$ onto the T_2 space $(Y_0, Q(S))$, which implies $\mathscr{C} = \{(C_{x_1}, C_{x_2}) | f^*(C_{x_1}) = f^*\}$

 (C_{x_2}) } is closed in $X_0 \times X_0$. Since \mathscr{C} is closed in $X_0 \times X_0$, then $\{(x_1, x_2) \mid \overline{\{f(x_1)\}} = \overline{\{f(x_2)\}}\}$ is closed in $X \times X$.

Conversely, suppose $\{(x_1, x_2) | \overline{f(x_1)}\} = \overline{f(x_2)}\}$ is a closed subset of $X \times X$. Then $\mathscr{C} = \{(C_{x_1}, C_{x_2}) | f^*(C_{x_1}) = f^*(C_{x_2})\}$ is closed in $X_0 \times X_0$ and since f^* is a continuous open function from $(X_0, Q(T))$ onto $(Y_0, Q(S))$ such that \mathscr{C} is closed in $X_0 \times X_0$, then $(Y_0, Q(S))$ is T_2 , which implies (Y, S) is R_1 .

Example 13.9 (a) of Willard's book [3] shows that the continuous closed image of an R_1 space need not be R_1 .

THEOREM 4.2. If f is a continuous closed function from an R_1 space (X, T)onto a space (Y, S) such that $f^{-1}(y)$ is compact for all $y \in Y$, then (Y, S) is R_1 .

PROOF. Let $\mathscr{D} = \{f^{-1}(y) | y \in Y\}$ and let Q be the decomposition topology on \mathscr{D} . Then (\mathscr{D}, Q) is an upper semicontinuous decomposition of X into compact sets. Let P be a natural map from (X, T) onto (\mathscr{D}, Q) . Let $C_1, C_2 \in \mathscr{D}$ such that $\overline{\{C_1\}} \neq \overline{\{C_2\}}$. Then $C_1 \notin \overline{\{C_2\}}$ or $C_2 \notin \overline{\{C_1\}}$, say $C_1 \notin \overline{\{C_2\}}$. Let $x \in C_1$. If $y \in C_2$, then $\overline{\{x\}} \neq \overline{\{y\}}$ and there exist disjoint open sets U_y and V_y such that $x \in U_y$ and $y \in V_y$. For each $y \in C_2$, let U_y and V_y be disjoint open sets such that $x \in U_y$ and $y \in V_y$. Then $\{V_y\}_{y \in C_2}$ is an open cover of C_2 and there exists a finite subcover $\{V_{y_i}\}_{i=1}^n$. Thus

n n n n

$$x \in \bigcap_{i=1} U_{y_i} \in T, C_2 \subset \bigcup_{i=1} V_{y_i} \in T, \text{ and } (\bigcap_{i=1} U_{y_i}) \cap (\bigcup_{i=1} V_{y_i}) = \phi.$$

For each $x \in C_1$, let U_x and V_x be disjoint open sets such that $x \in U_x$ and $C_2 \subset V_x$. Then $\{U_x\}_{x \in C_1}$ is an open cover of C_1 and there exists a finite subcover $\{U_{x_i}\}_{i=1}^m$. Thus,

$$C_1 \subset \bigcup_{i=1}^m U_{x_i} = U_1 \in T, \ C_2 \subset \bigcap_{i=1}^m V_{x_i} = U_2 \in T, \text{ and } U_1 \cap U_2 = \phi.$$

Then $C_1 \in \mathscr{U}_1 = \{D \in \mathscr{D} \mid D \subset U_1\} \in Q$, $C_2 \in \mathscr{U}_2 = \{D \in \mathscr{D} \mid D \subset U_2\} \in Q$, and $\mathscr{U}_1 \cap \mathscr{U}_2 = \phi$. If $z \in C_1$, then $z \in P^{-1}(\mathscr{U}_1) \in T$, which implies $\overline{\{z\}} \subset P^{-1}(\mathscr{U}_1)$, and since P is closed, then $\overline{\{C_1\}} \subset P(\overline{\{z\}}) \subset \mathscr{U}_1$. By a similar argument, $\overline{\{C_2\}} \subset \mathscr{U}_2$. Hence, (\mathscr{D}, Q) is R_1 , which implies (Y, S) is R_1 .

THEOREM 4.3. If f is a continuous closed function from an R_1 space (X,T)onto a space (Y,S) such that $f^{-1}(y)$ is closed compact for all $y \in Y$, then (Y,S)

T_0 -Identification Spaces and R_1 Spaces 173

is T_2 .

PROOF. Let $\mathscr{D} = \{f^{-1}(y) | y \in Y\}$ and let Q be the decomposition topology on \mathscr{D} . Then (\mathscr{D}, Q) is an R_1 upper semicontinuous decomposition of X into closed sets. If $C_1, C_2 \in \mathscr{D}$ such that $C_1 \neq C_2$, then $C_1 \in \mathscr{U} = \{D \in \mathscr{D} \mid D \subset X \setminus C_2\} \in Q$ and C_2 $\notin \mathscr{U}$, which implies (\mathscr{D}, Q) is T_1 . Hence, (\mathscr{D}, Q) is T_2 , which implies (Y, S) is

THEOREM 4.4. If f is a continuous function from a compact R_1 space (X,T)onto a T_0 space (Y, S), then (Y, S) is T_2 iff f is closed.

PROOF. Suppose f is closed. If $0 \in S, y \in O$, and y = f(x), then $x \in f^{-1}(O) \in I$ T, which implies $\overline{\{x\}} \subset f^{-1}(O)$ and $\overline{\{y\}} \subset f(\overline{\{x\}}) \subset O$. If $y \in Y$, then $\overline{\{y\}} = \{y\}$, for suppose not. Then there exists $y \in Y$ such that $\{y\} \subseteq \overline{\{y\}}$. Let $z \in \overline{\{y\}} \setminus \{y\}$. Since (Y, S) is T_0 , then $y \notin \{\overline{z}\}$. Thus $y \in Y \setminus \{\overline{z}\} \in S$, which implies $\{\overline{y}\} \subset Y \setminus \{z\}$, which is a contradiction. Hence, (Y, S) is T_1 and $f^{-1}(y)$ is compact closed for all $y \in Y$, which implies (Y, S) is T_2 .

The straightforward proof of the converse is omitted.

THEOREM 4.5. If f is a continuous closed open function from a regular space (X, T) onto a space (Y, S), then (Y, S) is R_1 .

PROOF. Since f is continuous closed open, then f^* is continuous closed open; since (X, T) is regular, then (X, T) is R_1 and $(X_0, Q(T))$ is T_2 ; and since $(X_0, Q(T))$ Q(T) is an upper semi-continuous decomposition of the regular space (X, T)into compact sets, then $(X_0, Q(T))$ is regular. Thus f^* is a continuous closed open function from the T_3 space $(X_0, Q(T))$ onto $(Y_0, Q(S))$, which implies $(Y_0, Q(S))$ is T_2 . Hence, (Y, S) is R_1 .

THEOREM 4.6. If f is a continuous closed function from a compact R_1 space (X, T) onto a T_0 space (Y, S), then $f = g \circ h$, where h is monotone and g is light. PROOF. By Theorem 4.4. (Y, S) is T_2 . Let $\mathscr{D} = \{f^{-1}(y) | y \in Y\}$, let Q be the decomposition topology on \mathscr{D} , let $\mathscr{G} = \{C | C \text{ is a component of } D, D \in \mathscr{D}\}$, and let Q_1 be the decomposition topology on \mathcal{G} . By Theorem 3.9 (\mathcal{G}, Q_1) is an upper semi-continuous decomposition of X. Let h be the natural map from (X, X)T) onto (\mathcal{G}, Q_1) . Then h is closed monotone and by Theorem 4.3 (\mathcal{G}, Q_1) is compact T_2 . Let $g: (\mathcal{G}, Q_1) \rightarrow (Y, S)$ defined by g(C) = y iff C is a component

of $f^{-1}(y)$. Since $h^{-1}(g^{-1}(O)) = f^{-1}(O) \in T$ for all $O \in S$, then g is continuous. Let $y \in Y$, let $C_1 \in g^{-1}(y)$, and let $C_2 \in g^{-1}(y)$ such that $C_2 \neq C_1$. Then there exist disjoint open sets U_1 and U_2 such that $C_1 \subset U_1$ and $C_2 \subset U_2$. By Theorem 3.3 there exists $V \in T$ such that $C_1 \subset V \subset U_1$ and $Fr(V) \cap f^{-1}(y) = \phi$. Then $C_1 \in C_1$ $\mathscr{V} = g^{-1}(y) \cap \{C \in \mathscr{G} \mid C \subset V\} = g^{-1}(y) \cap h(\overline{V})$, which is closed open in $g^{-1}(y)$, and

 $C_2 \notin \mathscr{V}$. Thus the component of $g^{-1}(y)$ containing C_1 is $\{C_1\}$. Hence, $g^{-1}(y)$ is totally disconnected for each $y \in Y$, which implies g is light.

> Louisiana Tech. University Ruston, Louisiana 71272 U. S. A.

REFERENCES

- [1] Davis, A., Indexed Systems of Neighborhoods for General Topological Spaces, The American Mathematical Monthly, 68(1961), 886-893.
- [2] Dunham, W., Weakly Hausdorff Spaces, Kyungpook Mathematical Journal, 15(1975), 41-50.
- [3] Willard S., General Topology, Addison-Wesley Publishing Company, 1970.

• ·

.