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ON TOPOLOGIES WITH IDENTICAL DENSE SETS

By Norman Levine

1. Introduction and background

We shall term two topologies 7~ and ¥ on a set X to be equivalent (and
write F =%) iff (X, 9 ) and (X, Z ) have identical dense sets. |

[t is the intent of this paper to study some of the stable properties of con-
gruence of topologies and to investigate extremal members of [F ], the equiv-

alence class determined by 7.

We will make frequent use of the following concepts:

DEFINITION 1.1. A topology .7 on a set X is a D-topology iff every non-
empty open set is dense in X (see [1]).

DEFINITION 1.2. A topology .7 is an S-fopology iff every superset of a
nonempty open set is open (see [3]).

DEFINITION 1.3. Suppose (X, .7 ) is a topological space and A C X. Then
" [4] ‘denotes the supremum of 9 and {§, A, X} and is called the simple
extension of .9 by A (see [2]). |

DEFINITION 1.4. A set A in a space (X, 7 ) is semi-open iff ACc Int 4, ¢
denoting closure and Int denoting interior. S(.% ) denotes the set of all semi-
open sets (see [4]).

In §2, several characterizations of equivalence are given. It is shown that
the following properties are invariant relative to equivalence: indiscreteness,
discreteness, D-topology, separability, resolvability, first category, Baire space.

In §3, we show that congruence behaves smoothly relative to product and
sum spaces; sufficient conditions are given for YN.9 =Y N% when T=% and
YCX. If (X* 7%) and (X*, Z*) are the one-point compactifications of (X,
J ) and (X, Z), then T*=Z*iff =% and .9 and Z are both compact
or both nonéompact.

84, 5, 6, 7 treat extremal members of [.Z7] and §8 consists of examples
and counterexamples.
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Finally, ¢, and ¢, denote closure operators relative to J and Z and Int, and
Int denote the respective interior operators. € denotes complementation.

2. General properties
We now give several characterizations of equivalence.

THEOREM 2.1. Let (X, 7, Z) be a bitopological space. The following are
equivalent: (i) I =% (ii) ¢F#0ET implies there exists a UEZ such that ¢#U
CO and ¢F#U*EY implies there exists an OFX&T such that ¢FO*CU* (iii) for
each ACX, Int, A#Q iff Int, A#¢ (iv) for each ACX, Int, ¢, ACc,A and Ini,

¢, ACc, A.

PROOF. (i)—(ii) Let ¢#0&.9 ; then €0 is not .7 -dense and hence not Z-
dense. Thus, ¢, #0#X and &, 2 0#¢. Take U=%c & 0.
(i1)—(ii1) is clear
- (ii1)—(iv) Suppose Int, ¢ AGc,A; then Intc, ANEc,A# ¢
and hence Int,(c, ANF A)#¢. (iil) implies that Int (¢, ANF A)F#¢.
But Int (¢, AN¥ A =Int c ANEc A=¢, a contradiction.
(iv)—{) Let A be .9 -dense. Then ¢, ADInt, c,A=Int, X=X. Thus 4 is Z-

dense.

COROLLARY 2.2. Let (X, F, %) be a bitopological space. Then 7 =7 iff
0€.9 implies there exists a USZ such that UCO and c,U=c,0 and U*EY implies

there exists an O*&€F such that O*CU* and ¢ 0*=c U*.

PROOF. The sufficiency follows from (1i) of theorem 2.1. To show the
necessity, let O€J and U=Int O; clearly ¢,UCc,0. It suffices to show then

that OCc,U; suppose however that ONEcU#¢p. By (iil) of theorem 2.1, Int,
(ONZcU)#¢ and hence Int ONZcU#¢p. But IntﬁOﬂ?ctUzUﬂ‘%”ctU=¢, a cont-

radiction. .
We now list some properties which are invariant relative to equivalence in

THEOREM 2.3. Let (X, 7, Z) be a bitopological space and 7 =7%. Then
(1) 9 is indiscrete iff Z is indiscrete (ii) J is discrete if f Z is discrete (iii)
I~ is a D-topology iff Z is a D-topology (see definition 1.1) (iv) & is separable
iff Z is separable (v) I is resolvable iff Z is resolvable (a space is resolvable
iff a subset and its complement are both dense) (Vi) if ACX, then Ais T -nowhere
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dense iff A is Z -nowhere dense (vil) I is of first category iff Z is of first
category (viii) (X, 7)) is a Baire space iff (X, %) is a Baire space.

PROOF. (i) Let .9~ be indiscrete and ¢#UEZ’. By (i) of theorem 2.1, there
exists an O€.Z such that ¢#OCU. Then O=X and hence U=JX.

(i) Let & be discrete and x&X. Then {x}&.7 and by (ii) of theorem 2.1,
{x}&Z. Thus Z is discrete.

(iii) Let = be a D-topology and ¢#UEZ . By corollary 2.2, there exists an
0O&9 such that OCU and ¢,O=c¢,U. Then O7#¢ and since . is a D-topology,

O is 9 -dense and hence % -dense. Thus U is & -dense and & is a D-topology.

(iv) and (v) are obvious.

(vi) Let ACX and let A be J -nowhere dense; then Intec,A=¢. By (iv) of
theorem 2.1, Intc ACIntc,A=¢ and hence Int,c, A=¢. By (iii) of theorem 2.1,
Int ¢ A=¢ and A is Z-nowhere dense.

(vil) follows from (vi).

(viii) Let (X, J ) be a Baire space and suppose U &%, U _ is Z-dense for
each n=1. By corollary 2.2, there exist OﬂE.f' such that O CU and c,0,=c,U ,
=X for each #»=1. Hence ¢,0,=X and thus ¢,0,=X. It follows then that X=
¢,N0,Cc,NU,CX and NU is . -dense; hence NU, is Z-dense.

THEOREM 2.4. Let (X, 7, Z) is a bitopological space, T =% and ¥ C.F .
If 7 isregularly open (O=I nt,c,O for each OET ), then Z is regularly open.

PROOF. Let UEZ'; it suffices to show that UDInt c U. By corollary 2.2,
there exists an O€.9 such that OCU and ¢,0=c,U. Now Inttct0=0CU. Hence
UDInt,c,00Int,c, 0 (by (iv) of theorem 2.1)2Int ¢, 0 (since Z C.F ) =Intc,U.

Frequent use is made of
LEMMA 2.5. Let .9 C.7 *CZ be topologies on X and I =% . Then 7 *=7.

PROOF. Apply (i1) of theorem 2. 1.
3. Subspaces, products, sums

Equivalence 1s not Iinvariant relative to subspace (see example 8.4). However,
‘we have 2

LEMMA 3.1. Let (X, .7, Z) be a bitopological space, I =% and Y CX.
(L) If Y is 7 -dense (and hence Z -dense) in X, then YNNI =Y N
) IfYesg N\%, then YNT =Y NZ.
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PROOF. (1) Let ¢#Y NO where O=7 . By (ii) of theorem 2.1, there exists:
a UEZ such that ¢2UCQO. Since Y is dense, ¢#Y N\UCYNO.
(2) Let 9#Y NO where O=9 . Then YNO&9 and hence there exists a.
U=Zsuch that ¢x=UCY NO. Thus ¢2#UNY CONY.

THEOREM 3.2. let (X, T, Z) be a bitopological space and YCX, YNT =Y
NY, YEIT NY and Y both 7 -dense and % -dense. Then 9 =Z/.

PROOF. Let ¢7#0=97; then ¢#Y N0 since Y is dense. Since YNZ=YN.7 ..
there exists a U& %7 such that ¢x2Y NUCY N0. But YNUEZ since YEZ. Thus-
o=¥ NUCO. B '

THEOREM 3.3. Let (X, T, ) be a bitopological space and X =U{4, : a&4}:
where A €7 N for each a=A Then T =% iff A, NI =A,NZ for each x4,

PROOF. The necessity follows from (2) of lemma 3.1. To show the suf-
ficiency, let ¢7#0&=9 . Then ONA_#0¢ for some a&4 and hence there exists.

a U&Z such that ¢#4 NUCA, NO. But A NUEZ and ¢=A, NUCO. It fol-
lows {rom (ii) of theorem 2.1 that 9 =%.

- We now obtain the easy

COROLLARY 3.4. Let (X, F) be the disjoint wunion of the family of spaces:
(X, T ): a€4} and (X, %) the disjoint union of the fimily {(X " z,):
a4, Then I =% iff T =% . Jor each a& A

PROOF. Apply theorem 3.3 using the fact that X EJ N% for each a&A
and I =X NJ, Z =X, NZ.

COROLLARY 3.5. Let (X, 9, ) be a bitopological space and (X*, T *),
(X*, Z*) the one-point compactifications of (X, F) and (X, Z') respectively.
Then T *=%* iff I =% and 7 and Z are both compact or both noncompact.

PROOF. Suppose 7 *=%*. Then J =XNI *=XNZ*=Z by (2) of lemma
3.1 since X&7 *NZ*. Thus . =%. 7 1is compact iff {co}E 7 * iff {0}
Z* i1{f ZZ 1s compact. _ |

Conversely, suppose 9 =% and . and Z are both noncompact. Then X is.
7 *-and Z*-dense in X* and X&9 *NZ*. By theorem 3.2, J *=Z*. Now
suppose that .7 and Z are ,both compact. Then X*=XU{oo}, X&IT *NZ™
and {0)&E7 *NZ*. By theorem 3.3, J *=Z*.

LEMMA 3.6. Let f:(X, ), Z) and f: (X, T ¥, Z*) be continuous:
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open surjections. If F =9 ¥, then ¥=%*.

PROOF. Let ¢2UEZ ; then qb;éf"l [Ul€7” and hence by (ii) of theorem:
2.1, there exists an O*&.9 * such that é#O*Cf_l [U]. Then ¢7#f [0*]CU and.
flo*lez*.

THEOREM 3.7. Let (X, T 4 a,) be a bitopological space for cach a=A and
let (X, T )=X{(X,, fa):aEA}, (X, Z)=x{(X,, Z_,): ac4}. Ther T =%
iff I =%, for each a& A

PROOF. The necessity follows from lemma 3.6. To show the sufficiency, let:
gé#ﬂ{P;[l [Oa:.-] . 7=1, -+, n} where OmEﬁ" a By (i1) of theorem 2.1, there-

exist U, €%, such that ¢#U,CO, Then ¢=N{P, [U,):i=1, -, #C
N {1':".;,;1 (0,1 :¢=1 -, n}. Applying (ii) of theorem 2.1, it follows that J =Z..

4. Maximal topologies in [.7]

LEMMA 4.1. Let (X, 9 ) be a topological space. There exists a Z maximal in-:
(. F7] such that 5 CZ.

PROOF. Let &=[J"' I ’'€[J] and F CJI ’}; it suffices to show that:
& has a maximal element. We apply Zorn’s lemma; let ¢#FCY, Z a.
chain. Let 9 *=Vv {9’ : 9 '€%}. Clearly 5 CZ*; it suffices to show that.
I *&[7 ] and hence J *&. Let 0#0*=7 *. There exists an OS99 '&F
such that ¢#0’'CO¥. Since J '=.9, there exists an O&.9 such that ¢#0C0O”
CO* and hence ¢d20C0O*. By (ii) of theorem 2.1, 9 =5 %,

LEMMA 4.2. Let (X, 9 ) be a topological space and ACX. Then 9 =9
[A] iff AES(T ) (see definition 1.4 and 5], page 93).

PROOF. Sufficiency. We employ (ii) of theorem 2.1. Let ¢#ZWe& 9 [A4];
then there exist O,U&.7 such that W=0UWUNA) (see(2]). If ¢20, then ¢#0-
CW and there is nothing more to prove. If ¢=0, then UNA#@; let xSUNA.
Since AC ¢, Int, A4, it follows that UNInt, A#@. Take O*=UNInt, A. Then O*
&7 and ¢#0*CUNA.

Necessity. Suppose A&S(J); then AL ¢, Int, A. Let eEA, a& ¢, Int, A.
There exists then an O€5 such that ¢&0 and ONInt, A=¢. But p20NAET
[A] and hence there exists an O*&.7" such that ¢#0*CONA. Hence ONInt, A

DONO*D0*#¢ and ONInt, A¥#¢, a contradiction.
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LEMMA 4.3. Let (X, ) be a toplogical space and ACX. Then 9 #7 [A]
iff AE T .
We omit the easy proof.

THEOREM 4.4, Let (X, 9) be a topological space. Then T is maximal in
[T7] iff T =¢(F).

PROOF. Necessity. Suppose AES(T ), but AZL.9 . The 7 =9 [4] by lem-
ma 4.2 and 9 #.7 [A] by lemma 4.8. But 9 CZ [A] and hence .9 is not
maximal in [.9 ].

Sufficiency. Suppose .7~ is not maximal in [97]; there exists then a Z&
[97] such that 9 C¥, I #%. Take UE¥ ~9 . Then 9 CI [U]C¥ and
9 #99 [U] by lemma 4.3. By lemma 2.5, 9 =9 [U] and by lemma 4.2,
UeEs( P )=9 and UE, a contradiction.

COROLLARY 4.5. If .9 is maximal in [T ), then I is an exiremally discon-
wected topelogy.

PROOF. Let OE9 ; then cOEs( 9 )= by theorem 4. 4.

COROLLARY 4.6. Let (X, .9) be a topological space. There exists a topology
Z on X such that § C¥, I =% and ¥ is extremally disconnected.

The proof follows from lemma 4.1 and corollary 4. 5.

COROLLARY 4.7. Let .F be a non D-topology on X (see definition 1.1) There
exists a topology Z on X such that 9 C¥, Z=9 and Z is disconnected.

PROOF. By lemma 4.1, there exists a topology Z on X such that .9 CZ,
I =7 and Z 1s maximal in [ ]. We now show that Z is disconnected.

Since %~ is a non D-topology, there exists nonempty disjoint open set O; and
0,. Thus O; and Int, €0, are nonempty and O,UInt, €0, is 9 -dense. By corol-
lary 2.2 there exist U, and U, in Z such that U,C0O,, U,Clnt, 0,, ¢,U,=¢,0,
and ¢,U,=c, Int, €0,. Thus U;UU, is.9 -dense and hence Z-dense since I =%,
Hence X=c¢,U; Uc¢,U, and since Z is extremally disconnected by corollary 4.5,
1t follows that ¢, U; N¢,U,=¢. Thus Z is a disconnected topology.

COROLLARY 4.8. Let (X, 7) be a topological space. Then 7 isa D-topology
iff [F] consists only of connected topologies. Fa

The proof follows from corollary 4.6 and (iii) of theorem 2.3.
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5. When is there a maximum in [ ]?

THEOREM 5.1. Let J be an S-topology on X (see definition 1.2). Then 5
is the largest topology in [T ].

PROOF. Let Z&[.7 ]; we show that ZC 7. Let ¢#U € Z; by (ii) of the-
orem 2.1, there exists an O&.7 such that ¢s#0CU. Since . is an S-topology,

ves.

THEOREM 5. 2. 'Let (X, ) beatopological space. Then [T ]| has a maximum
iff F, I in [T] implies that FTV FH [T ].

PROOF. Necessity., Suppose that Z is the largest member of [.F] and let
I, He&[F]. Then SJCH VI CZ and by lemma 2.5, S|V LHL==7.

Sufficiency. By lemma 4.1, there exists a topology Z such that .9 CZ and
Z 1s maximal in [9]. We show that & is the maximum in [ ]. Let %
=7 . Then I*VZ=% and ZC97 *VZ%. Since Z is maximal in [Z], it
follows that I *C.J *VZ =Z.

COROLLARY 5,3, Let .9 be a D-topology on X. Then [T 1 has a maximum.

PROOF. Let 97, % <[.9]; we show that FTV.% &[9]. Firstly, let ¢#0
€7 . By (i) of theorem 2.1, there exists an 0,&.7 , such that ¢5#0,C0. Then
0,E5/C 5 V& . Conversely, let §#0,N0,E97V I, where O,&.7 . There exist
then O*&€.5 such that ¢#0,*CO,. But ¢#0*N0,* since 9 is a D-topology and
0,*N0,*C0,N0,.

THEOREM 5.4. Let 9 be a D-topology and let % be the maximum in [F ].
Then 7 is an S topology. '

PROOF. Let ¢#UCA where UEZ, We must show that AEZ’. Suppose on
the contrary that AZZ. Since Z is maximal, AT ¢, Int, A by theorem 4.4.

Thus, ¢, Int, A#X and Int A is not Z-dense. But Z is a D-topology by (iii)
of theorem 2.3 and ¢#UCInt, A. Then Int, 4 is Z-dense, a contradiction.

6. Minimal and minimum topologies in [ .7 ]

THEOREM 6.1 Let (X, ) be a topological space. Then [T ]| has a minimum
element iff for every nomempty family { T , . a&d} in [T], then N{T , : a4
E[f]-

PROOF. Sufficiency. N{J " :.7 '€[.7 ]} is the smallest member of [.7 ].
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Necessity., Let Z be the minimum element of [.Z”] and suppose that {J  :
a4} is a nonempty family in- [77]. Then ZCN{T ,ca&d CI x where
a*cA. By lemma 2.5, N{J ,acli=Z[T].

THEOREM 6.2 Let (X, .7 ) be a T,, nondiscrele topological space. Then I~

zs nol minmimal in [T ].

PROOF. Let {#*)&£€9 and define ZZ = {0 . O£, O=X or x*&&0}. Then Z is
a topology and ZC.9 . Let z#2*; then €{¥x}&€7, but € {x}&% and hence
¥#7 . We employ (ii) of theorem 2.1 to show that 9 =% let PHA0ET .
If x*¢&0, then OEZ; if x*&0, then ¢#0N% {x*}CO and ONF {x*} 7.

7. A sufficient conditien for -[f ]={9}

THEOREM 7.1. If 5 has a basis of minimal open seis, then [T |={T }.

PROCF. Let 9 =%. We first show that .7 CZ. Let x&0=.9 ; there exists
then a minimal open set O*&.7 such that x&0*CO. By (ii) of theorem 2.1,
there exists a U*&Z such that ¢#U*CO¥* and there exists an O¥&9 such that

PFO¥CU*CO*, Since O* is minimal, 0¥=0%* and hence x&U*CO0. Thus O&%.

Next we show that ZC.9 . Let x»&U&Z;: let &0 where O is a minimal

7 -open set. Using the above argument, it follows that O is a minimal Z-
open set and hence *&0OCU, Thus U&7 .

COROLLARY 7.2 Let (X, 9 ) be a topological space in which the open sets and
the closed seils coincide. Then [T 1={T}.

PROOF. {c(x) :x&X} is a basis for 7 consisting of minimal open sets.

8. Some examples

EXAMPLE 8.1 Let X be the reals, .7 the usual topology, Z the topology
having sets of the form [a, ) as base and Ul the topology having sets of the
form (a,b] as base. Then 7 =Z'=Ul follows from (ii) of theorem 2.1. [.7 ]
has no maximum since Z VUI=F(X)#T (see theorem 5.2). (X, Z is 0-di-
mensional, (X, .77) 1s not. .7 1islocally connected and connected whereas Z is
totally disconnected. .7~ is locally compact, but Z is not. . is a second

axiom space and Z is not. .9 1is metric, Z is not metrizable.

EXAMPLE 8.2. Let X={e, b} and .9 ={¢, {a}, X}. Then [T ]1={F}, but

7 does not have a basis of minimal open sets (see theorem 7.1).
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EXAMPLE 8.3. Let X be the reals a._nd 7 ={0:0#¢ or O=X or O=(o0, a)

for some a=X}. Then [ ] has no minimum element; let Z={U :U=¢ or
U=X or U=(—o0, —2r) n=1, 2, =} and Vi={V :V=¢ or V=X or V=(—-
, —(@n+1)) =1, 2, «:}. Then =9 =U, but ZNU=1{¢, X}#T (see

theorem 6. 1).

EXAMPLE 8.4 Let X={a, b, ¢} and I ={d, {a}, X}, Z={p, {a}, {a, B},
{a, ¢}, X}. Then 9 =V, J is normal, Z is not normal. If Y={b, ¢}, then
YNNI #Z NZ,

EXAMPLE 8.5 Let X be the positive integers, .Z ={0 : 1&0 or 1&€0 and €0
is finite} and ' ={U : 1&U or U=X}. Then J =%, .7 is compact Hausdorff

and hence completely regular, Z is not T,({2} is not closed) nor is it regular
(2% {2} and € {2} is closed, but 2 and % {2} cannot be separated by Z-open

sets).

EXAMPLE 8.6. Let (X, Z) be as in example 8.5 and let Z be the topology
for X generated by {1, 2}, {3}, {4}, {5}, *+ as base. Then I =%, 7 is

compact Hausdorff, Z is not compact nor is it a T space.

o0

EXAMPLE 8.7. Let X=1{a, b, ¢} and 9 ={¢, {a}, (b, ¢}, X}. Then [.T"]=
{97} by corollary 7.2. Note that .7~ is not an S-topology and hence the con-
verse of theorem 5.1 is false.
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