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A STUDY ON THE OPERATOR Lg

By Taesoo KM

. 1. Introduction.

Naimark [3], Krall [27], and Kim [1] discussed an operator generated by
a differential expressmn

ly=—y"+q(z)y, 0<z<oo, I:Iq(x)ldx<°°

and various boundary co@diﬁqﬁs. ‘In 1954, Naimark [37] discussed an ope-
rator L, generated by the differential expression ly=—y’"’+4q(z)y, where r,
0

&*|g(z) |dz< oo for some £>0, 0<z< co and the boundary condition 3’ (0)
—8y(0) =0, where 6 is a fixed number. In 1965, Krall [2] discussed the
differential operator L generated by the differential expression ly=—3""-+¢q

(z)y, Where_[ lg(z) |[dz<co, 0<zx< oo and the boundary condition rK

(z)y(z)dz=pBy(0) —ay’ (0), where K(z) is in L2(0, o0) and |a|2+ |8]2+0.
In 1973, Kim [17] discussed an operator Lr generated by a differential ex-
pression ly=y""—h(z) (a;y(0) +a2y’ (0)), where h(zx) is in L2(0, ) and

la;|2 +|ay|2#£0, and the boundary condition J:K (@) y{(x)dz=0by(0) +bsy

(0), where K(z) is in L2(0, ) and |[&;]|2+[5,|2#0. In this paper, we
want to discuss the operator Lgx further. We shall discuss the expansion of
the green’s function G(z, &, 1) of the operator Lx+1 and the elgenfunctlon
expansion of a certain function.

2. Expansion of the green’s function G (x, &, 1) of the operator Lx-- 1.

We define the differential expression Iy=3""—h(z) (a;y(0) +a»y’ (0)), for
all functions y=C?[0, ), where k(z) is an arbitrary measurable function
in L2(0, o) and |a,; |24 |az|2+#0.

Let D be the set of those functions f(z) on [0, =) satlsfymg

(1) f(z) is in L2(0, o)

(2) f'(x) exists and is absolutely continuous on every ﬁmte 'subinterval
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[0, 5] of [0, =)

(3) If(z) is in L2(0, o).

Let K(x) be a function in L2(0, ) and let 4, and &, be complex num-
bers such that |4,]2+]5,]2#0. Let Dg be the set of those functions f(z)
satisfying

1) f(x) isin D

@ ["K@f@dz=b10) =8 ©).

Now we define the operator Ly by Lgf(x)=If(x) for all functions f(z)
in Dg. We shall discuss the operator Lg in the following way;

(1) We find L? solution of ly+iy=0

(2) We find a particular solution of Lgy-+2y=Ff(z)

(3) We find the green’s function of the operator Lg+1

(4) We expand the green’s function which is obtained

(5) We expand a certain function using the eigenfunctions of the operator
L.

THEOREM 1. Linearly independent L2 solution of ly+Ay=0 is given by

© 3@ 9=t Cao e Grroa] e

where s= v X, 0<args<w, s=o-+tir, a=K£§§—h(x)dx.

Proof. See Kim [17.

THEOREM 2. For the eigenvalue problem Lgy-+2Ay=0, the eigenvalues are 2
=32, where Ims >0 and s is a solution of

(2) 2isdC +J:K (z)v1(z, s)dz(a,+isas) — (by—ishy) — 2isa (a6, + axby) =0,

where

=r-f-“:iK(x) dz, {=1+isaas—aa;+0,
o 2is

=g sz _e:e_. 52 ¥ g it
vl ) =e el Eoh@de+en] Sh@de.

Proof. See Kim [17].
If we define g8 by
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—0; a4 +isay _ bl‘—isbg - 2isa (a1b2 +azbl)
B=2is0 -l-————————g j::K (@) v (z, s)dz z Z

we can write (2) as a form

&) pE=0.

THrOREM 3. If Lgy+Ay=0 has only trivial solution, then for any function
S(x) in L2(0, ), there exists a solution of the equation Lgy-+Ay=f(z) and
the solution is expressed by

@ =[G e nr©

where
G(-Ty E’ 2) = Vl(z, Ea 2) -+ V2($, ‘Sa '1)
and

Vil & D) =L i it L BB o, (g, eiv

—%ei’zvz @) — “1*/;2‘“2 21(2, ) V2 (€, 5)

+ 1 btish, eiszgisi 1 (b, +isby) (ay+isay)
2is BE 2isp g2

v1(z, 5) €™t

1. ay—isay
+ 2is C

VZ ($, 5’ 2) = ]: eisz>e—isx<,
2is

(41 (.Z, S) eisf’

and

X

L pisE .
v (e, o) =e e L K(@dg-+ei]

—is§
S K@t
18
7= —zsaz I K(x)v,(z, s)dz
[ezs.ze— is€ .'L‘> E
pisz> o= isz<
eisEe— isx .'L'< S

Proof. See Kim [17].
Now we consider the expansion of the green’s function G(z, &, 4). We
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assume that h(z), K(z) are in L2(0, o) and for simplicity, 8(s) is never
zero for all real s and the complex zeros of 8(s) are simple zeros. We shall
use the residue theorem to integrate about a closed contour which may con-
tain the boundary of the analytic function being considered as long as the
function is continuous on that part of the boundary.

We choose the contour C in the 1 plane to be the course consisting of
the large circle Cz, C;, and C_. (see).

-~ Figure 1

From the equation (2), we can obtain the following theorem easily.

THEOREM 4. A=s? is an eigenvalue of the operator Ly if and only if B

(v 2)=0.
We first consider V1 (x, E, Z) Let Ay=s5;2 be asimple zeroof (v 7).
Then A, is a simple pole of the function V;(z, &, 1) and

) Vi & 0=L2D 16,660

where Gy(z, & 1) is analytic in a neighborhood of the point 1;=s;2. By the
residue theorem,

_ o)
®) R 6 =5E,
where
[ al“islaz 15T 88,8
(7) o(x) 555 (L Hiostas—aa)) J‘K () vy (z, s1) dzet1%e'
bl—l‘lslbz "’slxe“le—l— (albg+a2b1) -+ (al—-'zslaz)ﬁ
2is, (1 +isioas— aay) 1+is,qay—aa,

vy (x, sp)eint

a;1+15:85 is
- wn (z, sy)v $1) —és1tp. s1).
OBy (5, )06, ) — et 5
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For a fixed £ ¢(x) becomes an eigenfunction of the operator Lg corres-
ponding to an eigenvalue ;. We need to prove that ¢(z) satisfies "the di-
fferential equation y”’+ A,y =h(x) (ay(0) +ayy’(0)) and the boundary con-

dition roK (2)y(x)dz=5,y(0) —bsy’ (0). From the equation (7), we obtain
[+]
the relation,

" o (a1by+asby) + (a1—isas)0 2 is & a;+is51ay
® ¢"+ae 1+is,cay—aay ()¢t 1+-is,0a,—aay

h(z) vy (&, 51)-

To compute a;0(0) +a,0"(0), we use the expression (7) and the expre-
ssion (2), and obtain

(9) P (O) +42§D' (0) — (albz"ul'azlh) -+ (al—is1a2)5 gisiE— a,+is1a;s

1+isiaas—aa 1+is,aa,—aay
02(&, 51
Therefore ¢(z) satisfies the differential equation
a 9"+ Lip=h(z) (a10(0) +a20’(0)).

Now we wish to show that ¢(z) satisfies the above boundary condition.

If we substitute ¢p(z) in J:K (x)p(z)dz, we have

an j:K (@) o(2x)dz= bytisiby 2isiE5 4+ @by tah e :K (=)

1+is,aay—aay 1+is,aa;—aa

iz, sp)dz

_ @ +isia; _ = dz— , 510
1Fis,aa,—aa, vs (&, SI)JOK(x)vl(x’ sp)dz—v3(&, s1) 2isy

Using the relation (2), if we substitute an equivalent form for I:K(x)-

vy (2, s))dz, the equation (11) becomes

” N o _(@iboFashy) {(by—isiby) +2is10 (arbatasb)} s e
(12) j oK(a:)<p(:z:) dz (1 +isyaay—aay) (a;+is,as) e

@b —siPanhy—isi (aibytashy) (1— 204, +2i5108y) s
' (A +isy@a,—aa,) (a;+isas)

__(&y—isiby) +2is10(a:b5+azby) vy (£, 51)-

1+is,aq,—aa,

Now consider 5;p(0) —5,9’ (0). We compute -
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(a1—isas) e1® f”K ()01 (z, sy dz
. ]
2i5: (1 +is,ca,— aa,)

bl +i$1b2
2iSl (1 -+ islaag—— aay

13) 519 (0) —bsp" (0) =—

(by—is;bs)

e18 (b, —is1by)

1 (@b, “fl“ :z?;l)a‘; (jlc;zfs 182)0_ (b1 +isibg) €1

ay +18162
1+is,ca,—aay

(by—is,b,).

avy (€, 51) (b1+55162) —va(£, 51)

Using the equation (2), if we substitute an equivalent form for rK(x)
B 1]
v, (z, 5;)dz, the equation (13) becomes

2 (o) — _(@ibatashy) {(by—isibo) + 2isia (@bt anb) }
(14) bip(0) =By’ (0) (1+is,xas—aay) (a;+isas)

+ b s’apby—isy byt ashy) (1200, +2is1085) 65
(A +isyaa,—aay) (a,+isyas)
2i$1a (3162 -+ azbl) + (bl - islbz)

1+i$1aaz'—'aal UZ(E: 51)-

Comparing the equations (12) and (14), we see that ¢(z) satisfies the
boundary condition

[ k@0 (@)dz=b1p©@ —b:s’ ©.

Therefore the theorem is proved.

Now we go back to the equation (6). Since 1, is a simple zero of the
function B8(4/ 1), there is only one eigenfunction y,(z) corresponding toit,
up. to a factor independent of z, for the operator Lx. R(z, &) =¢(z) /8’ (v 41)
is also an eigenfunction corresponding to an eigenvalue v A;=s;. Therefore

(15) R(z, &) =a(&)y (2).
We wish to determine the function a(§). Let G*(z,5 ) =G(§ x, 2).
Then G*(z,&,1) becomes the green’s function for the operator Lg*-+7,

where Lg* is the adjoint operator of the operator Lx. Since G(z, & 2) is
expressed by '

1€

a6) Gl & 0=LEL 16,560+ 78D,
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G*(z, £, 1) has the form

an (et D=EELD G EED+ G 6 D.

So, for a fixed & R(E, z) is an eigenfunction of the operator Lg*, corres-
ponding to the eigenfunction ;. If we denote one of these functions by
z,(z), we then have

R(&, 2) =b(&) 21 (2).

Hence

(18) R(z, &) =b(z)z,(5).
Comparing this with the equation (15), we find
19 R(z, &) =cy (2)z:(6).

Now we try to determine the constant c.
For the equation

(20) 6 & D=EED 16,60+ Va6,
multiply both sides by (A—4;). Then we have
(Z—XI)G(-Z‘: Es 2) =R(.’L', E) + (X—XI)GZ(-'E’ E’ 2) + (2—21) Vz(.?:, E; 2)

=cyy (x) E41 (E) =+ (1—21) Gz(x, S, /I) + (2'—/21) Vg(.’l:, f, X) .
Multiplying both sides by y,(¢) and integrating it, we have

@) (-2) [ 6 & V3@ de=cn@ | 2@n©@de+ 0—) | o= 6D
y1(8)dé
+ G2 Vo, & D3 @4
Taking limit both sides, we have
(@ lmG-2) [ 6.6 In@di=en @[ 5 @O

On the other hand
(Lg+ D)3 (2) =— 131 (@) + 2y (2) = A—2) 31 ()

and

@) L)@ =[ 6662 n@d=7trn@.
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Substituting the equation (23) in (22), we get
31 (z) =cy1(z) It &)=z (8 de.

em 1
[n@=®a

Thus R(z,£) in (19) becomes

n@zE
Kyl (©) =z (6)as

(24) R(z,8)=

Using this argument, we have the following theorems.
THEOREM 5. For every simple zero 21 of the function B(v 1),

@) Gloe,)=——2@0C 6o D+ Valz, 6, D)
G= [ 7 (@m@de

where Gy(z,&,2), Volz,£,1) are analytic in a neighborhood of the point 1;.

THEOREM 6. Let {5, be the set of simple zeros of B(+v 1), i.e. {Ag
i, be the set of simple eigenvalues of the operator Lx. Then we have

Gt )=5—2@nQ) - 4G (2,604 Va(z6D
“ - @@

where Gp1(x, &, ), Vol(z,&, 2) are analytic in a neighborkeod of each of
{zk} :=h and

Vl (x, S, 2) = :V‘_' yk(x);;—(—é)— +Gn+1 (.Z', Er 'D -
- [ n@n®

Now we integrate *—‘fi-gf’—i—’i)—- around the contour in Fig. 1, where 1=
—AQ

so* is in the interior of Cz and is not an eigenvalue of Lx. By the residue
theorem, the contour integral of

Vi(z, &, 1)
Al

is

Vl(xs Ss 2) P V]_(.’L', E: 1) P Vl(a:’ Ey Z) —_ -
o) [, oEhba S Sy e Ml Foy
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where ¢ is the sum of the residues of M Since I RACEP)E
A2, A1
di=0 as R—oo, we have
Vl(x’ S’ ‘\/j et Vl(.T, E, '\/ﬂ dzzzﬂ_io_
l Ao [ l"lo :

The residue at the eigenvalue 2; is

@n

lim(1—2;) Vlgﬁ § D _ 2@z @
- N DI GO

Thus the sum ¢ of the residues is

= =0 [ 3©7 @ de
Substituting (28) in (27) and simplifying it, we have

V1($,5, v 1) Vilz, &, — vV 1)
27r A—2 da— 27i J A—2g a2

1 i ;5 (#)z;(6)
: 27[2 j=1
410 [ 3@z ® &

+Vi(z, &, 4o).

(29) Vl (.’l;, E: 20) -

Thus, we obtain the following theorem.

THEOREM 7. Let Ay=s,? be not an eigenvalue of the operator Lg. Then

. 1 had V1 (x’ 59 '\/7) 1 Vl(z’ 1/7) d
(30) Vi(=,&,20)= 21i J, A1 di— “omi . A—2p ’

" y;(2)z;©)
1
—3 = .
271 1 (=20 | 5@ 7@ e
We now consider V,(z,&,2). Let 2;=s,2 be in the interior of Cz and such

that 1,=s¢2 is not an eigenvalue of the operator Lg. If we integrate the
function

Va(z,6,0) _ e m<pim>
A= 4o 2iv/ 7 A—2y)

around the contour in Figure 1, we have

(8D

V2 (xa E, 2) V2 (-z, §9 z) V2 (x’ 5: l) — ;
G | 2ol nt| R e J S



112 Taeboo Kim

where ¢ is the sum of the residues of
V2 (xy Ss '2) .

A—Ay
Since . ——I{"’—%‘L‘iﬁ—'z—)—dl:O as R—oo, we have
R — A0
o e—iﬁx <ei./7X> ei,/'&<e—.-./7x>

(33)

0
The left hand side of (33) bzcomes

J«w e-iﬂxei,/}'e + e_i,/‘z’eea,/}’x

o 2iv 1 (A=)

(34) da.

Since the function —Zz—%—’—i—’@— has no singularity except 1=2;, the sum o
— A9
of the residues is

i A=) Va2, 6,1 o
(35) o }3;!; =10 Va(z, & o).

Therefore we have the following theorem.

THEOREM 8. Let ly=s¢ be not an eigenvalue of the operator Lg. Then
1 e-i,,_,.xe.',,':e_‘_eiﬂee—iﬁk
2 ), ZviG—dy W

Combining theorem 7 and 8, we have the following theorem.

(36) VZ (.77, 5’ ’10) =

THEOREM 9. Let Ag=s¢® be not an eigenvalue of the operator Ly, and {i3}
=1 be the set of simple eigenvalues of the operator Ly. Then

(37) G(.Z', 57 20) = Vl (x’ S’ 20) + V2 (-17, E! /20)

— 1 hat Vl(x; Ss 1/7) dl—— 1 Vl (x’ 89 - 1/7_) d)‘
2ni J, A=Ay 2ni Jq A— A

__.l__é yj(x)z_,'(‘f)

27i =1 (zj_,zo)j.:yj(f)zj(f)d‘f
1 [ e g VR g
i )T GiviG=1)

Consider the set D* of those functions defined by
(1) g(=z) is in L'(0, =)
(2) g’(z) exists and is absolutely continuous on every finite subinterval

4
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[0,5] of [0, o)
(3) 8”(2) —h(2) (@12 (0) +a:g’ (1)) is in L1(0, o)
@ [[E@g@dz=bg @ —b:g’ (0).

If g(z) is in D*, then lim g(z)=limg’(z) =0. To prove this proposition,

Fad -l

see Krall[2]. Assume g(z) is in D* and f(z) =g (z) + lg(z) —k(2) (a;g
(0) +a2g”(0)) and Ap=se2 is not an eigenvalue of the operator Lx. Then

(38) §@ =[Gz 8 WF©d.

So, g(2)=[ [Vi(, & 1)+ Va(s, &, 1) 1 F©) de
(Tl V@EVD . 1 (= Vilz & — v
—_[.,[ 27t Jo A—2 da 27i J, 1 A— 2o di
1 2 yj(x)zj(s)
T2 A =20 [ 950 5®d©

1 i VAR +e-‘47xe—iﬁx .
s R v e e HOEE

— s (Vi@ vD -Vt & — VDD 4

S0 = e
RS [m@s@ae
N PR OTAGEE

Therefore we have the following theorem.
THEOREM 10. Let g(x) be in D*. Then

39 ¢@ = 2@ ni@e vD-Vile & —v DD
oo wof i VAR i JAE i JAK i Ja&
~gr] O [ 42:/; - Jenae

L3 ; (x)Jtzj—Tﬁg & de

Rl P GINGYE
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3. Conclusion.
Using the differential expression ly=y""—h(z) (a;¥(0) +a5y’(0)) and the
boundary condition J-:K @) y(2)dz=b,y(0) —b,5' (0), we define an operator

Lg by Lgy=y"—h(z) (ay(0) +asy’(0)) for all functions satisfying the ab-
ove boundary condition. When 1,=s,2 is not an eigenvalue, the green’s
function has the following form.

G(x, Sa 20) = Vl(x’ g, 20) + VZ("L" Ey 20)’

where
1 Vl (x) 6’ "/ ] ) 1 Vl (x! Ey '\/7)

Vl (xa E, IIO) - 27.[1 0 1= 20 ‘ ’7/1 27'[2 o 1— 20 d/l

 yi(2)z;(8)

“E B )f P
71 (=2 ) (€)= (€

o i JAE I | =i AL iy R

V2 (.17, E’ 20) = 1 ¢ ? +e e'

. b da
21 Jo 2iv 2 (A—=4) 77

The eigenfunction expansion of a certain function g(z) has the form

§@ == 2@ IVi(s.6 v~ Vilo, & — v IaNE
1 0 Y e—l'«/lxeiﬂf-_l_e—i\/iéeiaﬂx
2 I £ (j 0 [ 2V ]‘“.) o
R RCLCLE
+52 J e

=t J 2;(©)y;(©)de

REMARK. If k(z) is identically zero on (0, ), the operator Ly reduces
to the operator L discussed by the Krall[2]. If 2(z) and K(z) are identi-
cally zero on the interval (0, o), the operator Lg reduces to the operator
Ly discussed by Naimark(3]. So this paper is some extension or generlized
one of Krall’s and Nalmark’
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