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THE RIESZ DECOMPOSITION OF VYECTOR-VALUED UNIFORM
AMART FOR CONTINUOUS PARAMETER

By Bong Dae Choi

Let (2, %, P) be a complete probability space. For each szR+= [0, 00), let

%, be a sub-o-algebra of # which includes all of null sets. The collectiom
(F )D,=p+ of g-algebras is assumed to be increasing (i-e., if £<s, then F CF
and right continuous (i.e. # ,= s{;tﬁ'  forall t& R+). A simple stopping time-
of (&F t)rem 1s a function 7: Q—[0, o) taking only finitely many values, such.
that {r<t} € #, for all ¢&. Let T be the set of all simple stopping times; under-
the natural order T is a directed set filtering to the right. ¢, T and ¢ denote- -

elements of T.

Let £ be a Banach space and (X,),—p. be a family of random variables.
adapted to (F t)te R l.e., X,: 2—FE s F# -strongly measurable for each & RT.
E(X) (expectation of X) is the Bochner integral of X and E(X| %) is a con-
ditional expectation of X relative to a subalgebra & C % . For 1 & T define
the random variable X, by X.=X, on {r=¢} and define the ¢-algebra # _ by
F ={Ae F |AN{r=t} € F, for all tE R+}. The family (Xf)tem is called an:
amart [4] for (F),cp. iff ElX,|<co for all t€R™ and the net (E(X),cp

converges to a finite limit.
A. Bellow introduced uniform amarts [3] for discrete parameter. One of the:

charaterizations of uniform amarts is the following: (X)) is a uniform amart.

iff lim (ECX,|.%,)~X,)=0 in L'..
Ty 2N N ‘

Now we introduce un'ifoi'm -amart- for continuous parameter.

DEFINITION (X t)te p+ 18 E-valued uniform amart if whenever 7,2, T oo we:
have lim (E(X, |.% )~X )=0 in I';, where 7,&T, s5,&R™.

Edgar and Sucheston (5] have given a Riesz decomposition of vector-valued;

amarts for discrete parameter, and A. Bellow [3] has given a Riesz decomposi-
tion of vector-valued uniform amarts for discrete parameter. The continuous:

parameter version of this theorem is the main result of the present note.
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PROPOSITION 1. If (X Diepe 1S vector-valued quasi-martingale, then (X t)te ot

is vector-valued umniform amart.

PROOF. Let 7,>s, 1o, where 7,ET, s,ER"=[0, o). Let ({;) be the
“union” of (s,) and the set of values of all the r, arranged in incCreasing order.
Then (X,) is quasi-martingale for discrete parameter. Ly [3] (X,) is uniform

amart for discrete parameter. Since (z,) are stopping times for (& tt)’ by one

ofl the chracteri_zations of uniform amarts we have
- JIBX, | F ) - X Jldp—0 as nco.
Therefore (&X,),=p. is vector-valued uniform amart.

THEOREM 2. (Riesz decomposltmn) Let (X )ER,, bé vector-valued um’ﬁrm
ainart.. Thern (X )reR+ admits a unique decomposition X,=Y, —[—Z where (Yt)tER+

s a martingale and [|Z Hl——-—rO as t—oo, In czddztzan HZ ]]1——-—rO as T ] oo.

'PROOF. First we will prove that this decomposition 1s unlque If Y +Z,=
Y',+Z',, where Y, Z, and Y’,, Z’, are two Riesz decomposition for X, then
Y, =Y ,<IZ,l,+Z’ lll—+0 as {—oo, But (Yt) (Y’t) being martingales 1mp11es
that (IY,—Y",|) is a real-valued submartingale. This implies that {[Y,~Y"; is a
nonfdec:1'easiﬁg function on ¢. Therefore Y ,—Y/[|;=0 which gives

“ - I’;t=Yt" a.s. and Z,=Z, a.s.
Next we will show the existence of the decomposition. Let s, <s,<s5<e be
any strictly increasing squence with lim s, =00, Let ¢ be any fi};ed real _number.
For sjzt, E(Xsl_lﬁ' f) is a Cauchy sequence in LlE, becausé |
|E(X, | F )~ E(X, | F DI =IEEX, | F )~ X )| F I <IEX, | F )= X, ]|, ~0.
it foilows that W,=lim E(X |# ) exists almost surely and in LIE. The L'
convergence of BF(X sflﬁ" ,) obviously implies
E(W,|# )=lim E(E(Xs‘lﬁ't)lﬁ's)=lim E(Xsflﬁ's)=Ws for s<{,

that is, (W,),p+ 1S a martingale. Now we show that (X —W [l —0 as j—oo.
Since [E(X | F ) —~X |l —0, E(X | F )W, in L'. Therefore X s W, in
' '

Consider the sequence 1, 2, 3, ---. Let ¥, denote the corresponding martin-

gale such that IX,=Y,ll;—0. We claim that || X,-Y ;-0 as f—oco. Otherwise
there would exist a strictly increasing sequence #; <t,<#3<:-- increasing to oo
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such that lim IX EH—Y&II‘1>8. Let(s) Dbe the union of (¢,) and (#) in increasing
order. Let (R,) be a martingale such that (X s;_Y Sl_fll—a-O as 7—oo, Now
(Y,—R,) is a martingale and so [[Y,—R || 1s a submartingale, therefore [[¥,—R I
is non-decreasing function of #. However we have
Y —R i <IX —Y |, +I|X —R|,—0

by the choice of the mértingales (Y,) and (R). Therefore P(Y,=R)=1 for
every ¢, This implies that |X —Y [[,—0 and this is against the choice of the
sequence (¢). Therefore |X,-Y,||,;—0 as t—oco, Put Z,=X,-Y,.

In addition, let © &T, t, 1%. The set of values of all the T isan incresing
sequence s, 1. Let U,=Z_, define stopping times ¢, for (F# ) by letting

g,=? On {z,=s;}. (U,) is discrete. parameter uniform amart, and W, 1s L
bounded. By [3] (IU,) is real-valued L'-bounded amart. By [1] 1Z_ N, =1lU, {l,-0.

Metivier and Pallaumail [6] proved Riesz decomposition for quasi-mar tingale

under the assumption that £ has the Radon- leondym property. But combin-
ing theorem 2 with proposition 1, we obtain Riesz decomposition for quasi-

martingale without Radon-Nikodym property.

COROLLARY 3. Vector-valued quast-mariingale for cowntinuous parameter has
Riesz decomposition.

Let now % be an algebra of subsets of 2. If u: F—E is a finitely additive
set function, we denote by ||l total variation of g, thatis, |ull=sup 22 ([uCAD]|
(7

(the supremum being taken over all finite sequences (4, of disjoint sets in

%) whenever the supremum is finite.

I;EMMA 4. [4] Let E be a Banach space. Let (X,),—p. be an E-valued amart,
For each t&<T

set (A):f X dp for AEF

Then the family (p_(A)) = converges to a limit u(A) in E for eack AE: sz! F
E +

UTﬁ' - and the convergence ts “uniform” inthe sense that for each €>0 there
(A=

is ¢, SR such that

0E&T, 024> sgg 1, (A) — p(A)l <e.

“THEOREM 5. Let (X e 2+ be vector-valued amart. The followmg are equiva:
lent under the notalions i Leinma 4.
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(/) Givern €>0, there exists 0 &€ R+ such that |p,—pl F |\ <e for any o=th..

(2) (X);zp+ 15 vector-valued uniform amart.
PROOF. (1) (2) First we observe that liz,ll=[IX_lldp. Let 7 >s 1 oo,
|ECX, | F )—X || <IX, —X |l =le, —p lishe, —pl+llp—pu 120 as n—oo.
(2) = (1). By Theorem 1 we have Riesz decomposition X tﬁYt—I-.Z , where (Y,) is:
a martingale and [|Z_|l;—0 as 7 1oo. Since ,u.r(A)=fA Xr dp=fAYT dﬁ—l—fﬂ Z dp
and f 4 Z.dp—0. Therefore p(A)= f ,Y_dp is independent on <. Hence:
=l F = [ 1X =Y ldp=11Z_}};—0.
COROLLARY 6. Let (X t)téRJ, be a vector-valued wunmiform amarit which is L'-

bounded, that is, sup ﬁlthldP=A<°°-

Thern (X l),cp. s a real-valued L'-bounded amart at oo.

PROOF. By theorem 2 there exists /oR™ such that ip,— | F ) <e for any

g>>to. In particular for all =, |
lp,—p| F li<e. Therefore [[u]F I<|pll+e<A+e.

Since the total variation of a measure increases with the o-field, we have:
HuIFUHSA+s for all c € T.

Hence (x| %# |l converges in R. On the other hand
11X ldp— 15 1=l = hal F I <, — pl F 1 <e.
Therefore (J||X Ulldﬁ)ger converges.

COROLLARY 7.Let E has Randon-Nikodym property, and (X)),—p. be 7

bounded uniform amart.
(1) If (X)cps 1S teminally uniformly integrable, that is, given €>0 there are

to, Oo SUCH tkat t=>to and P(A)<J implies f AIIX,I] dp<e, then (X ) 1=p+ CONverges.
in Ll-m)fm. ™

(2) if (X),=ps+ 1S separable, then (X 1.)ERJ, converges a.s. as i—oo,

PROOF. (1) By theorem 1 we have Riesz decomposition X,=Y,+Z. Since:
(Z,) is terminally uniformly integrable, ¥ ,=X,—Z, is also terminally uniformly

integrable. By [9] (¥,) converges in L*. Hence (X t) converges in L
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(2) Let X,=Y,+Z, be the Riesz decomposition. Now f IZ Jldp—0, so (Z)p,

is L'-bounded for some #. Thus Y)p,, isan L'-bounded separable martingale.
Hence (Y,) converges a.s. as ¢{—oo, On the other hand (IZ,),, is a real-

valued L'-bounded amart at oo by Cor 2. So (IZ,ll) converges a.s. as {—oo.

Hence (Z,) converges a.s. Therefore (X,) converges a.s.
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