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SOLVABILITY OF LINEAR PARTIAL DIFFERENTIAL
EQUATIONS.

By JONGSIK KIM

The primary aim of this paper is to survey the solvability of linear partial
-differential equations and exposit the main results since the theory of distri­
butions played its role in the field of partial differential equations. Thus
the existence of fundamental solutions of differential polynomials, the global
existence theorems in Coo (D) and in '1)' (D) as well as the recent results on
the local solbility of the general linear partial differential equations and the
pseudo differential equations will be our theme in this paper.

In this connection it should be mentioned that the recent result of finding
the neccessary and sufficient conditions on the local solbability of the linear
partial differential equations with COO coefficients is one of the main achieve­
ments ever since the modern theory of linear partial differential equations
were developped. It offers the theoretical foundation for the further syste­
matic development.

1. Distributions.

Let 0 be an open subset of Rn. We denote by x= (Xl, X2, "', X n) an eleme­
nt in Rn. The dual of Rn will be denoted by Rn. CO"" (D) will be the space
of all complex valued infinitely differentiable functions on 0 with compact
supports in D.

Let us choose a sequence of compact subsets K;(i=l, 2, ...) of 0 such that
""

for any i=l, 2, "', K; is contained in the interior of K;+l and UK;=D. Then
'=1

it follows that Co00 (K;) , the space of all COO functions with supports in K;,
becomes a Frechet space under the seminorms

Pm(f) =sup 1:: IO,xuf(x) I (m=O, 1, 2, ...).
lul,;.m,xEKi

Here a= (ar. a2, ... , an) is multi-index of nonnegative integers, Ia I=al+a2
+"'+an, 0xu=Olul(hu2"'Onan, and o/j=(o!OXj)Uj.
Thus we have a sequence of function spaces
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CoOO(Kt ) eCO""(K2) e···eCtt(K,) c···.

Note that we have UCoOO(K,)=CoOO(.o).
i=1

We equip Co""(D) with a locally convex vector toplogy such that a convex
set V in Co"" (D) is open if and only if vn Co00 (Kj ) is open for all i = 1, 2, ....

DEFINITION 1. 1. The space of all continuous linear functional on Co"" (.0)
is called the space of distributions on D. The space of distributions on .0
will be denoted by ;t)' (D). Elements of ~'(D) is called distributions. The
space of all distributions with compact supports will be denoted by c' (D).

2. Linear partial diJferential operators and pseudo differentialope­
rators.

By a linear partial differential operator order m on D with COO coefficients.
we mean a polynomial in partial derivatives on {) and has the form

p(x, D) = !: Ca (x) D x«.
I a I-Sm

Here a are the multi-indices, Dxa=DtaID2a2···D,,«71 where D,ai= (-i (a/ox,) )«;
and Ca(x) are complex valued COO functions on .0.

When all the coefficients are constant on.o, we denote the operator p(x,
D) by p(D) and call it a differential polynomial on D.

Let p(x, D) be a Hear partial differential operator. The function p(x, f;)
defined on DXR", substituting f; in D in p(x, D), is called the symbol of p
(x, D). When the order of p(x, D) is m, the homogeneous term of order
mo

Pm (x, D) = !: Ca(x)Dxa
1«I=m

is called the principal part of p(x, D). Pm (x, f;) is called the principal symbol
of p(x,D).

The symbols p(x, f;) and Pm (x, f;) belongs to a general class of functions.
which we now define.

DEFINITION 2. 1. Let {) be an open subset of Rn. Then for m, p, 0E R, ().
~p, a~l, Sp,om(D) is the space of pEC""(DXR,.) with the property that
for any compact KeD, any multi-indices a and ;3, there exists a constant
CK,a,fj such that

IDxflDe«p(x, 0 I ~CK,a'.B(l+ If; I )m-pl a1+01,81

for all XEK and f;ER".
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DEFINITION 2.2. If pESf!'lr(D), then the operator p(x, D) defined by

p(x, D)f(x) = (1/ (2n)") fp(x, ~)ei<x,e>f(~)d1;

where f is the Fourier transform of f is called a pseudo differential operator
<>f order m.

The pseudo differential operator is well defined for f in E' (D) and map
E'(D) into ~'(.O). p(x,1;) is called the symbol of the pseudo differential

<>perator p(x, D).

3. Global existence theorems.

Let p(D) be a differential polynomial on R". A distribution E on R" is
-called a fundamental solution of p(D) if p(D)E=o.

THEOREM 3.1. (Ehrenpreis). Every differential polynomial has a fundame­
lltal solution.

Proof: Let )) be the smallest integer such that 4l.i~ n+1 and let Ll= - I'I=1
D}. Then there is an V-function F(x) in R" such that (l-Ll)"F=o. Let
E(t, x) = Exp[ (1/2) (t12x12+ ···+t,,2x ,,2)] and define the space R_ (t) as the
-space of the measurable functions f(x) such that E-l(t, x)f(x) EV. Then
it follows that there is a function F1ER_(t) such that p(D)F1=F. Let
us set E= (l-Ll) "F1• We have:

p(D)E= (1-Ll)"p(D)F1= (l-Ll)"F=o.

Q.E.D.

The fundamental solution E does does not grow too fast at infinity; It IS
.a sum of derivatives of functions which grow at most as some Exp clxl 2•

Also E is not too singlar; it is a finite sum of derivatives of order ~ 2l.i of
locally LLfunctions. The importance of the fundamental solutions lies in the
following corollary.

CoROLLARY. For any vEE'(R") and for any differential polynomial p(D),
.there is uE'1:J'(R") such that p(D)u=)).

Proof. Let E be a fundamental solution of p(D). Let u =l.i*E. Then p
(D)u=p(D) ())*E) =l.i*[p(D)E]=:v*o=l.i.

Q. E.D.

Let Coo(D) be the space of all complex valued C"-functions on D. We
-equip Coo(D) with the topology of uniform convergence on every compact
subset of D. Thus COO (D) becomes a Frechet space.
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DEFINITION 3.1. An open subset D of Rn is p(D)-com'ex if and only if
for any compact subset K of D there is a compact subset K' of D such that.
for any ifJEe' (D)

supp p(-D)uEK implies supp uEK'
where supp u means the support of u.

THEOREM 3.2. (Malgrange). p(D) Coo (0) =Coo(D) if and only if 0 is p(D}
-convex.

Proof. That 0 is p(D)-convex is equivalent in its functional analytic ve-·
rsion to the fact that p( - D) is one-to-one from c' (0) into c' (D) and the
image p(-D)c'(D) is weakly closed in c'(D). Since c'(O) is the dual of
Coo(D), the latter condition is equivalent to the fact thatp(D) is surjective.
Thus p(D) COO (D) = Coo (0) if and only if D is p(D)-convex.

Q.E.D.
All the geometrically convex open set is p(D)-convex for any differential

polynomial p(D). We shall offer an example of an open set which is not po
(D)-convex.

EXAMPLE. The complement of the origin in the plane R2 is not (O/OXl)­
convex.

Proof. For e>O, let x. be the characteristic function of the set

{(XI. X2) ER2Ix12+X22~1 X22c}.

Then supp( -o/'(}xlh. is contained in the unit circle X12+X22=1, hence in a
fixed compact subset of R2/ to} , but this is not true of supp x.-

Q.E.D.

The above theorem can be generalized to the linear partial differential
operator with Coo-coefficients. We shall define the Sobolev space Hs (s: real
number) as the space of tempered distributions in Rn, u, whose Fourier tra­
nsform fj, is a square integrable function with respect to the measure
(1 + 1';- 12) sfj,d';-. Hs is a Hilbert space and its dual is canonically isomorphic
to H-s. The linear partial differential operator p(x, D) map Hs to Hs. We
shall denote its transpose as tp(x, D). Thus tp(x, D) maps H-s into H-s.

THEOREM 3.3. Let p(x, D) be a linear partial differential operator with coo.
coefficients. Then p(x, D)C"'(D) =C""(D) if and only if the following condition.
is fulfilled:
To every compacet subset K of D and to every real number s, there is another
compact set K'cO, a real number t and a constant B>O such that for all 1L

Ee'(D), the property
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tp(x, D)UE Hs and supp tp(x, D)ucK

implies

supp ucK'

uEHt and IU!tS::Bllp(x, D)ui s'

Here Iu It means the norm of u in HI. The proof of this theorem is based
on the fact that the given condition is equivalent to the condition that Ip
(x,D) is an injective map from /(Q) into E'(Q) and IP(X,D)E'(Q) is ,,"ea­
kly closed in E' (D). (cf. [9J)

Next we shall consider the existence theorem in ;v' (Q). Let u be a dis­
tribution on the open set QcR". The singular support of u which we shall
denote by sing supp u is the smallest closed set F such that u is a C' func­
tion in Q '"F. We shall start from the folImving definition.

DEFINITION 3.2. We shall say that Q is strongly p(D)-com'ex if 0 is p
(D) -Convex and if for every compact subset K of Q there is a compact su­
bset K' of Q such that for every uEE'(Q)

sing supp p( -D)u cK implies sing supp ucK'.

THEOREM 3.4. (Hormander). p(D);D' (Q) ='1:J' (Q) if and only if 0 is st
rOllgly p(D)-coll'i:ex.

Proof. If Q is strongly p(D)-convex, then for any continuous seminorm
p on Co x (Q) there exists a continuous seminorm q on Co~ (0) such that for
any ?ECoOC(Q),

pe?) S::q (p( - D)?).

Let then T be any distribution on 0 and choose p such that

I<T,?>'IS::P(?), ?ECoOC(Q).

It follows that the the linear form

p(-D)9-<T,?>

defined on p( -D)CoOC(Q) is continuous for the topology induced by Co~(O).

Hence according to the Hahn-Banach's theorem, it can be extended to the
whole of Co00 (0) as a linear form L satisfying

IL(c) IS::q(C;').

This shows that there is a distribution S on 0 such-that L(9) =<S, i/>
for all r/JECoOO(O). Taking r/J=p(-D)?, we have

< T, 9>=<S, p( -D)?>=<p(D)S, 9>,
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:'1. e., p(D)8= T.
Conversely if p(D) ;t)'(D) ='iY(Q), then whatever be uEe'(Q), the dis­

tances to the boundary of D from sing supp u and from sing supp p( - D)u
are equal. Thus it follows immediately that D is strongly p(D)-convex,
since p(D);t)' (D) =;t)' ( Q) implies p(D) Coo (D) =Coo(D) and hence Q is p(D)

-convex.
Q.E.D.

Geometrically convex open set is strongly p(D)-convex for any differential
polynomial p(D). We shall state the following.

OPEN QUESTION. Let p(x, D) be a linear partial differential operator with
.COO coefficient. Find the neccessary and sufficient condition on D for p(x, D)
;t)' (Q) =;t)' (Q). That the strong p(x, D) -convexity is sufficient is known
(cf. [8J) but it is conjectured that strong p(x, D) -convexity is too strong
to be a neccessary condition.

4. Local solvability.

In this section we shall introduce the neccessary and sufficient condition
-for the operator p(x, D) to be locally solvable. We shall start from the
-following definition.

DEFINITION 4.1. The linear partial differential operater p(x, D) with COO
·coefficients is said to be locally solvable at a point Xo of {} if there is an
open neighborhood UcQ of Xo such that, given any function fECoOO(U),
there is a distribution uE;t)'(U) such that p(x, D)u=f in U. The operator
p(x, D) is said to be solvable on Q if it is locally solvable at any point of
:!l.

DEFINITION 4.2. The pseudo differential operator p(x, D) is said to be
locally solviable in an open set if every pont Xo of Q has two neighborhood
Uc V such that every f E Co"" (U) there is a distribution u with support in
V satisfying p(x, D)u=f in U.

When a pseudo differential operator p(x, D) is a linear partial differential
operator with C'" coefficients, the two definitions are equivalent. In this se­
ction we shall deal with the pseudo differential operator p(x, D) on D which
can be written as p(x, D) =Pm+Pm-l where Pm-l is the pseudo differential
operator of order m-1 with symbol Pm-1 (x, f) in 8110

m- 1CD) ~nd Pm is a
-pseudo differential operator of order m whose symbol Pm (x, f) is positively
JIomogeneous in f-variables and is of order m, for If I>1,

THEOREM 4.1. (Cauchy-Kovalevska). If a linear partial differential ope-
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:rator p(x, D) on Q has analytic coefficients in Q, then for any analytic func­
tion f on Q and for any x in Q, there is an analytic function u in the neig­
hborhood U of x such that p(x, D)u=f on U.

The theorem 4. 1. can be proved by the method of power series expan­
'sion. It had been conjectured that CO analogue of the previous theorem mi­
ght be true, i. e., every p(x, D) might be locally solvable. However, H.
Lewy gave a counter example (cf. [7J) showing that the linear operator

p(x, D) = -iD!+Dz-2(x!+ ixz) Ds

is not locally solvable at any point of RS. To introduce the criteria for local
solvability we need some definitions.

DEFINITION 4.3. Let p(x, D) be a pseudo differential operator. By the
characteristic set of p(x, D) we mean (x,';) EQXRnIPm(x,.;:) =O}.

DEFINITION 4.4. A pseudo differential operator p(x, D) is of principal type
if Pm (x, .;:) = 0 and <2 ~ 0 implies 0dm (x, ~) ~ O.

In the sequel, we shall consider the operator p(x, D) of the principal
type only. Let Pm (x, .;:) be the principal symbol of p(x, D). We shall set
Pm (x, ~) =a(x,';) +ib(x, t;) where a and b are real and imagjnary part of Pm
(x, .;) , respectively. For any (xo, ';0) in the characteristic set of p (x,';) we
consider the oriented integral curve of the Hamilton-Jacobi equation

dx/dt=grade a (x, .;)

d<2 / dt = - gradxG (x, .;)

passing (xo, ~o). This integral curve is called the null-bicharacteristic of a
(x, ~).

THEOREM 4.2. (Nirenberg-Treves-Beals-Fefferman) Let p(x, D) be a linear
partial differential operator defined on QcRn with a(x, D) of the principal
type. p(x, D) is locally solvable on Q zf and only if, for any Xo in Q and
for any ';0~ 0 with (xo, ';0) in the characteristic set, b (x,';) does not change
sign at (xo, ';0) along the null bicharacteristic of a (x,~) through that pont.

Proof. We shall prove the sufficient part only. For the neccessary part
.confer [5].

Using the implicit function theorem, we may assume Pm (x, D) =D1 -).1

(X: Dz, Ds, "', Dn). We may also assume that Xo is the origin. The condi­
tion stated in the theorem is equivalent to the fact that

\Ulm-lS::CeIPmulo for uECOM(Qe)
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where 0.= {xERnllxl<e} and lul s is the Sobolev norm in Hs. The above
inequality implies that, for sufficiently small e>O, pu=f in O. has a solu­
tion UEL2(O.). Thus p=p(x, D) is locally solvable.

Q.E.D.

We shall state the generalization to the pseudo differential operator of the.
above theorem without proof (cf. [5J, [6J)

THEOREM 4.3. Let p(x, D) be a pseudo differential operator defined on Qc
Rn with a (x, D) of the principal type. Let p(x, D) be locally solvable on Q.
Then for any XoEO and for any ~o~O with (xo, ~o) in the characteristic set,
if the function b(x,~) on the oriented null bicharacteristic in OXRn of a(x,
~) is negative at a point, then it remains nonpositive from then along the cu­
rve.

THEOREM 4.4. If the principal symbol Pm (x, C;) is analytic function on Ox.
Rm then the converse of the previous theorem is also true.

We shall prove that the Lewy equation mentioned above is not locally
solvable, for example, at the origin of R3.

EXAMPLE. Lewy equation

p(x, D) = -iDl +D 2 -2(Xl+ix2) D3

is not locally solvable at the origin.

Proof. Let Xo= (0, 0, 0), ~o= (0, 0,1). Then (xo, ~O) belongs to the chara­
cteristic set. The null bicharacteristic of ~2 -2.xl €3=a(x,';) passing (xo, €o)
is Xl =0, X2=t, X3=0, ';1=2t, ~2=0, ~3=1. Along the null bicharacteristic

b(x,~) = -€1_2.x2€3= -2t-2t= -4t.

Thus b(x, f) changes sign at (xo, fO) where t=O.
Q.E.D.

We shall conclude this paper with the following

OPEN QUESTION. Find the sufficient condition for the local solvability of
the pseudo differential operator (cf. Cl]) .
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