Kyungpook Math. J. Volume 18, Number 1 June, 1978.

ON TOPOLOGIES WITH IDENTICAL DENSE SETS

By Norman Levine

1. Introduction and background

We shall term two topologies \mathcal{T} and \mathcal{U} on a set X to be equivalent (and write $\mathcal{T} \equiv \mathcal{U}$ iff (X, \mathcal{T}) and (X, \mathcal{U}) have identical dense sets. It is the intent of this paper to study some of the stable properties of congruence of topologies and to investigate extremal members of $[\mathcal{T}]$, the equivalence class determined by \mathcal{T} .

We will make frequent use of the following concepts:

DEFINITION 1.1. A topology \mathcal{T} on a set X is a D-topology iff every nonempty open set is dense in X (see [1]).

DEFINITION 1.2. A topology \mathcal{T} is an S-topology iff every superset of a nonempty open set is open (see [3]).

DEFINITION 1.3. Suppose (X, \mathscr{T}) is a topological space and $A \subset X$. Then $\mathscr{T}[A]$ denotes the supremum of \mathscr{T} and $\{\phi, A, X\}$ and is called the simple extension of \mathcal{T} by A (see [2]).

DEFINITION 1.4. A set A in a space (X, \mathcal{T}) is semi-open iff $A \subset c$ Int A, c denoting closure and Int denoting interior. $S(\mathcal{T})$ denotes the set of all semiopen sets (see [4]).

In §2, several characterizations of equivalence are given. It is shown that the following properties are invariant relative to equivalence: indiscreteness, discreteness, D-topology, separability, resolvability, first category, Baire space. In §3, we show that congruence behaves smoothly relative to product and sum spaces; sufficient conditions are given for $Y \cap \mathscr{T} \equiv Y \cap \mathscr{U}$ when $T \equiv \mathscr{U}$ and $Y \subset X$. If (X^*, \mathcal{T}^*) and (X^*, \mathcal{U}^*) are the one-point compactifications of (X, \mathcal{T}^*) \mathscr{T}) and (X, \mathscr{U}) , then $\mathscr{T}^* \equiv \mathscr{U}^*$ iff $\mathscr{T} \equiv \mathscr{U}$ and \mathscr{T} and \mathscr{U} are both compact or both noncompact.

§4, 5, 6, 7 treat extremal members of $[\mathcal{T}]$ and §8 consists of examples and counterexamples.

.

Finally, c_t and c_u denote closure operators relative to \mathcal{T} and \mathcal{U} and Int_t and Int_t denote the respective interior operators. \mathcal{C} denotes complementation.

2. General properties

We now give several characterizations of equivalence.

THEOREM 2.1. Let $(X, \mathcal{T}, \mathcal{U})$ be a bitopological space. The following are

equivalent: (i) $\mathcal{T} \equiv \mathcal{U}$ (ii) $\phi \neq 0 \in \mathcal{T}$ implies there exists a $U \in \mathcal{U}$ such that $\phi \neq U$ $\subset 0$ and $\phi \neq U^* \in \mathcal{U}$ implies there exists an $0^* \in \mathcal{T}$ such that $\phi \neq 0^* \subset U^*$ (iii) for each $A \subset X$, $Int_t A \neq \phi$ iff $Int_u A \neq \phi$ (iv) for each $A \subset X$, $Int_t c_u A \subset c_t A$ and $Int_u c_t A \subset c_u A$.

PROOF. (i) \rightarrow (ii) Let $\phi \neq 0 \in \mathscr{T}$; then $\mathscr{C}0$ is not \mathscr{T} -dense and hence not \mathscr{U} dense. Thus, $c_u \ \mathscr{C}0 \neq X$ and $\ \mathscr{C}_c \ \mathscr{C}0 \neq \phi$. Take $U = \ \mathscr{C}_c \ \mathscr{C}0$. (ii) \rightarrow (iii) is clear (iii) \rightarrow (iv) Suppose $\operatorname{Int}_t c_u A \not\subset c_t A$; then $\operatorname{Int}_t c_u A \cap \ \mathscr{C}_t A \neq \phi$ and hence $\operatorname{Int}_t (c_u A \cap \ \mathscr{C}A) \neq \phi$. (iii) implies that $\operatorname{Int}_u (c_u A \cap \ \mathscr{C}A) \neq \phi$. But $\operatorname{Int}_u (c_u A \cap \ \mathscr{C}A) = \operatorname{Int}_u c_u A \cap \ \mathscr{C}c_u A = \phi$, a contradiction. (iv) \rightarrow (i) Let A be $\ \mathscr{T}$ -dense. Then $c_u A \supset \operatorname{Int}_u c_t A = \operatorname{Int}_u X = X$. Thus A is $\ \mathscr{U}$ -dense.

COROLLARY 2.2. Let $(X, \mathcal{T}, \mathcal{U})$ be a bitopological space. Then $\mathcal{T} \equiv \mathcal{U}$ iff $0 \in \mathcal{T}$ implies there exists a $U \in \mathcal{U}$ such that $U \subset 0$ and $c_t U = c_t 0$ and $U^* \in \mathcal{U}$ implies there exists an $0^* \in \mathcal{T}$ such that $0^* \subset U^*$ and $c_u O^* = c_u U^*$.

PROOF. The sufficiency follows from (ii) of theorem 2.1. To show the necessity, let $O \in \mathscr{F}$ and $U = \operatorname{Int}_u O$; clearly $c_i U \subset c_i O$. It suffices to show then that $O \subset c_i U$; suppose however that $O \cap \mathscr{C}c_i U \neq \phi$. By (iii) of theorem 2.1, $\operatorname{Int}_u (O \cap \mathscr{C}c_i U) \neq \phi$ and hence $\operatorname{Int}_u O \cap \mathscr{C}c_i U \neq \phi$. But $\operatorname{Int}_u O \cap \mathscr{C}c_i U = \psi \cap \mathscr{C}c_i U = \phi$, a contradiction.

We now list some properties which are invariant relative to equivalence in THEOREM 2.3. Let $(X, \mathcal{T}, \mathcal{U})$ be a bitopological space and $\mathcal{T} \equiv \mathcal{U}$. Then (i) \mathcal{T} is indiscrete iff \mathcal{U} is indiscrete (ii) \mathcal{T} is discrete iff \mathcal{U} is discrete (iii) \mathcal{T} is a D-topology iff \mathcal{U} is a D-topology (see definition 1.1) (iv) \mathcal{T} is separable iff \mathcal{U} is separable (v) \mathcal{T} is resolvable iff \mathcal{U} is resolvable (a space is resolvable iff a subset and its complement are both dense) (vi) if $A \subset X$, then A is \mathcal{T} -nowhere

On Topologies with Identical Dense Sets 63

dense iff A is U-nowhere dense (vii) T is of first category iff U is of first category (viii) (X, \mathcal{T}) is a Baire space iff (X, \mathcal{U}) is a Baire space.

PROOF. (i) Let \mathscr{T} be indiscrete and $\phi \neq U \in \mathscr{U}$. By (ii) of theorem 2.1, there exists an $O \in \mathscr{T}$ such that $\phi \neq O \subset U$. Then O = X and hence U = X. (ii) Let \mathscr{T} be discrete and $x \in X$. Then $\{x\} \in \mathscr{T}$ and by (ii) of theorem 2.1, $\{x\} \in \mathcal{U}$. Thus \mathcal{U} is discrete.

(iii) Let \mathscr{T} be a D-topology and $\phi \neq U \in \mathscr{U}$. By corollary 2.2, there exists an $0 \in \mathcal{T}$ such that $O \subset U$ and $c_u O = c_u U$. Then $O \neq \phi$ and since \mathcal{T} is a D-topology, O is \mathcal{T} -dense and hence \mathcal{U} -dense. Thus U is \mathcal{U} -dense and \mathcal{U} is a D-topology. (iv) and (v) are obvious.

(vi) Let $A \subset X$ and let A be \mathscr{T} -nowhere dense; then $\operatorname{Int}_{\mathcal{C}_{\mathcal{A}}} A = \phi$. By (iv) of theorem 2.1, $\operatorname{Int}_{t}c_{u}A \subset \operatorname{Int}_{t}c_{t}A = \phi$ and hence $\operatorname{Int}_{t}c_{u}A = \phi$. By (iii) of theorem 2.1, $\operatorname{Int}_{\mathcal{A}} c_{\mathcal{A}} A = \phi$ and A is \mathcal{U} -nowhere dense.

(vii) follows from (vi).

(viii) Let (X, \mathcal{T}) be a Baire space and suppose $U_n \in \mathcal{U}$, U_n is \mathcal{U} -dense for each $n \ge 1$. By corollary 2.2, there exist $O_n \in \mathscr{T}$ such that $O_n \subset U_n$ and $c_u O_n = c_u U_n$ =X for each $n \ge 1$. Hence $c_n O_n = X$ and thus $c_n O_n = X$. It follows then that X = X $c_{t} \cap O_{n} \subset c_{t} \cap U_{n} \subset X$ and $\cap U_{n}$ is \mathscr{T} -dense; hence $\cap U_{n}$ is \mathscr{U} -dense.

THEOREM 2.4. Let $(X, \mathcal{T}, \mathcal{U})$ is a bitopological space, $\mathcal{T} \equiv \mathcal{U}$ and $\mathcal{U} \subset \mathcal{T}$. If \mathcal{T} is regularly open ($O = Int_i c_i O$ for each $O \in \mathcal{T}$), then \mathcal{U} is regularly open.

PROOF. Let $U \in \mathcal{U}$; it suffices to show that $U \supset \operatorname{Int}_{\mathcal{U}} C$. By corollary 2.2, there exists an $O \in \mathscr{T}$ such that $O \subset U$ and $c_u O = c_u U$. Now $\operatorname{Int}_t c_t O = O \subset U$. Hence $U \supset \operatorname{Int}_{t} c_{t} O \supset \operatorname{Int}_{t} c_{u} O$ (by (iv) of theorem 2.1) $\supset \operatorname{Int}_{u} c_{u} O$ (since $\mathcal{U} \subset \mathcal{T}$) = $\operatorname{Int}_{u} c_{u} U$. Frequent use is made of

LEMMA 2.5. Let $\mathcal{T} \subset \mathcal{T}^* \subset \mathcal{U}$ be topologies on X and $\mathcal{T} \equiv \mathcal{U}$. Then $\mathcal{T}^* \equiv \mathcal{U}$.

PROOF. Apply (ii) of theorem 2.1.

3. Subspaces, products, sums

Equivalence is not invariant relative to subspace (see example 8.4). However, we have Ē

LEMMA 3.1. Let $(X, \mathcal{T}, \mathcal{U})$ be a bitopological space, $\mathcal{T} \equiv \mathcal{U}$ and $Y \subset X$. (1) If Y is \mathcal{T} -dense (and hence \mathcal{U} -dense) in X, then $Y \cap \mathcal{T} \equiv Y \cap \mathcal{U}$ (2) If $Y \in \mathcal{T} \cap \mathcal{U}$, then $Y \cap \mathcal{T} \equiv Y \cap \mathcal{U}$.

PROOF. (1) Let $\phi \neq Y \cap O$ where $O \in \mathscr{T}$. By (ii) of theorem 2.1, there exists: a $U \in \mathscr{U}$ such that $\phi \neq U \subset O$. Since Y is dense, $\phi \neq Y \cap U \subset Y \cap O$. (2) Let $\phi \neq Y \cap O$ where $O \in \mathscr{T}$. Then $Y \cap O \in \mathscr{T}$ and hence there exists a. $U \in \mathscr{U}$ such that $\phi \neq U \subset Y \cap O$. Thus $\phi \neq U \cap Y \subset O \cap Y$.

THEOREM 3.2. Let $(X, \mathcal{T}, \mathcal{U})$ be a bitopological space and $Y \subset X, Y \cap \mathcal{T} \equiv Y$ $\cap \mathcal{U}, Y \in \mathcal{T} \cap \mathcal{U}$ and Y both \mathcal{T} -dense and \mathcal{U} -dense. Then $\mathcal{T} \equiv \mathcal{U}$.

PROOF. Let $\phi \neq 0 \in \mathscr{T}$; then $\phi \neq Y \cap O$ since Y is dense. Since $Y \cap \mathscr{U} = Y \cap \mathscr{T}$, there exists a $U \in \mathscr{U}$ such that $\phi \neq Y \cap U \subset Y \cap O$. But $Y \cap U \in \mathscr{U}$ since $Y \in \mathscr{U}$. Thus, $\phi \neq Y \cap U \subset O$.

THEOREM 3.3. Let $(X, \mathcal{T}, \mathcal{U})$ be a bitopological space and $X = \bigcup \{A_{\alpha} : \alpha \in \Delta\}$ where $A_{\alpha} \in \mathcal{T} \cap \mathcal{U}$ for each $\alpha \in \Delta$. Then $\mathcal{T} \equiv \mathcal{U}$ iff $A_{\alpha} \cap \mathcal{T} \equiv A_{\alpha} \cap \mathcal{U}$ for each $\alpha \in \Delta$.

PROOF. The necessity follows from (2) of lemma 3.1. To show the sufficiency, let $\phi \neq 0 \in \mathscr{T}$. Then $0 \cap A_{\alpha} \neq \phi$ for some $\alpha \in \varDelta$ and hence there exists. a $U \in \mathscr{U}$ such that $\phi \neq A_{\alpha} \cap U \subset A_{\alpha} \cap O$. But $A_{\alpha} \cap U \in \mathscr{U}$ and $\phi \neq A_{\alpha} \cap U \subset O$. It follows from (ii) of theorem 2.1 that $\mathscr{T} = \mathscr{U}$.

We now obtain the easy

64

COROLLARY 3.4. Let (X, \mathcal{T}) be the disjoint union of the family of spaces: $\{(X_{\alpha}, \mathcal{T}_{\alpha}): a \in \Delta\}$ and (X, \mathcal{U}) the disjoint union of the fimily $\{(X_{\alpha}, \mathcal{U}_{\alpha}): \alpha \in \Delta\}$. Then $\mathcal{T} = \mathcal{U}$ iff $\mathcal{T}_{\alpha} = \mathcal{U}_{\alpha}$ for each $\alpha \in \Delta$.

PROOF. Apply theorem 3.3 using the fact that $X_{\alpha} \in \mathscr{T} \cap \mathscr{U}$ for each $\alpha \in \mathscr{L}$ and $\mathscr{T}_{\alpha} = X_{\alpha} \cap \mathscr{T}$, $\mathscr{U}_{\alpha} = X_{\alpha} \cap \mathscr{U}$.

COROLLARY 3.5. Let $(X, \mathcal{T}, \mathcal{U})$ be a bitopological space and $(X^*, \mathcal{T}^*)_{,.}$ (X^*, \mathcal{U}^*) the one-point compactifications of (X, \mathcal{T}) and (X, \mathcal{U}) respectively. Then $\mathcal{T}^* \equiv \mathcal{U}^*$ iff $\mathcal{T} \equiv \mathcal{U}$ and \mathcal{T} and \mathcal{U} are both compact or both noncompact.

PROOF. Suppose $\mathcal{T}^* \equiv \mathcal{U}^*$. Then $\mathcal{T} = X \cap \mathcal{T}^* \equiv X \cap \mathcal{U}^* = \mathcal{U}$ by (2) of lemma 3.1 since $X \in \mathcal{T}^* \cap \mathcal{U}^*$. Thus $\mathcal{T} \equiv \mathcal{U}$. \mathcal{T} is compact iff $\{\infty\} \in \mathcal{T}^*$ iff $\{\infty\} \in \mathcal{U}^*$ iff \mathcal{U} is compact.

Conversely, suppose $\mathscr{T} \equiv \mathscr{U}$ and \mathscr{T} and \mathscr{U} are both noncompact. Then X is \mathscr{T}^* -and \mathscr{U}^* -dense in X^* and $X \in \mathscr{T}^* \cap \mathscr{U}^*$. By theorem 3.2, $\mathscr{T}^* \equiv \mathscr{U}^*$. Now suppose that \mathscr{T} and \mathscr{U} are both compact. Then $X^* = X \cup \{\infty\}$, $X \in \mathscr{T}^* \cap \mathscr{U}^*$ and $\{\infty\} \in \mathscr{T}^* \cap \mathscr{U}^*$. By theorem 3.3, $\mathscr{T}^* \equiv \mathscr{U}^*$.

LEMMA 3.6. Let $f:(X, \mathcal{T}) \to (Y, \mathcal{U})$ and $f:(X, \mathcal{T}^*) \to (Y, \mathcal{U}^*)$ be continuous:

On Topologies with Identical Dense Sets 65.

open surjections. If $\mathcal{T} \equiv \mathcal{T}^*$, then $\mathcal{U} \equiv \mathcal{U}^*$.

PROOF. Let $\phi \neq U \in \mathcal{U}$; then $\phi \neq f^{-1}[U] \in \mathcal{F}$ and hence by (ii) of theorems 2.1, there exists an $O^* \in \mathcal{F}^*$ such that $\phi \neq O^* \subset f^{-1}[U]$. Then $\phi \neq f[O^*] \subset U$ and $f[O^*] \in \mathcal{U}^*$.

THEOREM 3.7. Let $(X_{\alpha}, \mathscr{T}_{\alpha}, \mathscr{U}_{\alpha})$ be a bitopological space for each $\alpha \in \Delta$ and \mathcal{U}_{α} .

$$iff \ \mathcal{T}_{\alpha} \equiv \mathcal{U}_{\alpha} \ for \ each \ \alpha \in \Delta.$$

PROOF. The necessity follows from lemma 3.6. To show the sufficiency, let $\phi \neq \bigcap \{P_{\alpha_i}^{-1} [O_{\alpha_i}] : i=1, \dots, n\}$ where $O_{\alpha_i} \in \mathscr{T}_{\alpha_i}$. By (ii) of theorem 2.1, there exist $U_{\alpha_i} \in \mathscr{U}_{\alpha_i}$ such that $\phi \neq U_{\alpha_i} \subset O_{\alpha_i}$ Then $\phi \neq \bigcap \{P_{\alpha_i}^{-1} [U_{\alpha_i}] : i=1, \dots, n\} \subset \bigcap \{P_{\alpha_i}^{-1} [O_{\alpha_i}] : i=1, \dots, n\}$. Applying (ii) of theorem 2.1, it follows that $\mathscr{T} \equiv \mathscr{U}$.

4. Maximal topologies in $[\mathcal{T}]$

LEMMA 4.1. Let (X, \mathcal{T}) be a topological space. There exists a \mathcal{U} maximal in: [\mathcal{T}] such that $\mathcal{T} \subset \mathcal{U}$.

PROOF. Let $\mathscr{A} = [\mathscr{T}' : \mathscr{T}' \in [\mathscr{T}]$ and $\mathscr{T} \subset \mathscr{T}'$; it suffices to show that \mathscr{A} has a maximal element. We apply Zorn's lemma; let $\phi \neq \mathscr{B} \subset \mathscr{A}$, \mathscr{B} a chain. Let $\mathscr{T}^* = \bigvee \{\mathscr{T}' : \mathscr{T}' \in \mathscr{B}\}$. Clearly $\mathscr{T} \subset \mathscr{T}^*$; it suffices to show that $\mathscr{T}^* \in [\mathscr{T}]$ and hence $\mathscr{T}^* \in \mathscr{A}$. Let $\phi \neq O^* \in \mathscr{T}^*$. There exists an $O' \in \mathscr{T}' \in \mathscr{B}$

such that $\phi \neq O' \subset O^*$. Since $\mathscr{T}' \equiv \mathscr{T}$, there exists an $O \in \mathscr{T}$ such that $\phi \neq O \subset O'$ $\subset O^*$ and hence $\phi \neq O \subset O^*$. By (ii) of theorem 2.1, $\mathscr{T} \equiv \mathscr{T}^*$.

LEMMA 4.2. Let (X, \mathcal{T}) be a topological space and $A \subset X$. Then $\mathcal{T} \equiv \mathcal{T}^{-1}$ [A] iff $A \in \mathcal{S}(\mathcal{T})$ (see definition 1.4 and 5], page 93).

PROOF. Sufficiency. We employ (ii) of theorem 2.1. Let $\phi \neq W \in \mathscr{T}[A]$; then there exist $O, U \in \mathscr{T}$ such that $W = O \cup (U \cap A)$ (see[2]). If $\phi \neq O$, then $\phi \neq O' \subset W$ and there is nothing more to prove. If $\phi = O$, then $U \cap A \neq \phi$; let $x \in U \cap A$. Since $A \subset c_t \operatorname{Int}_t A$, it follows that $U \cap \operatorname{Int}_t A \neq \phi$. Take $O^* = U \cap \operatorname{Int}_t A$. Then $O^* \in \mathscr{T}$ and $\phi \neq O^* \subset U \cap A$.

Necessity. Suppose $A \notin \mathfrak{S}(\mathscr{T})$; then $A \not\subset c_t \operatorname{Int}_t A$. Let $a \in A$, $a \notin c_t \operatorname{Int}_t A$. There exists then an $O \in \mathscr{T}$ such that $a \in O$ and $O \cap \operatorname{Int}_t A = \phi$. But $\phi \neq O \cap A \in \mathscr{T}$ [A] and hence there exists an $O^* \in \mathscr{T}$ such that $\phi \neq O^* \subset O \cap A$. Hence $O \cap \operatorname{Int}_t A$ $\supset O \cap O^* \supset O^* \neq \phi$ and $O \cap \operatorname{Int}_t A \neq \phi$, a contradiction.

ι,

LEMMA 4.3. Let (X, \mathcal{T}) be a toplogical space and $A \subset X$. Then $\mathcal{T} \neq \mathcal{T}[A]$ iff $A \notin \mathcal{T}$.

We omit the easy proof.

66

THEOREM 4.4. Let (X, \mathcal{T}) be a topological space. Then \mathcal{T} is maximal in $[\mathcal{T}]$ iff $\mathcal{T} = \varsigma(\mathcal{T}).$

PROOF. Necessity. Suppose $A \in \mathcal{S}(\mathcal{T})$, but $A \notin \mathcal{T}$. The $\mathcal{T} \equiv \mathcal{T}[A]$ by lemma 4.2 and $\mathscr{T} \neq \mathscr{T}[A]$ by lemma 4.3. But $\mathscr{T} \subset \mathscr{T}[A]$ and hence \mathscr{T} is not maximal in $[\mathcal{T}]$.

Sufficiency. Suppose \mathscr{T} is not maximal in $[\mathscr{T}]$; there exists then a $\mathscr{U} \in$ $[\mathcal{T}]$ such that $\mathcal{T} \subset \mathcal{U}, \ \mathcal{T} \neq \mathcal{U}$. Take $U \in \mathcal{U} - \mathcal{T}$. Then $\mathcal{T} \subset \mathcal{T} [U] \subset \mathcal{U}$ and $\mathscr{T} \neq \mathscr{T}[U]$ by lemma 4.3. By lemma 2.5, $\mathscr{T} \equiv \mathscr{T}[U]$ and by lemma 4.2, $U \in \mathfrak{S}(\mathscr{T}) = \mathscr{T}$ and $U \in \mathscr{T}$, a contradiction.

COROLLARY 4.5. If \mathcal{T} is maximal in $[\mathcal{T}]$, then \mathcal{T} is an extremally disconnected topology.

PROOF. Let $O \in \mathcal{T}$; then $cO \in \mathfrak{S}(\mathcal{T}) = \mathcal{T}$ by theorem 4.4.

COROLLARY 4.6. Let (X, \mathcal{T}) be a topological space. There exists a topology U on X such that $\mathcal{T} \subset \mathcal{U}$, $\mathcal{T} \equiv \mathcal{U}$ and \mathcal{U} is extremally disconnected.

The proof follows from lemma 4.1 and corollary 4.5.

COROLLARY 4.7. Let \mathcal{T} be a non D-topology on X (see definition 1.1) There exists a topology \mathcal{U} on X such that $\mathcal{T} \subset \mathcal{U}$, $\mathcal{U} \equiv \mathcal{T}$ and \mathcal{U} is disconnected.

PROOF. By lemma 4.1, there exists a topology \mathcal{U} on X such that $\mathcal{T} \subset \mathcal{U}$, $\mathscr{T} \equiv \mathscr{U}$ and \mathscr{U} is maximal in $[\mathscr{T}]$. We now show that \mathscr{U} is disconnected. Since \mathscr{T} is a non D-topology, there exists nonempty disjoint open set O_1 and O_2 . Thus O_1 and $\operatorname{Int}_t \mathscr{C}O_1$ are nonempty and $O_1 \cup \operatorname{Int}_t \mathscr{C}O_1$ is \mathscr{T} -dense. By corollary 2.2 there exist U_1 and U_2 in \mathcal{U} such that $U_1 \subset O_1$, $U_2 \subset \operatorname{Int}_t \mathscr{C}O_1$, $c_t U_1 = c_t O_1$ and $c_t U_2 = c_t \operatorname{Int}_t \mathscr{C}O_1$. Thus $U_1 \cup U_2$ is \mathscr{T} -dense and hence \mathscr{U} -dense since $\mathscr{T} \equiv \mathscr{U}$. Hence $X = c_{\mu}U_1 \cup c_{\mu}U_2$ and since \mathcal{U} is extremally disconnected by corollary 4.5, it follows that $c_u U_1 \cap c_u U_2 = \phi$. Thus \mathcal{U} is a disconnected topology.

COROLLARY 4.8. Let (X, \mathcal{T}) be a topological space. Then \mathcal{T} is a D-topology iff $[\mathcal{T}]$ consists only of connected topologies. Car

The proof follows from corollary 4.6 and (iii) of theorem 2.3.

On Topologies with Identical Dense Sets 67

5. When is there a maximum in $[\mathcal{T}]$?

THEOREM 5.1. Let \mathcal{T} be an S-topology on X (see definition 1.2). Then \mathcal{T} is the largest topology in $[\mathcal{T}]$.

PROOF. Let $\mathcal{U} \in [\mathcal{T}]$; we show that $\mathcal{U} \subset \mathcal{T}$. Let $\phi \neq U \in \mathcal{U}$; by (ii) of theorem 2.1, there exists an $O \in \mathscr{T}$ such that $\phi \neq O \subset U$. Since \mathscr{T} is an S-topology, $U \in \mathcal{T}$.

THEOREM 5.2. Let (X, \mathcal{T}) be a topological space. Then $[\mathcal{T}]$ has a maximum iff \mathcal{T}_1 , \mathcal{T}_2 in $[\mathcal{T}]$ implies that $\mathcal{T}_1 \lor \mathcal{T}_2 \in [\mathcal{T}]$.

PROOF. Necessity. Suppose that \mathcal{U} is the largest member of $[\mathcal{T}]$ and let $\mathcal{T}_1, \mathcal{T}_2 \in [\mathcal{T}]$. Then $\mathcal{T}_1 \subset \mathcal{T}_1 \lor \mathcal{T}_2 \subset \mathcal{U}$ and by lemma 2.5, $\mathcal{T}_1 \lor \mathcal{T}_2 \equiv \mathcal{U} \equiv \mathcal{T}$. Sufficiency. By lemma 4.1, there exists a topology \mathcal{U} such that $\mathcal{T} \subset \mathcal{U}$ and \mathscr{U} is maximal in $[\mathscr{T}]$. We show that \mathscr{U} is the maximum in $[\mathscr{T}]$. Let \mathscr{T}^* $\equiv \mathcal{T}$. Then $\mathcal{T}^* \lor \mathcal{U} \equiv \mathcal{U}$ and $\mathcal{U} \subset \mathcal{T}^* \lor \mathcal{U}$. Since \mathcal{U} is maximal in $[\mathcal{T}]$, it follows that $\mathcal{T}^* \subset \mathcal{T}^* \lor \mathcal{U} = \mathcal{U}$.

COROLLARY 5.3. Let \mathcal{T} be a D-topology on X. Then $[\mathcal{T}]$ has a maximum.

PROOF. Let $\mathcal{T}_1, \mathcal{T}_2 \in [\mathcal{T}]$; we show that $\mathcal{T}_1 \vee \mathcal{T}_2 \in [\mathcal{T}]$. Firstly, let $\phi \neq 0$ $\in \mathscr{T}$. By (ii) of theorem 2.1, there exists an $O_1 \in \mathscr{T}_1$ such that $\phi \neq O_1 \subset O$. Then $O_1 \in \mathcal{T}_1 \subset \mathcal{T}_1 \lor \mathcal{T}_2$. Conversely, let $\phi \neq O_1 \cap O_2 \in \mathcal{T}_1 \lor \mathcal{T}_2$ where $O_i \in \mathcal{T}_i$. There exist then $O_i^* \in \mathscr{T}$ such that $\phi \neq O_i^* \subset O_i$. But $\phi \neq O_1^* \cap O_2^*$ since \mathscr{T} is a D-topology and

$O_1^* \cap O_2^* \subset O_1 \cap O_2$.

THEOREM 5.4. Let \mathcal{T} be a D-topology and let \mathcal{U} be the maximum in $[\mathcal{T}]$. Then U is an S topology.

PROOF. Let $\phi \neq U \subset A$ where $U \in \mathcal{U}$, We must show that $A \in \mathcal{U}$. Suppose on the contrary that $A \notin \mathcal{U}$. Since \mathcal{U} is maximal, $A \not\subset c_u$ Int_u A by theorem 4.4. Thus, c_{μ} Int $A \neq X$ and Int A is not \mathcal{U} -dense. But \mathcal{U} is a D-topology by (iii) of theorem 2.3 and $\phi \neq U \subset Int_{u} A$. Then $Int_{u} A$ is \mathcal{U} -dense, a contradiction.

6. Minimal and minimum topologies in $[\mathcal{T}]$

THEOREM 6.1 Let (X, \mathcal{T}) be a topological space. Then $[\mathcal{T}]$ has a minimum element iff for every nonempty family $\{\mathcal{T}_{\alpha}: \alpha \in \Delta\}$ in $[\mathcal{T}]$, then $\bigcap \{\mathcal{T}_{\alpha}: \alpha \in \Delta\}$ $\in [\mathcal{T}].$

PROOF. Sufficiency. $\bigcap \{ \mathscr{T}' : \mathscr{T}' \in [\mathscr{T}] \}$ is the smallest member of $[\mathscr{T}]$.

Necessity. Let \mathscr{U} be the minimum element of $[\mathscr{F}]$ and suppose that $\{\mathscr{F}_{\alpha}: \alpha \in \varDelta\}$ is a nonempty family in $[\mathscr{F}]$. Then $\mathscr{U} \subset \cap \{\mathscr{F}_{\alpha}: \alpha \in \varDelta\} \subset \mathscr{F}_{\alpha^*}$ where $\alpha^* \in \varDelta$. By lemma 2.5, $\bigcap \{\mathscr{F}_{\alpha}: \alpha \in \varDelta\} \equiv \mathscr{U} \in [\mathscr{F}]$.

THEOREM 6.2 Let (X, \mathcal{T}) be a T_1 , nondiscrete topological space. Then \mathcal{T} is not minimal in $[\mathcal{T}]$.

PROOF. Let $\{x^*\} \notin \mathcal{T}$ and define $\mathscr{U} = \{0 : 0 \in \mathcal{T}, 0 = X \text{ or } x^* \notin 0\}$. Then \mathscr{U} is a topology and $\mathscr{U} \subset \mathcal{T}$. Let $x \neq x^*$; then $\mathscr{C}\{x\} \in \mathcal{T}$, but $\mathscr{C}\{x\} \notin \mathscr{U}$ and hence $\mathscr{U} \neq \mathcal{T}$. We employ (ii) of theorem 2.1 to show that $\mathcal{T} = \mathscr{U}$; let $\phi \neq 0 \in \mathcal{T}$. If $x^* \notin 0$, then $0 \in \mathscr{U}$; if $x^* \in 0$, then $\phi \neq 0 \cap \mathscr{C}\{x^*\} \subset 0$ and $0 \cap \mathscr{C}\{x^*\} \in \mathscr{U}$.

7. A sufficient condition for $[\mathcal{T}] = \{\mathcal{T}\}$

THEOREM 7.1. If \mathcal{T} has a basis of minimal open sets, then $[\mathcal{T}] = \{\mathcal{T}\}$.

PROOF. Let $\mathscr{T} = \mathscr{U}$. We first show that $\mathscr{T} \subset \mathscr{U}$. Let $x \in O \in \mathscr{T}$; there exists then a minimal open set $O^* \in \mathscr{T}$ such that $x \in O^* \subset O$. By (ii) of theorem 2.1, there exists a $U^* \in \mathscr{U}$ such that $\phi \neq U^* \subset O^*$ and there exists an $O^* \in \mathscr{T}$ such that $\phi \neq O^* \subset U^* \subset O^*$. Since O^* is minimal, $O^* = O^*$ and hence $x \in U^* \subset O$. Thus $O \in \mathscr{U}$.

Next we show that $\mathscr{U}\subset \mathscr{T}$. Let $x\in U\in \mathscr{U}$; let $x\in O$ where O is a minimal \mathscr{T} -open set. Using the above argument, it follows that O is a minimal \mathscr{U} -open set and hence $x\in O\subset U$. Thus $U\in \mathscr{T}$.

COROLLARY 7.2 Let (X, \mathcal{T}) be a topological space in which the open sets and the closed sets coincide. Then $[\mathcal{T}] = \{\mathcal{T}\}$.

PROOF. $\{c(x) : x \in X\}$ is a basis for \mathscr{T} consisting of minimal open sets.

8. Some examples

EXAMPLE 8.1 Let X be the reals, \mathscr{T} the usual topology, \mathscr{U} the topology having sets of the form [a, b) as base and \mathscr{U} the topology having sets of the form (a, b] as base. Then $\mathscr{T} \equiv \mathscr{U} \equiv \mathscr{U}$ follows from (ii) of theorem 2.1. $[\mathscr{T}]$ has no maximum since $\mathscr{U} \lor \mathscr{U} = \mathscr{P}(X) \neq \mathscr{T}$ (see theorem 5.2). $(X, \mathscr{U} \text{ is 0-di-}$ mensional, (X, \mathscr{T}) is not. \mathscr{T} is locally connected and connected whereas \mathscr{U} is totally disconnected. \mathscr{T} is locally compact, but \mathscr{U} is not. \mathscr{T} is a second axiom space and \mathscr{U} is not. \mathscr{T} is metric, \mathscr{U} is not metrizable.

EXAMPLE 8.2. Let $X = \{a, b\}$ and $\mathcal{T} = \{\phi, \{a\}, X\}$. Then $[\mathcal{T}] = \{\mathcal{T}\}$, but \mathcal{T} does not have a basis of minimal open sets (see theorem 7.1).

On Topologies with Identical Dense Sets 69

EXAMPLE 8.3. Let X be the reals and $\mathscr{T} = \{O : O \neq \phi \text{ or } O = X \text{ or } O = (\infty, a)\}$ for some $a \in X$. Then $[\mathscr{T}]$ has no minimum element; let $\mathscr{U} = \{U : U = \phi \text{ or } v\}$ U = X or $U = (-\infty, -2n)$ $n = 1, 2, \dots$ and $U = \{V : V = \phi \text{ or } V = X \text{ or } V = (-\infty)$ ∞ , -(2n+1) n=1, 2, ...}. Then $\mathscr{U} \equiv \mathscr{T} \equiv \mathscr{U}$, but $\mathscr{U} \cap \mathscr{U} = \{\phi, X\} \neq \mathscr{T}$ (see theorem 6.1).

.

EXAMPLE 8.4 Let
$$X = \{a, b, c\}$$
 and $\mathscr{T} = \{\phi, \{a\}, X\}, \mathscr{U} = \{\phi, \{a\}, \{a, b\}, d\}$

 $\{a, c\}, X\}$. Then $\mathscr{T} \equiv \mathscr{V}, \mathscr{T}$ is normal, \mathscr{U} is not normal. If $Y = \{b, c\}$, then $Y \cap \mathscr{T} \not\equiv Y \cap \mathscr{U},$

EXAMPLE 8.5 Let X be the positive integers, $\mathscr{T} = \{0: 1 \notin O \text{ or } 1 \in O \text{ and } \mathscr{O}\}$ is finite} and $\mathcal{U} = \{U : 1 \notin U \text{ or } U = X\}$. Then $\mathcal{T} \equiv \mathcal{U}$, \mathcal{T} is compact Hausdorff and hence completely regular, \mathcal{U} is not $T_1(\{2\}$ is not closed) nor is it regular $(2 \notin \mathscr{C} \{2\} \text{ and } \mathscr{C} \{2\} \text{ is closed, but 2 and } \mathscr{C} \{2\} \text{ cannot be separated by } \mathscr{U} \text{-open}$ sets).

EXAMPLE 8.6. Let (X, \mathcal{T}) be as in example 8.5 and let \mathcal{U} be the topology for X generated by $\{1, 2\}, \{3\}, \{4\}, \{5\}, \dots$ as base. Then $\mathscr{T} \equiv \mathscr{U}, \mathscr{T}$ is compact Hausdorff, \mathscr{U} is not compact nor is it a T_0 space.

EXAMPLE 8.7. Let $X = \{a, b, c\}$ and $\mathcal{T} = \{\phi, \{a\}, \{b, c\}, X\}$. Then $[\mathcal{T}] = \{\phi, a\}$. $\{\mathcal{T}\}\$ by corollary 7.2. Note that \mathcal{T} is not an S-topology and hence the converse of theorem 5.1 is false.

The Ohio State Univ. 231 West 18th Avenue Columbus, Ohio 43210 U. S. A.

REFERENCES

- [1] Norman Levine, Dense Topologies, American Mathematical Monthly, Vol. 75, No.8, October 1968.
- [2] Norman Levine, Simple Extensions of Topologies, American Mathematical Monthly, Vol.71, No.1, January 1964.
- [3] Norman Levine, The Superset Topology, American Mathematical Monthly, Vol.75, No.7, August-September, 1968.
- [4] Norman Levine, Semi-open Sets and Semi-continuity in Topological Spaces, American Mathematical Monthly, Vol. 70, No. 1, January 1963.
- [5] Albert Wilansky, Topology for Analysis, Ginn and Company, 1970.

.