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A NOTE ON ALGEBRAIC K-THEORY

By WUHAN LEE

1. Introduction.

The purpose of this note is to introduce the concept of algebraic K-theory
for the mathematics circles in Korea.

To dispel some mystery, let us first explain the term "K-theory" [4].
Generally speaking, K-theory refers to the study of certain groups which
happen to be called K j • Topological K-theory refers to the study of these
Kj-groups defined for topological spaces, and algebraic K-theory refers to
the study of similar Kj-groups defined for associative rings. There is, how­
·ever, one interesting historical difference between the 'topological' and the

'algebraic'. In topology the groups K j came into existence all at once DJ.
They found immediate applications, and their important role was quickly es­
tablished. In algebra, however, the groups Ko and K1 came into existence
first [2J, only to be followed by an experimental period during which peo­
ple tried to search for the right definition of the higher K;'s, in vain. It
is only in the last few years tha t these higher algebraic K/ s were finally
-discovered; their existence and applicability have now justified the name of
the subject algebraic K -theory.

Section 1 deals with Ko, Section 2 KJ, Section 3 K 2 and Section 4 the
higher K j, i ~ 3.

2. Ko.

We shall begin with the introduction of so-called "Grothendieck construc­
tion". For concreteness, let us first present htis basic construction in the
''Setting of rings and modules. Let R be an arbitrary ring, and fJ. (R) be the
family of all left R-modules. Roughly speaking, the Grothedieck construc­
tion is a process which, to any subfamily @ in fJ. (R), assigns a certain abe­
lian group, denoted by Ko@. In detail, the construction works as follows.

For a left R-module M in the given family @, let (M) denote the iso­
morphism class of M. Let F be the free abeIian group on the basis {(M):
ME@}, and let H be the subgroup of F generated by expressions (M2)-
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(M1) - (M3) , where
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O~Ml-+M2-+M3-+0

ranges over all exact sequences in (J. We then define

Ko(J=F/H (The Grothendieck group of (J).

For ME(), the image of (M) in Ko will be denoted by [M]. Thus, when­
ever we have such an exact sequence in (), there results an equation [M2]

=[M1]+[M3] in Ko(}. To simplify the language, it is usually permissible·
to say that Ko(J is generated by the symbols [M] (ME(J) , with relations
given by [M2]=[M1]+[M3] where MjE(J are as in the above exact seque­
nce.

Like many other objects defined in mathematics, the group K o(} satisfies
a certain universal property, which is easily described as follows. Let X be
a mapping from (J to some abelian group (G, +) such that

(1) For ME(J, the image X(M) depends only on the isomorphism class.
of M;

(2) X is additive over short exact sequences, i. e., for each exact seque­
nce

O-+M1-+M2-M3-O in (),

we have X(M2) =X(M1) +x(M3).
Then, there exists a unique group homomorphism X : Ko(}-+G such that.

x(M) =X([M]) for all ME(}.
In the definition of Ko@, we have not imposed any substantial restnctlOn

on the subfamily (Jc f1. (R). In practice, however, it is desirable to require
that (J satisfy certain mild conditions, such as

(1) (J is closed under finite direct sums;
(2) If O-X-Y-Z~O is an exact sequence in iJ.(R), then, Y, ZE(J::>XE

(2.
If (J satisfies both (1) and (2), we shall say that () is an admissible sub-·

family of f.l. (R) .
To illustrate the structure of K o(), let us examine a few elementary exa-·

mples.

EXAMPLE 1. The simplest case is given by letting R be a field, and (J be,
the (addmissible) family of all finite dimensional vector spaces over R. The.
mapping X from () to Z given by 'dimension' is clearly additive over short
exact sequences in (). Hence it induces X : Ko(}-Z sach that X([M]) =dim
M. This homomorphism X is surjective since X([RJ) =1. It is also injec-­
tive, since X([M]-[N) =O::>dim M=dim N::>M=::N::>[M]-[N]=O. Thus...
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Ko@~Z by the dimension map.

EXAMTLE 2. A similar example is given by letting R be the ring of in­
tegers and @be the (admissible) family of all finite abelian groups. The
mapping X from @ to the multiplicative group of positive rationals Q+ given
by cardinality is clearly multiplicative over short exact sequences in @. He­
nce it induces X : Ko@->Q+ such that X ([M]) = IMI. This homomorphism
X is surjective, since X([Z /pZ]) = P and Q+ is generated by the positive

prime numbers. Furthermore, X is injective, since X([M] - [N]) = 1::> IM I
= INI::>M and N have the same composition factors Ci (by 'Jordan-Holder')
[M]=.E[Ci]=[N]EKo@. Thus, Ko@~Q+ by the cardinality map, and it
follows that Ko@ is a free abelian group on the basis {[Z/pZ]: p=prime}.

EXAMPLE 3. Again with R=Z, let @' be the (admissible) family of all
finitely generated abelian group, which contains the family @ in Example
2. The structure of K o@', however, turns out to be completely different
from Ko@. If 0,* n E Z, we have the following exact sequence in @':

i
O-->Z-->Z-->Z/nZ-->O, i(x) =nx.

Thus, [Z/nZJe,=[ZJ-[Z]=O in Ko@' (in contrast to [Z/nZ]e,*O in KoU
for n>l). It follows (from the Fundamental Theorem of Abelian Groups}
that K o@' is a cyclic group generated by the single element [Z]' Now, by
the universal property, ME@'-->rank MEZ defines a homomorphism rank::
Ko@'->Z. Since rank Z=l, we conclude that Ko@'~Z by rank.

Given a ring R, we shall now apply the Ko construction to a specific suIJ­
category @ of f-1 (R). In fact, we take @ to be 5J(R) the family of all pro­
jective, finitely generated (left) R-modules. The Grothedieck group
Ko5JCR) will be denoted simply by KoCR).

Recall that a (left) R-module P is called projective if it is a direct summand
of some free R-module. Another characterization of P being projective is
that any short exact sequence 0->X -> y ->P->O in f-1 (R) must split. The lat­
ter chatacterization has the following important consequences:

(1) If a projective P is finitely generated, then P is in fact a direct sum­
mand of some finitely generated free R-module.

(2) 5J(R) is an admissible subcategory of J1 (R).
(3) Ko is functor on the category of rings. The meaning of all this jargon

is actually more concrete than it sounds. Namely, it just refers to the pro­
perty that, if we have a ring homomorphism f : R-->S, then we also have,
in a natural way, an induced group homomorphism f* : KoCR)-->KoCS). To
construct f*, consider the mapping X from 5JCR) to Ko(S) sending PE
!PCR) to [S Q9R P]EKoCS).If O-->P1-->P2-->P3-->O is an exact sequence in 5J(R),.
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then it splits, and so 0 -+S®RPI -+SQ!JRP2-+S®RP3-+O is also (split) exact.
It follows that X(P2) =X(PI ) +X(P3), so, by the universal property, X defines
a unique homomorphism f*, such that f*([P]) = [S®RP], Note that we
have

(fog)*=f*og*, and (IR)*=lKocR)'

The study of projective modules is not only a crucial topic in the mo­
dern chapter of ring theory, it has also found important applications to repre­
sentation theory' of groups and algebras, algebraic geometry, and topology.
Unfortunately, given an arbitrary ring R, there is no known algorithm where­
by to calculate its projective modules. On the other hand, it turns out that
the abelian group Ko(R) is somewhat more amenable to computations. In­
deed, recent advances in algebraic K-theory have yielded various efficient
means and techniques which help calculate Ko(R) ..

3. K I .

We shall now begin a new line of i~vestigation by introducing the "next"
functor K I • The simplest possible definition of K I is given in terms of ma­
trices, and, in this form, it was first conceived by the late topologist]. H.
C. Whitehead. In [7J, one of the pioneering papers in geometric topology,
Whitehead noticed that, if re is the fundamental group of some space
X, and if R=Zre (the integral group ring of re) the elementary row and
-column transformations for matrices over the ring R have certain natural
topological interpretations. Prompted by this, Whitehead introduced a cer­
tain abelian group, Where) (the Whitehead group of re), to study homoto­
pies between spaces. For every homotopy equivalence f: X- Y, Whitehead
defined an invariant 7: (f) E Where), which is such that 7: (f) =0 if and only
if f is a simple homotopy equivalence. In topology, this invariant 7: (f) has
come to be known as the Whitehead torsion of f.

If one examines carefully Whitehead's definition of Where) via elemen­
tary row and column operations on matrices, on will easily see that most
-of the steps taken depend only on the ring R=Zre, and not on the group
71:. Thus, repeating these stepts for an arbitrary ring R, free from the to­
pological context. This group is precisely the K 1 (R), which we shall now
describe in detail.

Let GL,,(R) denote the group of invertible nXn matrices over an arbit­
rary ring R. For i=l=j, and aER, let ea;} be the elementary matrix with
l's down the diagonal, a at the ij-entry, and zeros elsewhere. We have
e'ijEGL,,(R), since (eaij) -l=e-aij' By easy inspection, we see that left and
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right multiplications by e"ij correspond to elementary row and column opera­
tions on matrices. Let En(R) denote the subgroup of GLn(R) generated by
e"ij, aER, lsi*jsn. Note that, if r is any rectangular matrix, thenany

n X n matrix in block form (J = (6 Dis automatically in En (R). It was fur­

ther discovered by Whitehead that, if n is .even, En(R) contains another
interesting class of matrices. This important discovery is known nowaday as

WHITEHEAD'S LEMMA. If aEGLm(R), then

(0 ~-I)EE2m(R).

If, also, f3 E GL m (R), then

([a6
j3J fJEE2m (R)

where [a, j3J=a-1p-la j3 is the commutator of a and 13.

Proof. The first assertion is proved by finding a sequence of elementary

block' transformations which brings (0 ~-1) to the identity. For example.

one such sequence of row transformations is given by

(-i ~)(5 i)(-i ~)(~ -~)(~-1 ~)(~ -~)(O ~-1)=(6~)
The second assertion follows from the first, with the opportune observation
that

([a,j3J 0) = (a- 1j3-
1 °)(a °)(13 0 )o 1 0 pa 0 a-I 0 13-1

Let us now think of GLn (R) as a subgroup of GLn+1 (R) by identifying
any (JEGLn(R) with

(g ~)EGLn+l(R).

In this way, it is meaningful to talk about the asscending union GL(R) =

U:: 1 GLn(R), called the infinite general linear group over R. Since clearly
En (R) cEn+1 (R) under the avobe identification, we may also from E(R) =

UEn (R). The Whitehead Lemma may now be rehashed as follows.

COROLLARY. E(R) =[E(R), E(R)]=[GL(R), GL(R)].

Proof. A short commutator calculation shows that e"i)"equals [e"'k, e1kjJ if i"
j, k are distinct. Thus, we have En(R) = [En (R), En (R)] whenever 11>3-
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Whitehead's Lemma says [GLm(R), GLm(R)JcE2m (R) which then com­
pletes the proof.

One consequence of the Corollary is, of course, that E (R) is a normal
subgroup of GL(R). We now define K1(R) to be the quotient group
GL(R) / E(R), which, in view of the Corollary, is just the abelianization of
GL(R). Whitehead himself, however, did not use an explicit notation for
the K 1 (R) just defined. In his topological investigations, where R=Z7r, the
group Wh(7r) he introduced is not our K 1 (Z7r), but is, rather, a quotient
K 1(Z7r), modulo the subgroup formed by classes of the lX1 matrices
{(±g) : gE7r}.

Note that, as is the case with Ko, our new K 1 is also a functor on the
eategory of rings. A ring homomorphism ! : R----'>S induces a group homo­
morphism GL(R)-'>GL(S), which obviously sends E(R) into E(S). Hence,
f induces a group homomorphism f* : K 1 (R) -'>K 1 (S). Again, we have the
functorial properties

(!og)*=!*og*, and (1R)*=1K1 (R)'

4. K 2•

Once the ground work was laid, the study of Ko and K 1 began to draw
attention from researchers in many other field, such as ring theory, number
theory, group representations, quadratic froms, algebraic geometry, and,
last but not least, topology. Unfailingly, these patrons bring along with
them their bag of favorite things. While looking for applications of K-the­
oOry in their own subject, they make diverse contributions to the theory
itself. Their concerted effort, in particular, rejuvenated the long-time spe­
<:ulation that there ought to exist a coherent theory of higher algebraic K;'s.
The first breakthrough came in 1967, when Milnor introduced the algebraic
K 2, based on earlier ideas of Steinberg. This K 2 was quickly embraced by
topologists and number theorists, who were the first to discover its applica­
tions. The depth and beauty of, Milnor's K 2 made the existence of the
.higher K;'s an even more desirable goal [4].

To give a definition of K 2, we shall begin with relation between elemen­
tary matrices over a ring R.

Let tfL;jEGLn(R) denote the elementary matrix with entry a in the (i, j)­
th place.

Following R. Steinberg [6J, we introduce an abstract group defined by
generators and relations which are designed to imitate the behavior of ele­
mentary matrices. Again let i, j range over all pairs of distinct integers be-
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tween 1 and n and let a and b range over R.

DEFINITION. For n2:3 the Steinberg group Stn(R) is the group defined by
generators x"ij subject to the relations

(1) x". ·xb..=x"+b..
I) I) I)

(2) [x"ij,Xbjl]=x"b j1 for i=t=l, and
(3) [x"jj,xbkI]=l for j-=l=k, i-=l=l.

(In other words Stn(R) is defined as a quotient ~I (}( where ~ denotes the
free group generated by the symbols X 4 jj and (}( denotes the smallest normal
subgroup modulo which the above relations are valid.)

The restriction n 2: 3 is needed since these relations are completely in­
adequate when n=2.

Difine the canonical homomorphism

by the formular if; (x"ij) =e4 ij. This assignment does give rise to a homomor
phism since each of the defining relations between generators of Stn (R) maps
into a valid identity between elementary matrices. The image if; (Stn (R) ) c
GLn(R) is of course equal to the subgroup En(R) generated by all elemen­
tary matrices.

Now pass to the direct limit as n-H>O, thus obtaining corresponding
groups and a corresponding homomorphism

if; : St(R)-+GL(R).

Note that the image if; (St (R)) = E (R) is equal to the commutator subgroup
of GL(R).

DEFINITION. The kernel of the homomorphism if; : St(R)-+GL(R) will be
called K 2 (R) .

THEOREM. The group K 2 (R) is the center of the Steinberg group St (R).

Thus K 2 (R) is an abelian group which fits into the exact sequence

1-+K2 (R)-St(R)-+GL(R)-+K1 (R)-+l.

Intuitively speaking we may think of K 2 (R) as the set of all nontrivial
relations between elementary matrices, the consequences of relations (1),
(2), and (3) being the trivial relations. In fact any relation

between elementary matrices gives rise to an element &ljlil&2j2i2"""&rj rir of
K 2 (R), and every element of K 2(R) can be obtained in this way.

As an example the matrix
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e11~-121el12= ( _ ~ 6)
in E2 (Z) represents a 90° relation, and hence has period 4. The relation

(e11~-121el12) 4= 1

in E(Z) gives rise to an element (el12e-121el12)4 in K 2(Z). We know that
the group K 2(Z) is cyclic of order 2, generated by this element (e11~-12l­

el12)4.

Note that K2 is a covariant functor from rings to abelian groups. In fact
every ring homomorphism R~R' clearly gives rise to a commutative diagram

1-K2 (R) -St (R) -GL(R) -4K 1 (R)-1
t t t t

1-K2 (R') -St (R') -GL (R') - K 1 (R')-1

Proof of Theorem. First recall the well known fact that an nXn matrics.
(au) commutes with every n Xn elementary matrix ebk1 if and only if (aij)

is a diagonal matrix, with all=a22=···=ann belonging to the center of R.
For if (ai) commutes with elk! then direct computation shows that ail=(»

and aU=all.

In particular note that no element of the subgroup

En- 1 (R) cEn (R),

other than I, belongs to the center of En (R). Passing to the direct limit as
n-400, it follows that the limit group E (R) has trivial center.

Now if e belongs to the center of St(R) then ep(e) belongs to the center
of E(R), hence ep(e) =1-

Conversely if ep (y) = 1 we must prove that y commutes with every gene­
rater x"ij of the Steinberg group. Choose an integer n large enough so that
y can be expressed as a work in the generators x"ij with i<n and j <no Let
Pn denote the subgroup of St(R) generated by the elements x"lm :z:42m ••• , and
a;4n-ln, where a ranges over R. This group is commutative by relation (3).

5. The higher K i , iz.3.

After the discovery of K2 by Milnor, the search for the higher K/s re­
ached major proportions. Several different definitions were proposed and
tried. Finally, these provisional definitions culminated in Quillen's specta­
cular discovery of all the correct K/s. In particular, the subject called Al­
gebraic K- Theory really exists.

From his work on the Adams conjecture [5J, and in particular his com­
putation of the fibre of the Adams operation c/fi-1 : B U-B U, Quillen was.
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motivated to propose an extremely elegant definition of higher K -groups.

THEOREM. (Quillen) . If X is a based CW complex and E is a perfect no--

f
rmal subgroup of '"IX, then there is a map X----,;X', unique up to homotopy,

such that E is the kerneZ of '"1 (f) and such that the homotopy fibre F of f

has the same integral llOlIlOZOgy as a point.

If one applies this to the space BclcR ) and subgroup ~ (R) of Cl (R), one

f
gets a map BclcR )~BClR T \\'here BClR + has the same integral homology
as BClCR ), and 7I:lBc/~cR)=Gl(R)/~(R)=Kl(R).

Furthermore, it is proved that 7[ zBclR' = Kz (R) =3J.
Quillen defind the higher K; as the following
DEFINITION. Kn(R)=7I:nBClCR)+' n?:.l.
The space BC/ CR )+ is an extraordinary space. Quillen proves that it is a

homotopy commutative and associative H-space, and in fact is an infite loop
space.
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