Kyungpook Math. J. Volume 18, Number 2 December, 1978

THE SINGULAR IDEALS AND GOLDIE DIMENSIONS OF GROUP RINGS

By Younki Chae and Kwang Sung Park

1. Introduction

The quotient rings of group rings have been studied by many authors ([2], [3], [4], [6] and [12]). The conditions for a ring to have a self-injective semiperfect quotient ring are well-known ([9]). In this paper, we deal with self-injective semi-perfect quotient rings of group rings.

Singular ideals, nilpotent radicals and Goldie dimensions are important to investigate quotient rings. K. Brown has proved that if G is a torsion-free Abelian group then (i) Z(A)G=Z(AG), where Z(A) denotes the right singular ideal of the ring A, (ii) N(A)G=N(AG) whenever N(A) is nilpotent, where N(A) denotes the nilpotent radical of A, and (iii) the right Goldie dimension of A equals the right Goldie dimension of AG.

In this paper, we obtain the results (i) and (ii) for G a free group. But the result (iii) is not true if G is a free group (Example 2.5)

Throughout this paper the letter A means a ring with an identity 1.

2. Results

A ring is called a right finite dimensional ring if there do not exist infinitely

many nonzero right ideals whose sum is direct.

PROPOSITION 2.1. Let A be a finite dimensional ring and G be a finite group. Then the group ring AG is also a finite dimensional ring.

The proof of the above statement is routine. Here we omit its proof.

PROPOSITION 2.2. (K. Brown [2]) Let A be a ring and $H \triangleleft G$ such that G/H is a torsion-free Abelian group. Then the right Goldie dimension of A equals that of AG.

A group G is called an FC-group if every element of G has only finitelymany conjugates.

COROLLARY 2.3. Let A be a finite dimensional ring and G be an FC-group with only finitely many torsion elements. Then AG is also a finite dimensional

136 Younki Chae and Kwang Sung Park

ring.

PROOF. Let T be the torsion subgorup of G. Then AT is finite dimensional by Proposition 2.1. But G/T is a torsion-free Abelian group ([5]; page 676), thence AG is also a finite dimensional ring by Proposition 2.2.

PROPOSITION 2.4. Let A be a right order in a self-injective semi-perfect ring Q and G be a finite group. Then the group ring AG is also a right order in a self-injective semi-perfect ring.

PROOF. By Proposition 2.1, AG is a finite dimensional ring. Since G is finite, we can see that QG is also self-injective ([5]; page 663). Thus we may assume that $E(AG) \subset QG$ (indeed, they are equal). Let $x = \sum_{i=1}^{n} b_i a_i^{-1} g_i \in E(AG)$ where a_i , $b_i \in A, a_i$ being a non-zero-divisor in A. Then there exists a non-zero-divisor a^* in A, and hence a non-zero-divisor in AG, such that all $a_i a^* \in A$ (see [7]). Hence $xa^* = \sum_{i=1}^{n} b_i a_i^{-1} a^* g_i \in AG$. Thus we have our proposition (see [9]).

Let G be a free group. Then every element of G can be written as a reduced word of generators. Now we introduce the lengths of G as follow: Let $x = g_1^p g_2^q \cdots g_n^r \in G$, where p,q and r are nonzero integers and g_i are generators such that $g_i \neq g_{i+1}$. Then we define the *length* of x as n.

EXAMPLE 2.5. Let G be a free group generated by the set $\{g_1, h_1, g_2, h_2, \cdots\}$. Take A the ring of integers. Consider right ideals $(g_1+h_1)AG$, $(g_2+h_2)AG$, \cdots . We claim that their sum is direct. Indeed, suppose $(g_1+h_1)(x_1+\cdots+x_k)+\cdots+(g_n+h_n)(y_1+\cdots+y_m)=0$. Choose an element among x_i, y_j so that it has maximal Plength among them. We may assume that such element is x_1 . Then either g_1x_1 or h_1x_1 is of maximal length in the above sum. Thus either g_1x_1 or h_1x_1 can prot vanish. It is a contradiction.

Hence AG is not of finite dimensional, but A is a finite dimensional ring. Thus the Proposition 2.2 is not true for G a free group.

LEMMA 2.6. Let G be a free group and x_1, \dots, x_n be distinct elements in G. Then there exists $x \in G$ such that $(x_1x + \dots + x_nx)(y_1 + \dots + y_m)$ has a term coefficient 1 for any distinct elements y_1, \dots, y_m in G, where the multiplication is taken in the group ring AG over the ring A of integers.

PROOF. Suppose $x_n = (\dots)g^t$ is of maximal length k among x_i and $y_m = h^s(***)$

The Singular Ideals and Goldie Dimensions of Group Rings 137

is of maximal length k' among y_j . Put $(\dots)^{-1}(x_1 + \dots + x_n) = u_1 + \dots + u_{n-1} + g^t$ and $(y_1 + \dots + y_m)(***)^{-1} = v_1 + \dots + v_{m-1} + h^s$. (case 1) For some u_i (or v_j) has the generator g(h) in the left (right, prespectively) side. Then u_i and v_j must be of the forms $g^{t'}$ and $h^{s'}$, respectively. It is not difficult to show that for some such $i, j, x_i y_j$ has coefficient 1. (case 2) No u_i (and v_j) contains the generator g(h) in the left (right, respectively)

rtively).

If $g \neq h$, then $x_n y_m$ -term has coefficient 1.

If g=h, then it is sufficient to consider the case $h^s = g^{-t}$, i.e. every element of maximal length among x_i and y_j have g^t and g^{-t} as the last part and the first part, respectively.

If x_1 is of length k-1, we consider the following three cases: (i) if $x_1 = (\cdots) f^{s'}$ with $f \neq g$ then $x_1 g^{-t}$ is of length k+k'-1. It is not difficult to show that $x_1 y_m$ has coefficient 1.

(ii) if $x_1 = (\cdots)g^{t'}$ with $t' \neq t$ then x_1g^{-t} and x_ng^{-t} are of length k-1 and of maximal length among x_ig^{-t} . But the last parts of them are not equal, and hence g^{-t} is the desired element.

(iii)
$$x_1 = (\cdots)g^t$$
. Now we consider only the case (iii).
If x_2 is of length $k-2$, we consider the following three cases:
(iv) if $x_2 = (\cdots)f^{s'}$ with $f \neq g$ then x_2g^{-t} is of length $k-1$ and of maximal

length among $x_i g^{-t}$, but the last part of $x_2 ?^{-t}$ is different from that of $x_n g^{-t}$ of length k-1. Thus g^{-t} is the desired element. (v) if $x_2 = (\cdots)g^{t'}$ with $t' \neq t$, then $x_2 g^{-t}$ is of length k-2, and $x_n g^{-t}$ is of maximal length k-1 among $x_i g^{-t}$. But the last parts of $x_2 g^{-t}$ and $x_n g^{-t}$ are not equal. Thus we can deduce that g^{-t} is the desired element. (vi) $x_2 = (\cdots)g^t$. Now we consider only the case (vi). Continuing this process, we obtain the fact that all x_i has g^t as last part. Then we can easily see that our assertion is true.

LEMMA 2.7. (R. Shock [11]) For $0 \neq \alpha \in AG$ there exists $b \in A$ such that the singht annihilators of the coefficients of nonzero element αb are equal.

PROPOSITION 2.8. Let A be a commutative ring and H be a subgroup of a

Younki Chae and Kwang Sung Park 138

group G such that $H \subset C(G)$, the center of G, and G/H is a free group. Then Z(AH)G = Z(AG).

The proof of Proposition 2.8 is similar to that of Theorem 2.6 in [11] if we apply the Lemmas 2.6 and 2.7. Here we omit its proof.

We don't know whether the commutativity in Proposition 2.8 can be removed. But if A is right non-singular, the commutativity is unnecessary.

PROPOSITION 2.9. Let G be a free group. Then A is right non-singular if and only if AG is.

PROOF. Assume that Z(A) = 0. Suppose $0 \neq \alpha \in Z(AG)$ and put $\alpha = a_1 x_1 + \dots + a_n x_n$. $a_i \neq 0$ and $x_i \in G$. By Lemma 2.7, there is $b \in A$ such that the right annihilators of nonzero coefficients of $\alpha b \neq 0$ are equal. Put $b = b_1 z_1 + \dots + b_k z_k$, $b_i \neq 0$. By Lemma 2.6, there is $x \in G$ such that $(z_1x + \cdots + z_kx)(y_1 + \cdots + y_m)$ has a term with coefficient 1 for any elements y_1, \dots, y_m in G. Since $b_1 \notin Z(A) = 0$, there is $0 \neq c \in A$ such that $r(b_1) \cap cA = 0$. We claim that $r(\alpha bx) \cap cAG = 0$. Indeed, suppose that this is false, then there is $0 \neq \beta \in cAG$ such that $(\alpha bx)\beta = 0$. Put $\beta = c_1y_1$ $+\cdots+c_{n}y_{n}$, $0\neq c_{j}\in cA$. Then $b_{i}c_{j}=0$ for some i,j. Thus $b_{i}c_{j}=0$. It is a contradiction. Hence αbx can not belong to Z(AG), a contradiction. So Z(AG)=0. The reverse implication is clear.

COROLLARY 2.10. Let H < G such that $H \subset C(G)$ and G/H is a free group. Then AH is right non-singular if and only if AG is.

PROOF. Clear.

PROPOSITION 2.11. Let A be a ring and G be a free group. Assume that N(A). is nilpotent. Then N(A)G = N(AG).

The proof is similar to that of Lemma 2.7 in [2]. Here we omit its proof.

Kyungpook University

REFERENCES

[1] E. Behrens, Ring Theory, Academic Press, 1972. [2] K.A. Brown, Artinian quotient rings of group rings, J. Algebra 49(1977), 63-80. [3] ____, The singular ideals of group rings, Quart. J. Math. (2) 28(1977), 41-60.

The Singular Ideals and Goldie Dimensions of Group Rings 139

- [4] W.D. Burgess, Rings of quotients of group rings, Can. J. Math. 21(1969), 865-875. [5] I.G. Connell, On the group rings, Can.J. Math. 21(1963), 650-685.
- [6] A. Horn, Gruppenringe fastpolyzyklischer Gruppen und Ordnungen in quasi-Frobenius Ringen, Mitt. Math. Sem. Giessen, Heft 100.
- [7] J.P. Jans, Orders in quasi-Frobenius rings, J. Algebra 7(1967), 35-43.
- [8] J. Lambek, Lectures on Rings and Modules, Blaisdell, Waltham, Mass,, 1966.
- [9] A.C. Mewborn and C.N. Winton, Orders in self-injective semi-perfect rings, J. Algebra 13(1968), 5--9.
- [10] D.S. Passman, Infinite Group Rings, Dekker, New York, 1971.
- [11] R.C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math. 42(1972), 251-257.
- [12] P.F. Smith, Quotient rings of group rings, J. London Math. Soc. 3(1971), 645-660.