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THE SINGULAR IDEALS AND GOLDIE DIMENSIONS OF GROUP RINGS'. 

By Y ounki Chae and K wang Sung Park 

1. Introduction 

The quotient rings of group rings have been studied by many authors ([2] ,. 

[3] , [4] , [6] and [12]). The conditions for a ring to have a self-injective semi

perfect quotient ring are welFknown ([9]). In this paper, we deal with self

injective semi-perfect quotient rings of group rings. 

Singular ideals, nilpotent radicals and Goldie dimensions are important to ‘ 

investigate quotient rings. K. Brown has proved that if G is a torsion-frèe 

Abelian group then (i) Z(A)G=Z(AG) , where Z(A) denotes the right singular 

ideal of the ring A , (ii) N(A)G=N(AG) whenever N(A) is nilpotent, where 

N(A) denotes the nilpotent radical of A , and (iii) the right Goldie dimension 

of A equals the right Goldie dimension of AG. 

In this paper, we obtain the results (i) and (ii) for G a free group. But the 

result (iii) is not true if G is a free group (Example 2.5) 

Throughout this paper the letter A means a ring with an identity 1. 

2. ResuIts 

A ring is caIled a η'ght /z"nzïe d z"mensz"onal r쩌g if there do not exist infinitely' 

many nonzero right ideals whose sum is direct. 

PROPOSITION 2. 1. Let A be a /z"nzïe dz'ηzensz'onal ring aηd G be a [z"nz"te grozφ. 

TheíZ the grozep ring AG is also a [inite dimensional ring. 

The proof of the above statement is routine. Here we omit its proof. 

PROPOSlTION 2.2. (K. Brown [2]) Let A be a ring and H이Gsμch that G/H 

is a torsion-free Abelian group. Then the right Goldie dimension o[ A eqzeals 

tlzat o[ AG. 

A group G is caIled an FC-grozφ if every element of G has only finitely

many conJugates. 
‘’ 

COROLLARY 2.3. Let A be a [inite dimensional r z"ng and G be an FC-group , 

wzïh only /z"nitely many torsion elements. Then AG is also a [inite dimensional 
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.rtng. 

PROOF. Let T be the torsion subgorup of G. Then AT is finite dimensional 
,by Proposition 2. 1. But G/T is a torsion-free Abelian group ([5] ; page 676) , 
:hence AG is also a finite dimensional ring by Proposition 2.2. 

PROPOSITION 2.4. Let A be a rz'ght order iη a se강lf-injectz"v’e senmzti.ψerfec따t rηz.%g 

’ Qa’nd G be a fi1’ηti“te grmμep. Then the gr’'ouφ:p ri1χzg AG is also a rz'ght order in a 

self-injectz"ve semi-perfect ring. 

PROOF. By Proposition 2. 1, AG is a finite dimensional ring. Since G is finite, 
we can see that QG is also self-injective ([5] ; page 663). Thus we may assume 

” ‘ that E(AG)ζQG (indeed, they are equal). Let x=필blZ;'~giEE(AG) where ai’ 
‘biεA， ai being a non-zero-divisor in A. Then there exists a non-zero-divisor a* 

:in A , and hence a non-zero-divisor in AG, such that all aia*εA (see [7]). 
n , 

Hence xa*= 필blZ:참giEAG. Thus we have our proposition (see [9]). 

Let G be a free group. Then every element of G can be written as a reduced 
‘ word of generators. Now we introduce the lengths of G as follow: 

Let x=g월2---g;εG， where p, q and r are nonzero integers and gj are gener

‘ ators such that gi,pg
i+ 1' Then we define the length of x as n. 

EXAMPLE 2.5. Let G be a free group generated by the set {g l' h1, g 2' h2, …}. 
‘ Take A the ring of integers. Consider right ideals (g1+h1)AG, (g2+h2)AG, .... 

We claim that their sum is direct. 1ndeed, suppose (gl+hl)(x1+…+좌)+…+ 

(gn +1.씨 (Y1+"'+Ym) =0. Choose an element among xi'Yj so that it has maximal 

!length among them. We may assume that such element is xl' Then either glx1 
.or h1x1 is of maximal length in the above sum. Thus either glx1 or h1x1 can 

mot vanish. 1t is a contradiction. 

Hence AG is not of finite dimensional, but A is a finite dimensional ring. 
‘ Thus the Proposition 2.2 is not true for G a free group. 

LEMMA 2.6. Let G be a free group and x1' …, xn be dz'stz"nct elements z'n G. 

"Then there exists xεG such that (x1x+"'+xnx)(Y1+"'+Ym) has a term coeffiáent 

1 for any dis tz"nct elements Y1' …'Ym in G, where the ηzultzþlz'catz"on is taken in the 

group ying AG over the 서ng A of z'ntegers. 

PROOF. Suppose xn=(…)gt is of maximal length k among xi and ym=hs(*했) 
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;is of maximal length k' among Yj' Put( ... ) -1 (X1+…+X씨 =μl+---+%--1+gt and 

{Yl+'''+Y씨(*했)-1=Ul+…+Um-1+ks. 
(case 1) For some ui (or νj) has the generator g(h) in the left (right, 

:respectively) side. Thcn χ . and U . must be of the forms gt’ and hs', respectively. 
t J 

江t is not difficult to show that for some such i , j , xiYj has coefficient 1. 

(case 2) No Xi (and uj) contains the generator g(lZ) in the left (right, respec

otively). 

If g ::p h, then xnym-term has coefficient 1. 

If g=h, then it is sufficient to consider the case hS=g-t, i.e. everyelement 

'.of maximal length among xi and Yj have g' and g -t as the last part and the 

:first part, respectively. 

If x1 is of len~th k-1 , we consider the following three cases: 

(i) if x 1=( ... ) fS' withf::p g.then X1g-
t is of len~th k+k'- 1. It is notdifficult 

,to show that XιY m has coefficient 1. 

(ii) if x1 =( ... )l with t'::p t then x 1g -t and xng -t are of length k-1 and of 

maximal length among xig -t. But the last parts of them are not equal, and 

hence g -t is the desired element. 

Ciii) x1 = (…)g'. Now we consider only the case (iii). 

If x2 is of length k-2, we consider the following three cases: 

(iv) if x2=(…)fs with f#g then X2g--t is of 1ength k-1 and of maximaI 

Ilength among xig -t, but the last part of :(2-;-1 is different from that of xng-t 

.of length k -1. Thus g -1 is the desired element. 

(v) if x2=( ... )g" with t'::p t , then x2g-
1 is of length k-2, and xng- I is of -1 

!maximal length k -1 among xig -1. But the last parts of x2g -1 and Xπg-t are 

lTIot equaI. Thus we can deduce that g -1 is the desired element. 

(vi) X2= (…)g'. Now we consider only the case (vi). 

Continuing this process, we obtain the fact that all x i has g' as last part. 

‘ Then we can easily see that our assertion is true. 

LEMMA 2.7. (R. Shock [l1 J) For 0낯αεAG there exz'sts bεA sχch t!zat the 

,right annihilators of tlle co쩍fficients of nonzero element αb are equal. 

PROPOSITION 2.8. Let A be a commuta!z've ring and H be a subgro;tþ 0/ a 
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group G sμch that HCC(G) , the center ofG, and G/H is a free groμ:p. The，~ 

Z(AH)G=Z(AG). 

The proof of Proposition 2.8 is similar to thl:'.t of Theorem 2.6 in [11] if we 

apply the Lemmas 2.6 and 2.7. Here we omit its proof. 

We don’ t know whether the commutativity in Proposition 2.8 can be removed. 

But if A is right non-singular, the commutativity is unnecessary. 

PROPOSITION 2.9. Let G be a free group. Then A is right non-singμlar 서r and 

only zf AG is. 

PROOF. Assume that Z(A) =0. Suppose 0낯αEZ(AG) and put α =a1x1 + … +anx"ι 

az#O and xzεG. By Lemma 2.7, there is bεA such that the right annihi-

lators of nonzero coefficients of αb~O are equal. Put b=b1z1+ ... +b상， 까~O. 

By Lemma 2. 6, there is xεG such that (zlx+ …+ZkX ) (yl +'_.+ym ) has a term 

with coefficient 1 for any elements Yl' .", Ym in G. Since b1 종Z (A) = 0, there is 

O~cEA such that r(b1)ncA=0. We claim that r(αbx)ncAG=O. lndeed, suppose 

that this is false, then there is O~ßεcAG such that (αbx)ß=O. Put ß=r1Yl 

+ .. +cηχ”， 0#CjεcA. Then b/j =O for some i , j. Thus b1cj =0. lt is a contra

diction. Hence αbx can not belong to Z(AG) , a contradiction. So Z(AG) =0. 

The reγerse implication is clear. 

COROLLARY 2.10. Let H <G sμch that HCC(G) and G/H is a free groμ:p. 

Then AH z.s right non-singular zf and only zf AG is. 

PROOF. Clear. 

PROPOSITION 2. 11. Let A be a r쩌g and G be a free group. Assume that N(A}

is 쩌lpotent. Then N(A)G=N(AG). 

The proof is similar to that of Lemma 2.7 in [2]. Here we omit its proof. 

Kyungpook University 
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