THE RIESZ DECOMPOSITION OF VECTOR-VALUED UNIFORM AMART FOR CONTINUOUS PARAMETER

By Bong Dae Choi

Let (Ω, \mathcal{F}, P) be a complete probability space. For each $t \in \mathbb{R}^+ = [0, \infty)$, let \mathcal{F}_t be a sub- σ -algebra of \mathcal{F} which includes all of null sets. The collection $(\mathcal{F}_t)_{t \in \mathbb{R}^+}$ of σ -algebras is assumed to be increasing (i.e., if $t \leq s$, then $\mathcal{F}_t \subset \mathcal{F}_s$ and right continuous (i.e. $\mathcal{F}_t = \bigcap_{s > t} \mathcal{F}_s$ for all $t \in \mathbb{R}^+$). A simple stopping time of $(\mathcal{F}_t)_{t \in \mathbb{R}^+}$ is a function $\tau \colon \Omega \to [0, \infty)$ taking only finitely many values, such that $\{\tau \leq t\} \in \mathcal{F}_t$ for all t. Let T be the set of all simple stopping times; under the natural order T is a directed set filtering to the right. σ , τ and ρ denote-elements of T.

Let E be a Banach space and $(X_t)_{t \in R^+}$ be a family of random variables. adapted to $(\mathscr{F}_t)_{t \in R^+}$, i.e., $X_t \colon \Omega \to E$ is \mathscr{F}_t -strongly measurable for each $t \in R^+$. E(X) (expectation of X) is the Bochner integral of X and $E(X|\mathscr{F})$ is a conditional expectation of X relative to a subalgebra $\mathscr{F} \subset \mathscr{F}$. For $\tau \in T$ define the random variable X_τ by $X_\tau = X_t$ on $\{\tau = t\}$ and define the σ -algebra \mathscr{F}_τ by $\mathscr{F}_\tau = \{A \in \mathscr{F} \mid A \cap \{\tau = t\} \in \mathscr{F}_t \text{ for all } t \in R^+\}$. The family $(X_t)_{t \in R^+}$ is called an amart [4] for $(\mathscr{F}_t)_{t \in R^+}$ iff $E \|X_t\| < \infty$ for all $t \in R^+$ and the net $(E(X_\tau))_{\tau \in T^+}$ converges to a finite limit.

A. Bellow introduced uniform amarts [3] for discrete parameter. One of the charaterizations of uniform amarts is the following: (X_n) is a uniform amart. iff $\lim_{\tau_n \ge n} (E(X_{\tau_n} | \mathscr{F}_n) - X_n) = 0$ in L_E^1 .

Now we introduce uniform amart for continuous parameter.

DEFINITION $(X_t)_{t \in \mathbb{R}^+}$ is *E-valued uniform amart* if whenever $\tau_n \geq s_n \uparrow \infty$ we have $\lim_{t \to \infty} (E(X_{\tau_n} | \mathscr{F}_{s_n}) - X_{s_n}) = 0$ in L^1_E , where $\tau_n \in T$, $s_n \in \mathbb{R}^+$.

Edgar and Sucheston [5] have given a Riesz decomposition of vector-valued amarts for discrete parameter, and A. Bellow [3] has given a Riesz decomposition of vector-valued uniform amarts for discrete parameter. The continuous parameter version of this theorem is the main result of the present note.

PROPOSITION 1. If $(X_t)_{t \in \mathbb{R}^+}$ is vector-valued quasi-martingale, then $(X_t)_{t \in \mathbb{R}^+}$ is vector-valued uniform amart.

PROOF. Let $\tau_n \ge s_n \uparrow \infty$, where $\tau_n \in T$, $s_n \in R^+ = [0, \infty)$. Let (t_R) be the "union" of (s_n) and the set of values of all the τ_n arranged in increasing order. Then (X_{t_k}) is quasi-martingale for discrete parameter. Ey [3] (X_{t_k}) is uniform amart for discrete parameter. Since (τ_n) are stopping times for (\mathcal{F}_{t_k}) , by one of the chracterizations of uniform amarts we have

$$\int ||E(X_{\tau_n}|\mathscr{F}_{s_n}) - X_{s_n}||dp \to 0 \text{ as } n \to \infty.$$

Therefore $(X_t)_{t \in \mathbb{R}^+}$ is vector-valued uniform amart.

THEOREM 2. (Riesz decomposition) Let $(X_t)_{t \in \mathbb{R}^+}$ be vector-valued uniform amart. Then $(X_t)_{t \in \mathbb{R}^+}$ admits a unique decomposition $X_t = Y_t + Z_t$ where $(Y_t)_{t \in \mathbb{R}^+}$ is a martingale and $\|Z_t\|_1 \longrightarrow 0$ as $t \longrightarrow \infty$. In addition $\|Z_t\|_1 \longrightarrow 0$ as $\tau \uparrow \infty$.

PROOF. First we will prove that this decomposition is unique. If $Y_t + Z_t = Y'_t + Z'_t$, where Y_t , Z_t and Y'_t , Z'_t are two Riesz decomposition for X_t , then $\|Y_t - Y'_t\|_1 \le \|Z_t\|_1 + \|Z'_t\|_1 \to 0$ as $t \to \infty$. But (Y_t) , (Y'_t) being martingales implies that $(\|Y_t - Y'_t\|)$ is a real-valued submartingale. This implies that $\|Y_t - Y'_t\|_1$ is a non-decreasing function on t. Therefore $\|Y_t - Y'_t\|_1 = 0$ which gives

$$Y_t = Y_t'$$
 a.s. and $Z_t = Z_t'$ a.s. .

Next we will show the existence of the decomposition. Let $s_1 < s_2 < s_3 < \cdots$ be any strictly increasing squence with $\lim s_n = \infty$. Let t be any fixed real number. For $s_j \ge t$, $E(X_{s_i} | \mathscr{F}_t)$ is a Cauchy sequence in L^1_E , because $\|E(X_{s_i} | \mathscr{F}_t) - E(X_{s_i} | \mathscr{F}_t)\|_1 = \|E(E(X_{s_i} | \mathscr{F}_{s_i}) - X_{s_i})\|_1 \le \|E(X_{s_i} | \mathscr{F}_{s_i}) - X_{s_i}\|_1 \to 0$. It follows that $W_t = \lim E(X_{s_i} | \mathscr{F}_t)$ exists almost surely and in L^1_E . The L^1 -convergence of $E(X_{s_i} | \mathscr{F}_t)$ obviously implies

 $E(W_t|\mathscr{F}_s) = \lim E(E(X_{s_i}|\mathscr{F}_t)|\mathscr{F}_s) = \lim E(X_{s_i}|\mathscr{F}_s) = W_s \text{ for } s < t,$ that is, $(W_t)_{t \in \mathbb{R}^+}$ is a martingale. Now we show that $\|X_{s_i} - W_{s_i}\|_1 \to 0$ as $j \to \infty$. Since $\|E(X_{s_i}|\mathscr{F}_{s_i}) - X_{s_i}\|_1 \to 0$, $E(X_{s_i}|\mathscr{F}_{s_i}) \to W_{s_i}$ in L^1 . Therefore $X_{s_i} \to W_{s_i}$ in L^1 .

Consider the sequence 1, 2, 3, Let Y_t denote the corresponding martingale such that $||X_n - Y_n||_1 \to 0$. We claim that $||X_t - Y_t||_1 \to 0$ as $t \to \infty$. Otherwise there would exist a strictly increasing sequence $t_1 < t_2 < t_3 < \cdots$ increasing to ∞

such that $\lim \|X_{t_n} - Y_{t_n}\|_1 > \varepsilon$. Let (s_n) be the union of (t_n) and (n) in increasing order. Let (R_t) be a martingale such that $\|X_{s_i} - Y_{s_i}\|_1 \to 0$ as $i \to \infty$. Now $(Y_t - R_t)$ is a martingale and so $\|Y_t - R_t\|$ is a submartingale, therefore $\|Y_t - R_t\|_1$ is non-decreasing function of t. However we have

$$||Y_n - R_n||_1 \le ||X_n - Y_n||_1 + ||X_n - R_n||_1 \to 0$$

by the choice of the martingales (Y_t) and (R_t) . Therefore $P(Y_t = R_t) = 1$ for every t. This implies that $||X_{s_t} - Y_{s_t}||_1 \to 0$ and this is against the choice of the sequence (t_i) . Therefore $||X_t - Y_t||_1 \to 0$ as $t \to \infty$. Put $Z_t = X_t - Y_t$.

In addition, let $\tau_n \in T$, $\tau_n \uparrow \infty$. The set of values of all the τ_n is an incresing sequence $s_n \uparrow \infty$. Let $U_i = Z_{s_i}$, define stopping times σ_n for (\mathscr{F}_{s_i}) by letting $\sigma_n = i$ on $\{\tau_n = s_i\}$. (U_i) is discrete parameter uniform amart, and (U_i) is L^1 -bounded. By [3] $(\|U_i\|)$ is real-valued L^1 -bounded amart. By [1] $\|Z_{\tau_n}\|_1 = \|U_{\sigma_n}\|_1 \to 0$.

Metivier and Pallaumail [6] proved Riesz decomposition for quasi-martingale under the assumption that E has the Radon-Nikondym property. But combining theorem 2 with proposition 1, we obtain Riesz decomposition for quasi-martingale without Radon-Nikodym property.

COROLLARY 3. Vector-valued quasi-martingale for continuous parameter has Riesz decomposition.

Let now \mathscr{B} be an algebra of subsets of Ω . If $\mu \colon \mathscr{B} \to E$ is a finitely additive set function, we denote by $\|\mu\|$ total variation of μ , that is, $\|\mu\| = \sup_{i} \sum \|\mu(A_{i})\|$ (the supremum being taken over all finite sequences (A_{i}) of disjoint sets in \mathscr{B}) whenever the supremum is finite.

LEMMA 4. [4] Let E be a Banach space. Let $(X_t)_{t \in \mathbb{R}^+}$ be an E-valued amart. For each $\tau \in T$

set
$$\mu_{\tau}(A) = \int_A X_{\tau} dp$$
 for $A \in \mathcal{F}_{\tau}$

Then the family $(\mu_{\tau}(A))_{\tau \in T}$ converges to a limit $\mu(A)$ in E for each $A \in \bigcup_{t \in R^+} \mathscr{F}_t$ = $\bigcup_{\tau \in T} \mathscr{F}_{\tau}$, and the convergence is "uniform" in the sense that for each $\varepsilon > 0$ there is $t_0 \in R^+$ such that

$$\sigma \in T$$
, $\sigma \ge t_0 \Rightarrow \sup_{A \in \mathcal{F}_{\sigma}} \|\mu_{\sigma}(A) - \mu(A)\| \le \varepsilon$.

THEOREM 5. Let $(X_t)_{t \in \mathbb{R}^+}$ be vector-valued amart. The following are equivalent under the notations in Lemma 4.

- (1) Given $\varepsilon > 0$, there exists $t^0 \in R^+$ such that $\|\mu_{\sigma} \mu\| \mathscr{F}_{\sigma}\| < \varepsilon$ for any $\sigma \ge t_0$...
- (2) $(X_t)_{t=R^+}$ is vector-valued uniform amart.

PROOF. (1) \Rightarrow (2) First we observe that $\|\mu_{\tau}\| = \int \|X_{\tau}\| dp$. Let $\tau_n \geq s_n \uparrow \infty$. $\|E(X_{\tau}, |\mathscr{F}_s) - X_s\|_1 \leq \|X_{\tau} - X_s\|_1 = \|\mu_{\tau} - \mu_s\| \leq \|\mu_{\tau} - \mu\| + \|\mu - \mu_s\| \to 0$ as $n \to \infty$.

(2) \Rightarrow (1). By Theorem 1 we have Riesz decomposition $X_t = Y_t + Z_t$ where (Y_t) is a martingale and $\|Z_\tau\|_1 \to 0$ as $\tau \uparrow \infty$. Since $\mu_\tau(A) = \int_A X_\tau \, dp = \int_A Y_\tau \, dp + \int_A Z_\tau dp$ and $\int_A Z_\tau \, dp \to 0$. Therefore $\mu(A) = \int_A Y_\tau \, dp$ is independent on τ . Hence, $\|\mu_\tau - \mu\| \mathscr{F}_\tau \| = \int \|X_\tau - Y_\tau\| \, dp = \|Z_\tau\|_1 \to 0$.

COROLLARY 6. Let $(X_t)_{t\in R^+}$ be a vector-valued uniform amart which is L^1 -bounded, that is, $\sup \int ||X_t|| dp = A < \infty$.

Then $(\|X_t\|)_{t\in\mathbb{R}^+}$ is a real-valued L^1 -bounded amart at ∞ .

PROOF. By theorem 2 there exists $t_0 \in \mathbb{R}^+$ such that $\|\mu_{\sigma} - \mu\| \mathscr{F}_{\sigma} \| < \varepsilon$ for any $\sigma \ge t_0$. In particular for all $t \ge t_0$,

$$\|\mu_t - \mu\| \mathcal{F}_t\| < \varepsilon$$
. Therefore $\|\mu\| \mathcal{F}_t\| \le \|\mu_t\| + \varepsilon \le A + \varepsilon$.

Since the total variation of a measure increases with the σ -field, we have:

$$\|\mu\|\mathscr{F}_{\sigma}\| \leq A + \varepsilon \text{ for all } \sigma \in T.$$

Hence $\|\mu\|\mathscr{F}_{\sigma}\|$ converges in R. On the other hand

$$|\int ||X_{\sigma}||dp-||\mu|\mathscr{F}_{\sigma}||=||\mu_{\sigma}||-||\mu|\mathscr{F}_{\sigma}||\leq ||\mu_{\sigma}-\mu|\mathscr{F}_{\sigma}||<\varepsilon.$$

Therefore $(\int ||X_{\sigma}|| dp)_{\sigma \in T}$ converges.

COROLLARY 7.Let E has Randon-Nikodym property, and $(X_t)_{t \in \mathbb{R}^+}$ be L^{1} -bounded uniform amart.

- (1) If $(X_t)_{t \in \mathbb{R}^+}$ is teminally uniformly integrable, that is, given $\varepsilon > 0$ there are t_0 , δ_0 such that $t \ge t_0$ and $P(A) < \delta$ implies $\int_A ||X_t|| dp < \varepsilon$, then $(X_t)_{t \in \mathbb{R}^+}$ converges in L^1 -norm.
 - (2) if $(X_t)_{t \in \mathbb{R}^+}$ is separable, then $(X_t)_{t \in \mathbb{R}^+}$ converges a.s. as $t \to \infty$.

PROOF. (1) By theorem 1 we have Riesz decomposition $X_t = Y_t + Z_t$. Since (Z_t) is terminally uniformly integrable, $Y_t = X_t - Z_t$ is also terminally uniformly integrable. By [9] (Y_t) converges in L^1 . Hence (X_t) converges in L^1 .

(2) Let $X_t = Y_t + Z_t$ be the Riesz decomposition. Now $\int \|Z_t\| dp \to 0$, so $(Z_t)_{t>t_0}$ is L^1 -bounded for some t_0 . Thus $(Y_t)_{t>t_0}$ is an L^1 -bounded separable martingale. Hence (Y_t) converges a.s. as $t\to\infty$. On the other hand $(\|Z_t\|)_{t>t_0}$ is a real-valued L^1 -bounded amart at ∞ by Cor 2. So $(\|Z_t\|)$ converges a.s. as $t\to\infty$. Hence (Z_t) converges a.s. Therefore (X_t) converges a.s.

Ohio State Univ.
Columbus, Ohio 43210
U.S.A.
Kyungpook Univ.
635 Taegu, Korea.

REFERENCES

- [1] Astbury, K., On Amarts and Other Topics, Ph.D. dissertation, Ohio State University, (1976). Also amarts indexed by directed sets, Ann. prob. 1977, to appear.
- [2] Austin, D.G., Edgar, G.A., and Ionescu Tulcea, A., Pointwise convergence in terms of expectations, Zeit. Wahrs. verw. Gebiete 30, pp. 17-26 (1974).
- |3| Bellow, A., Les Amarts uniformes, C. R. Acad. Sci, Paris, 284, Serie A pr. 1295—1298 (1977).
- [4] Edgar, G. A., and Sucheston, L., Amarts: A class of asymptotic martingales, J. Multivariate Anal. 6. pp. 193-221; 572-591 (1976)
- [5] Edgar, C. A., and Sucheston, L., The Riesz decomposition for vector-valued amarts, Zeit. Wahrs. verw. Gebiete 36. pp.85-92 (1976).
- [6] Metivier, M., and Pellaumail, J., On doleans-Follmer's measure for quasi-martingales, Illinois J. Math 19 (1975) No. 4 pp. 491—504.
- [7] Neveu, J., Martingales a temps discrete. Masson, Parris, 1972.
- [8] Rao, K. M., Quasi-martingales, Math. Scand. 24, pp. 79-92 (1969)
- [9] Uhl, J. J., Applications of Radon-Nikodym Theorems to martingales of vector-valued functions, Bull. Am. Math. Soc. 75, 1969, pp.139-144.