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ON TOPOLOGIES WITH IDENTICAL DENSE SETS 

By N orman Levine 

1. Introduction and background 

We shalI term two topologies ‘!T and Z! on a set X to be equivalent (and 
write Y =Z!) iff (X. ‘!T) and (X. Z!) have identical dense sets. 

It is the intent of this paper to study some of the stable properties of con­
gruence of topologies and to investigate extremal members of [Y]. the equiv­

alence cIass determined by ‘!T. 

We will make frequent use of the following concepts: 

DE~'INITION 1. 1. A topology ‘r on a set X is a D-topology iff every non­

empty open set is dense in X (see [1]). 

DEFINITION 1. 2. A topology Y is an S-topology iff every superset of a 
nonempty open set is open (see [3]). 

DEFINITION 1. 3. Suppose (X, ‘!T) is a topological space and A C X. Then 
Y[A] 야notes the supremum of Y and {Ø, A , X} and is caIled the st'mple 

extenst"on of ‘r by A (see [2]). 

DEFINITION 1. 4. A set A in a space (X, ‘!T) is se쩌-open iff A C c Int A , C 

denoting cIosure and Int denoting interior. S(Y) denotes the set of aIl semi­
open sets (see [4]). 

In S 2, several characterizations of equivalence are given. It is shown that 
the following properties are invariant relative to equivalence: indiscreteness, 
discreteness, D-topology, separability, resolvability, first category, Baire space. 

In S 3, we show that congruence behaves smoothly relative to product and 

sum spaces; sufficient conditions are given for yn‘.r르YnZ! when T三Z! and 
YcX. If (X*’ ‘.r*) and (X*, Z!*) are the one-point compactifications of (X, 

‘!T) and (X, Z!), then ‘r* 三 Z!융 iff ‘7 르 1/ and ‘.r and Z! are both compact 
or both noncompact. 

S 4, 5, 6, 7 treat extremal members of [‘.r] and S 8 consists of examples 
and counterexamples. 
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Finally, ct and Cu denote cIosure operators relative to ‘r and zf and Intt and 

Intu denote the respective interior operators. cif denotes complementation. 

2. General properties 

We now give several characterizations of equivalence. 

THEOREM 2. 1. Let (X , .:r, Zf) be a bitoþologz.cal space. The follow t"1zg are 
eqμivalent: (i) ‘7드zf (ii) rþ =;60ε:r imþUes there exists a Ue.1/ sμch that rþ =;6 U 
ζo and. rþ =;6U*EZf z.mþlt"es there exists an 0육ε.:r such that rþ =;60*CU* (iii) for 

each AζX. Intt A =;6 rþ iff Intu A7'얘 (iv) for each ACX. Intt c“ACctA and Int“ 
ctACcuA. 

PROOF. (i)• (ii) Let rþ =;60ε.:r; then CifO is not .:r -dense and hence not Zf­

dense. Thus. Cu CifO=;6 X and cif cuCifO =;6 rþ. Take U =Cif c“'?O. 

(ii)•(i ii) is cIear 

(iii)•(i v) Suppose Intt c“A<tceA; then InttcuAn CifctA=;6 rþ 

and hence Int/cιAn Cif A) =;6 rþ. (iii) impIies that Int“(cuAn Cif A)낯rþ. 

But Intu(cuAn Cif A)=IntucuAnCifcuA=rþ. a contradiction. 

(iv)-•(i) Let A be .:r-dense. Then cuA그Intu ceA =Intu X =X. Thus A is Zf­

dense. 

COROLLARY 2.2. Let (X. ‘:r, 1/) be a bUoþologz.cal sþace. Then ‘7三zf iff 

OE.:r imþlz"es there exists a UεZf sμch that UCO and cp=cp and U퓨EZf imþlt"es 

there exz.sts an 0*ε.:r such that O*CU용 a,zd Cu0%=CμU￥. 

PROOF. The sufficiency follows from (ii) of theorem 2. 1. To show the 

necessity. let 0ε:r and U=Intι0; cIearly cpCcp. It suffices to show then 

that Occp; suppose however that 0 n cif cp =;6 rþ. By (iii) of theorem 2. 1. Intu 
(On Cifcp) =;6 rþ and hence IntpnCifcp=;6 rþ. But Intpn Cifcp=unCifcp=rþ. a cont-

radiction. -
We now 1ist some properties which are invariant relative to equivalence in 

THEOREM 2.3. Let (X. ‘r. Zf) be a bzïoþological sþace and ‘:r=.,&,. Then 
(i) ‘:r is indiscrete 術 zf is z.ndiscrete (ii) ‘:r is discrete zj f '&' is dz.screte (iii) 

.:r is a D-to엉ology 짝 zf is a D-toþology (see dejz"nzïion 1.1) (iv) .:r z.s seþarable 

iff zf is seþarable (v) .:r is resolvable iff zf z.s resolvable (a sþace is resolν'able 

iff a subset and zïs comþlement are both dense) (vi) if ACX. then A is ‘:r-nowhere 
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dense ill A is ?/-nowhere dense (vii) ‘:T is 01 /z"rst category ill ?/ is 01 /z"rst 
category (viii) (X, ‘:T) is a Baire space ill (X, ?/) is a Baire space. 

PROOF. (i) Let ‘r be indiscrete and cþ~Uε?/. By (ii) of theorem 2. 1, there 

exists an 0ε.!T such that cþ~OCU. Then O=X and hence U=X. 

(ii) Let ‘:T be discrete and xEX. Then {x} E .!T and by (ii) of theorem 2. 1, 

{x} ε?/. Thus?/ is discrete. 
(iii) Let ‘:T be a D-topology and cþ~Uε~. By corollary 2.2, there exists an 

.0ε.!T such that OCU and cμO=cuU， Then 0해 and since ‘r is a D-topology, 

.0 is .!T-dense and hence ?/-dense. Thus U is ?/-dense and ?/ is a D-topology. 
(iv) and (v) are obvious. 

(vi) Let ACX and letA be .!T-nowhere dense; then IntltA=cþ. By (iv) of 

theorem 2. 1, Intt당AClnttctA=cþ and hence InttcuA=cþ. By (iii) of theorem 2.1, 

lntucuA=CÞ and A is ~-nowhere dense. 

(vii) follows from (vi). 

(viii) Let (X, ‘:T) be a ßaire space and suppose Unε?/， Un is ?/-dense for 

oeach n르1. By corollary 2.2, there exist 011ε:T such that OnCUnand cuOn=cuUn 
=X for each n르1. Hence cuOn=X and thus cp’‘=X. It follows then that X = 

，CtnOIlCCtnu，zζX and nUn is .!T-dense; hence nUn is ~-dense. 

THEOREM 2.4. Let (X , .!T, ?/) is a bitopologz"cal space, ‘7三?/ and ~C‘:T. 

11 ‘:T z"s regularly open (O=lnttcp lor each 0ε.!T)， then ?/ z"s regularly open. 

PROOF. Let UE?/; it suffices to show that U그IntucμU. By corollary 2.2, 

there exists an 0ε:T such that OCU and cμO=cuU， Now IntlP=OCU. Hence 

，U:::)Intlt。그Int{，“o (by (iv) of theorem 2.1):::)Intμcp (since ~C.!T)=IntucμU. 

Frequent use is made of 

LEMMA 2.5. Let .!Tζ‘:T*C?/ be topologz"es on X and ‘:T=.?/. Then ‘:T*三?/.

PROOF. Apply (ii) of theorem 2. 1. 

3. Subspaces, products, sums 

Equivalence is not invariant relative to subspace (see example 8.4). However, 
‘we have r 

LEMMA 3. 1. Let (X , .!T, ~) be a bitopologz"cal space, ‘7三~ and YCX. 

{1) 11 Y is ‘:T-dense (and hence ~-dense) z"n X. then Yn‘:T=.yn?/ 

(2) 11 Yε:Tn?/， thelt Yn‘7드Yn~. 
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PROOF. (1) Let q:í~YnO where 0든.r. By (ii) of theorem 2. 1, there exists;, 

a UE킹~ such that q:í ~UζO. Since Y is dense, rþ:;;ξynucyno. 

(2) Let q:í ~Yno where 0ε.r. Then ynOEY and hence there exists a , 

Uε .Ysuch that q:íT"Ucyno. Thus q:ír"unyζOny. 

THEORE;'vI 3.2. Let (X , ‘:T, ~) be a bitoþological sþace and YCX, yn..r三r

n~， Y든Yn~ alzd Y both ..r-dense and '2I-dens8. Then Y= '2I. 

PROOF. Let rþ r"O드.r; then 띠낯ynO since Y is dense. Since Yno/드Yn ‘7← 

there exists a U든Y such that q:ír" ynUcyno. But ynUε~ since YEo/. Thus. 

ø~ynucO. 

THEOREM 3.3. Let (X ’ ‘:T, 0/) be a bitoþological sþace and X=U {Aa: αε.1}; 

where AαE.rn o/ for each α드.1. Then ..r三zf zff AanY=AanZf for each αE.1. 

PROOF. The ne~essity follows from (2) of lemma 3. 1. To show the suf­

f iciency, let 따0εY. Then OnAa해 for some α티 and hence there exists. 

aUε'21 such that rþ r"AanuζAano. But AanUEZf and rþ~Aanuco. It fol­

lows f rom (ii) of theorem 2. 1 that ‘:T=Zf. 

We now obtain the easy 

COROLLARY 3.4. Let (X , ..r) be the dz'sj이'nt union of the faηzl!y of sþaces; 

{(Xα， ..rα): aε.1} and (X , Zf) the disjoint union of t /ze fimily {(Xa' '21 a): 

αε.1}. Then ‘7三zf 짜f ‘7’ g三zfa for each αE.1. 

PROOF. Apply theorem 3.3 using the fact that Xaε:Tn '21 for each αε4 

and Ya=Xan ..r, '21α=xan'2l. 

COROLLARY 3.5. Let (X , .Y一 ， '21) be a bitoþological S.ψace and (X싹’ ‘:T*) •. 

(X* , '21*) the one-þoint coη‘pactzfications of (X , ‘:T) ιnd (X, Zf) resþectz"νely. 

Then ..r*드'21* iff ‘7三'21 and ‘r and '21 are both comþact or both nonconφact. 

PROOF. Suppose ‘:T*=~껴. Then ‘:T=xny*三xn~*='2I by (2) of lemma. 

3.1 since Xε:T*n~서. Thus ‘7三~. ..r is compact iff {∞} ε..r* iff {∞} ε 

~* iff ~ is compact. 

Conversely, suppose ‘7三zf and ‘:T and ~ are both noncompact. Then X is. 

‘7육-and '2I*-dense in X* and Xε.r*n~/*. By theorem 3.2, ‘:T*三Z껴. Now 

suppose that ‘:T and zf are •both compact. Then X*=XU {∞}， Xε..r*n'2l* 

and {∞} εf대n~껴. By theorem 3.3, ..r*三~*.

LEMMA 3.6. Let f: (X , Y) • (Y , '21) and f: (X , ‘:T*)• (y, 21껴) be continuousc. 
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oφe% S%7jectψns. If .!T三‘!T*. then W三W*.

PROOF. Let rþ =;i:UεW; then rþ낯/-1 [U] εr’ and hence by (ii) of theorem~ 
2.1. there exists an O*E.!T츄 such that ￠#0%c=f l [U] • Then ￠*f [0%] IU and 

f[O*]E~*. 

THEOREM 3.7. Let (Xa• .!T a' W a) be a bitoþological sþace for each αεA and 

le! (X. ‘!T)=X{(Xa’ ‘7a): αEA}， (X. W)= X {(Xα， 2/g): αεA}. Then ‘7드Z 

i파f ‘r a=W a for each αεA. 

PROOF. The necessity foIlows from lemma 3.6. To show the sufficiency. let 

rþ =;i: n {P강 [Oa) : i=l • ..... n} where 0α‘εζt· By [ ii) of tfmem 2.1, there 

exist U a,EW a, such that rþ낯Ua‘I0% Then ￠#n{PLl [Ugt] : i=1, .. , %}ζ 

n{p강 [0α ] : i=l .... n}. Applying (ii) of theorem 2. 1, it follows that ‘!T=W. 

4. Maximal topologies in [..9•] 

LEMMA 4. 1. Le! (X • .!T) be a toþological sþace. There exis!s a W maximal z'n'. 

[Y"] such tha! .:Tτ:W. 

PROOF. Let ‘w = [.!T' :.!T'ε [Y] and ‘7ι!T'}; it suffices to show that 
.5It' has a maximal element. We apply Zom’ s lemma; let 好%ζ.5It'. !!ð a • 

chain. Let ‘r*=v{Y' : ‘!T'ε!!ð}. Clearly .!Tζ.!T*; it suffices to show that 

‘r*ε [‘!T] and hence ‘!T*εw. Let ø =;i: O*ε!T*. There exists an σE.!T'E!!ð 

such that rþ낯o'CO*. Since ‘!T'三‘!T. there exists an 0εr such that rþ =;i:OcO' 

CO* and hence rþ =;i: Oζ0*. By (ii) of theorem 2. 1. ‘7三‘r*.

LEMMA 4.2. Let (X. ‘!T) be a tOþological space and ACX. Then ‘7드‘7 

[A] zff Aεs(‘!T) (see defz"nz"tion 1.4 and 5]. page 93). 

PROOF. Sufficiency. We employ (ii) of theorem 2. 1. Let ø=;i:Wε7’ [A] ; 

then there exist O. Uε.!T such that w=oU(UnA) (see[2]). If rþ =;i:O. then rþ =;i:O' 

ζW and there is nothing more to prove. If rþ=O. then UnA =;i: rþ; let xεunA. 

SÌnce AC ct Int j A. it follows that un1ntt A =;i: rþ. Take O*=UnIntt A. Then 0* 

εY" and rþ =;i:O*CunA. 

Necessity. Suppose A종s(‘!T); then A<t ct Intt A. Let aεA. a종 ct Int, A .. 

There exists then an 0εr such that aεo and onlnt
t 

A=rþ. But rþ =;i:OnAε..r 

[A] and hence there exists an 0*εr such that 好o*cOnA. Hence OnInt l A 

그ono*그O* =;i: rþ and onlnt, A =;i: rþ. a contradiction. 
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LEMMA 4.3. Let (X , .!T) be a toplog z"cal space and ACX. Then ‘:T~‘:T [A] 

:lfl A풍‘r. 
We omit the easy proof. 

THEOREM 4.4. Let (X , .!T) be a topological space. Then ‘r is ηzaximal z"n 

:[‘:T] zfl ‘r=s(.!T). 

P,:WOF. Necessity. Suppose AES(.!T), but A졸.!T. The .!T=.‘r[A] by lem­

ma 4.2 and ‘r ~.!T [A] by lemma 4.3. But ‘7ζ‘r [A] and hence ‘r is not 

maximal in [‘r]. 

Sufficiency. Suppose .!T is not maximal in [‘:T]; there exists then a ~ε 

'[.:T] such that .!TC'!/ ’ ‘r~'!/. Take Uε'!/ -.!T. Then ‘rc‘r [U] c'!/ and 

f ~..r [U] by lemma 4.3. By lemma 2.5, ‘7三‘r [U] and by lemma 4. 2, 
.uεsιr)=‘r and Uε.!T， a contradiction. 

COROLLARY 4.5. 11 ‘r z.s maxz.ηzal Í1z [‘r] , then ‘r is an extremally discon-

1tected topology. 

PROOF. Let 0ε.!T; then cOεs(‘r)=‘r by theorem 4. 4. 

COROLLARY 4.6. Let (X , .!T) be a topologz"cal space. There exz.sts a to.ψoωgy 

z! on X sz!clz that ‘rc'!/’ ‘7三~ a1zd '!/ is ext1’emally disc01znected. 

The proof follows from lemma 4.1 and corollary 4.5. 

COROLLARY 4.7. Let ‘r be a 1101Z D-toψology on X (see dejz"nz"tion 1. 1) There 

exists a topology '!/ o;z X sμch that ‘7ζ，!/， '!/르‘r and '!/ z.s disconnected. 

PROOF. By lemma 4.1, there exists a topology '!/ on X such that ‘7ζ'!/， 

r三'!/ and ~ is maximal in [.!T]. We now show that W is disconnected. 

Since ‘:T is a non D-topology, there exists nonempty. disjoint open set 0 1 and 

O2. Thus 0 1 and Intt ø:"01 are nonemptyand 0 1 Ulntt ø:"01 is .!T-dense. By corol­

lary 2.2 there exist U1 and U2 in ~ such that U1COl' U2Clntt ø:"0 1' cPl=ct 0 1 
and cP2=ct Int t ø:"01. Thus U1 UU2 is.!T-dense and hence ~-dense since ‘F드~. 

Hence X=cuU1 U cuU2 and since W is extremally disconnected by corollary 4.5, 

it follows that C
U 

U1 n cμ U2=rþ. Thus W is a disconnected topology. 

COROLLARY 4.8. Let (X , ‘:T) be a topologz"cal space. Then ‘r is a D-topology 

학 [.!T] consz"sts only 01 connected topologz"es. /’. 、

The proof follows from corollary 4.6 and (iii) of theorem 2.3. 
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5. When is there a maximum in [‘r]? 

THEOREM 5. 1. Let ‘r bean S-toþology on X (see d쩌'nition 1.2). Then ‘7 

is the largest tOþology in [‘r]. 

PROOF. Let ~ε [‘r]; we show that ~C ‘r. Let rþ =;6:U E ~; by (ii) of the­
orem 2. 1, there exists an 0εr such that rþ =;6:0CU. Since ‘r is an S-topology, 

Uε‘:T. 

THEOREM 5.2. Let (X, ‘:T) be a topological space. Then [‘:T] has a maximuηt 

ijf 칸， 」칼 in [Y] imp!μs that 적V킹E[‘r]. 

PROOF. Necessity. Suppose that ~ is the largest member of [‘r] and let 

킹， 」칼ε [‘r]. Then 칸C칸V킹C~ and by lemma 2.5, .!7í V.j칼=~三Y. 

Sufficiency. By lemma 4. 1, there exists a topology ~ such that ‘rC~ and 
1/ is maximal in [Y]. We show that ~ is the maximum in [Y]. Let ‘7육 

三‘:T. Then ‘:T*V~=~ and ~εr*v~. Since ~ is maximal in [YL it 
follows that T*ζr*v~=~. 

COROLLARY 5. 3. Let ‘:T be a D-topology on X. Then [‘:T] has a maximum. 

PROOF. Let 칸，킹ε[‘r]; we show that 칸V쫓ε[Y] • Firstly, let 好O

ε:T. By (ii) of theorem 2. 1, there exists an 01εr 1 such that rþ =;6: 01 CO. Then 

01ε칸ζ적V킹. Conversely, let 따01n02ε칸V걷 where 0득칸.- There exist 

thenO션ε:T such that rþ =;6: 0션COi. But rþ =;6:o/not since ‘:T is a D-topology and 

0/notc01n02 . 

THEOREM 5.4. Let ‘r be a D-topology and let ~ be the maximum in [Y]. 

Then ~ is an S tOþology. 

PROOF. Let rþ =;6:UCA where Uε~， We must show that Aε~. Suppose on 

the contrary that A롤~. Since ~ is maximal, A Q:. c，μ Intu A by theorem 4. 4. 

Thus, Cu Intu A =;6: X and Int
u 

A is not tV-dense. But ~ is a D-topology by (iii) 

of theorem 2.3 and rþ=;6:UClnt" A. Then Intu A is 2Y-dense, a contradiction. 

6. Minimal and minimum topologies in [Y] 

THEOREM 6.1 Let (X, Y) be a topological space. Then [Y] has a mz'1ziηtum 

eIe%%t d었 for every nonemþty faηzily {‘ra: αεÁ} z'n [‘r] , then n {‘:Ta : αεÁ} 

E[‘r]. 

PROOF. Sufficiency. n {‘r' : ‘:T'ε [‘r]} is the smallest member of [‘:T]. 

’ 
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Necessity. Let ~ be the minimum element- of [‘.9""] and suppose that {‘7a : 

αεJ} is a nonempty family in. [‘.9""]. Then ~cn {‘:r α : α 드 A} C .r참 where 

한εA. By lemma 2. 5, n {‘7α :aεL1} 프~ε [‘.9""] • 

THEOREM 6.2 Let (X , ‘.9"") be a T l' nondz"screte toþologz"cal sþace. Then ‘7 

is not mz"n z"mal in [‘.9""]. 

PROOF. Let {삼}종.r and dejz"ne ~= {o : 0εY， O=X or 삼~O}. Then ~ is 

a topology and ~ι.9"". Let x-，Æ였; then '6' {x} ε.r， but '6' {x} 종~ and hence 

~-，Æ‘?’ • We employ (ii) of theorem 2.1 to show. that ‘.9""=~; letØ낯Oε.9"". 

If 삼훌0， then 0ε~; if 였ε0， then ø-,Æ On'6' {x센ζo and On'6' {x*}E~. 

7. A sufficient condition for . [.r] = {.3기 

THEOREM 7. 1. 11 ‘Y’ has a basz"s 01 mi쩌mal oþen sets, then [.r] = {.r}. 

PROOF. Let Y三~. We first show that ‘.9""c~. Let xεO드.r; there exists 

then a minimal open set 0*ε.9"" such that xεO*CO. By (ii) of theorem 2. 1, 

there exists a U*ε% such that %U%ζ0* and there exists an 0#ε.r such that 

ø=F- OltcU-'*CO*. Since 0* is minimal, 0#=0* and hence xεU싹CO. Thus 0ε~. 

Next we show that ~ζ‘.9"". Let xεUε~; let xεo where 0 is a minimal 

‘.9""-open set. Using the above argument, it follows that 0 is a minimal ~­

open set and hence xεOCU. Thus Uεr. 

COROLLARY 7.2 Let (X , ‘.9"") be a toþological sþace in whz"ch the 0.ψe1t sets and 

the closed sets coincide. T Jze1Z [‘.9""] ={‘.9""}. 

PROOF. {c(x): xεX} is a basis for ‘.9"" consisting of minimal open sets. 

8. Sorne exarnpIes 

EXAMPLE 8. 1 Let X be the reals, Y the usual topo]ogy, JY the topology 

having sets of the form [a, b) as base and vl the topology having sets of the 

form (a, b] as base. Then ‘7三zf三vl follows from (ii) of theorem 2. 1. [‘.9'"'] 

has no maximum since ~VVl=9;(X) -，Æ ‘.9"" (see theorem 5.2). (X , JY is O-di­

mensional, (X, Y) is not. ‘.9"" is locally connected and connected whereas JY is 

totally disconnected. ‘.9"" is locally compact, but JY is not. ‘.9"" is a second 

axiom space and JY is not. ‘r is metric, JY is not metrizable. 

EXAMPLE 8. 2. Let X = {a, b} and ‘r = {Ø, {a}, X}. Then [..9""'] = {.r}, but 

‘r does not have a basis of minimal open sets (see theorem 7. 1). 

i 
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EXAMPLE 8. 3. Let X be the reals and ‘.9"""={0: O ::;i;ø orO=Xor 0=(∞， a) 

for some aεX}. Then [‘.9"""] has no minimum dement; let ~= {U: U=ø or 

u=X or U=(-∞， -2n) n=l. 2, …} and V1= {v : V=ø or V=X or V=(­

∞• -(2n+1)) n=l. 2. …}. Then ~르.r닐J1， but ~nV1= {ø. X} 올‘.9""" (see 

theorem 6. 1). 

EXAMPLE 8.4 Let X= {a. b. c} and ‘r = {ø. {a}. X}. ~= {Ø, {a}, {a , b}, 

{a, c}. X}. Then .r三V1， ‘r is normal, ~ is not normaI. If Y = {b , c} , then 

Yπ7올Yn~. 

EXAMPLE 8.5 Let X be the positive integers, ‘r= {O: 1졸o or 1εo and 강O 

is finite} and ~= {U : 1훌U or U = X}. Then .;T =~’ ‘.9""" is compact Hausdorff 

and hence completely regular, ~ is not T 1( {2} is not cIosed) nor is it regular 

(2줄W {2} and W {2} is cIosed. but 2 and W {2} cannot be separated by ~-open 

sets). 

EXAMPLE 8.6. Let (X. ‘.9""") be as in example 8.5 and let ~ be the topology 

for X generated by {1. 2}. {3}. {4}. {5}. … as base. Then ‘r=~’ ‘r is 

-compact Hausdorff. ~ is not compact nor is it a TO.space. 

EXAMPLE 8.7. Let X={a. b. c} and .;T = {ø. {a}. {b, c}, X}. Then [.;T] = 

{‘.9"""} by coroIlary 7.2. Note that ‘r is not an S-topology and hence the con­

verse of theorem 5. 1 is false. 
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