SOME REMARKS ON DCS/x SPACES

By Joo Ho Kang

1. Introduction.

In paper [2], N.L. Levine proved that for an invertible spaces certain local properties become global properties.

V. M. Klassen introduced DCS space and DCS/x space. DCS/x space has the above property. We investigate some properties in DCS/x spaces.

DEFINITION 1.1. [1]. A topological space X is said to have the disappearing closed set (DCS) property or to be a DCS space, if for every proper closed subset C there is a family of open sets $\{U_i\}_{i=1}^{\infty}$ such that $U_{i+1} \subseteq U_i$ and $\bigcap_{i=1}^{\infty} U_i = \phi$, and there is also a sequence $\{h_i\}_{i=1}^{\infty}$ of homeomorphisms on X onto X such that $h_i(C) \subseteq U_i$ for all i.

DEFINITION 1.2. [1]. A topological space X is said to have DCS/x property or to be a DCS/x space, if for every proper closed subset C which miss x there exist two sequences $\{U_i\}_{i=1}^{\infty}$ and $\{h_i\}_{i=1}^{\infty}$ satisfying the DCS property.

2. Main results.

LEMMA 2.1. For every neighborhood P of x there is a sequence $\{h_i\}_{i=1}^{\infty}$ of homeomorphisms on X onto X such that $\bigcup_{i=1}^{\infty} h_i(P) = X$.

Proof. Let $\{U_i\}_{i=1}^{\infty}$ be a decreasing sequence of open sets in X such that $\bigcap_{i=1}^{\infty} U_i = \phi$ and $\{h_i\}_{i=1}^{\infty}$ a sequence of homeomorphisms in X such that $h_i(X-P)$ $\subset U_i$ for each i. Then $X - \bigcup_{i=1}^{\infty} h_i(P) \subset \bigcap_{i=1}^{\infty} U_i$, so $X \subset \bigcup_{i=1}^{\infty} h_i(P)$ since $\bigcap_{i=1}^{\infty} U_i = \phi$.

THEOREM 2.2. If P satisfies the first axiom of countability then X satisfies the first axiom of countability.

Proof. Let $a \in X$ and U be an open neighborhood of a. Let $\{h_i\}_{i=1}^{\infty}$ be a sequence of homeomorphisms in X such that $\bigcup_{i=1}^{\infty} h_i(P) = X$. Then $a \in h_{i_0}(P)$ for some integer i_0 and thus $h_{i_0}^{-1}(a) \in P$. Let $\{U_j\}_{j=1}^{\infty}$ be a countable open

base of $h_{i_0}^{-1}(a)$ in P. Then $h_{i_0}^{-1}(a) \in U_j \subset h_{i_0}^{-1}(U) \cap P$ for some integer j. Hence $\{h_{i_0}(U_j) \mid j=1, 2, \cdots\}$ is a countable open base for a in X.

THEOREM 2.3. If P satisfies the second axiom of countability, then X satisfies the second axiom of countability.

Proof. Let $\{U_i\}_{i=1}^{\infty}$ be a countable base in P and let $\{h_j\}_{j=1}^{\infty}$ be a sequence of homeomorphisms in X such that $\bigcup_{j=1}^{\infty} h_j(P) = X$. Then $\{h_j(U_i) \mid i, j=1, 2, \dots\}$ is a countable base in X since $\{h_j(U_i) \mid i=1, 2, \dots\}$ is a base in $h_j(P)$ for each j.

THEOREM 2.4. If P is a Lindelöf subspace of X then X is Lindelöf.

Proof. Let $\{U_{\alpha}\}$ be an open covering of X and let $\{h_i\}_{i=1}^{\infty}$ be a sequence of homeomorphisms in X such that $\bigcup_{i=1}^{\infty} h_i(P) = X$. Since P is Lindelöf, $h_i(P)$ is Lindelöf for each i. Then there is a countable open subcovering $\{U_i{}^j|j=1,2,\cdots\}$ of $\{U_{\alpha}\}$ such that $h_i(P) \subset \bigcup_{i=1}^{\infty} U_i{}^j$ for each i. Therefore $\{U_i{}^j|i,j=1,2,\cdots\}$ is a countable open subcovering of $\{U_{\alpha}\}$ such that $\bigcup_{i=1}^{\infty} U_i{}^j = X$.

LEMMA 2.5. If P (or \bar{P}) is a connected subspace of X then P (or \bar{P}) is not clopen subset of X.

Proof. Suppose P is closed subset of X. Then $h_i(P)$ is clopen subset of X for each i, where $\{h_i\}_{i=1}^{\infty}$ is a sequence of homeomorphisms in X for X-P. Then $X=\bigcup_{i=1}^{\infty}h_i(P)$ and X is disjoint union. Hence there exists an integer i_0 such that $x\in h_{i_0}(P)$ and $x\notin X\bigcup_{i\neq i_0}h_i(P)$. That is, $x\in X-h_i(P)$ for each $i\neq i_0$. Let $\{U_i\}_{i=1}^{\infty}$ be a decreasing sequence of open sets in X such that $\bigcap_{i=1}^{\infty}U_i=\phi$ for X-P. Then $x\in h_i(X-P)\subset U_i$ for each $i\neq i_0$. Since $\{U_i\}$ is decreasing sequence, $x\in\bigcap_{i=1}^{\infty}U_i$. It is contradict to $\bigcap_{i=1}^{\infty}U_i=\phi$.

From the above lemma we obtain the following theorem.

THEOREM 2.6. If P or \overline{P} is connected subspace of X then X is connected.

Proof. Assume that X is disconnected. Then there is a nonempty proper clopen subset O of X. O is neither P nor \bar{P} by Lemma 2.5. Since $X = \bigcup_{i=1}^{\infty} h_i(P)$ and $\phi \neq 0 \subseteq X$, there exists an i_0 such that $\phi \neq h_{i_0}(P) \cap 0 \subseteq h_{i_0}(P)$. Suppose $h_i(P) \subset h_i(P) \cap O$ for all i, then $h_i(P) \subset O$ for all i, so X = 0. Hence

 $P \cap h_{i_0}^{-1}(0)$ is nonempty proper clopen subset of P. It is contradict.

THEOREM 2.7. If \bar{P} is regular and some U_n is regular then X is regular, where $\{U_n\}$ is a sequence in X for X-P by DCS/x property.

Proof. Let $a \in X$ and C a closed in X such that $a \notin C$.

Case I; $C \subset X - P$. (i) $a \in X - P$. Since U_n is regular and $h_n(a)$, $h_n(C) \subset U_n$, there exists two disjoint neighborhoods U, V of $h_n(a)$, $h_n(C)$ in U_n respectively. Hence $h_n^{-1}(U)$ and $h_n^{-1}(V)$ are disjoint neighborhoods of a, C in X respectively. (ii) $a \in P$. Put $C_1 = C \cap \bar{P}$. If $C_1 = \phi$, then $a \in P$, $C \subset X - \bar{P}$ and P, $X - \bar{P}$ are disjoint opens in X. If $C_1 \neq \phi$, then there are two disjoint opens U', V' on \bar{P} such that $a \in U'$ and $C_1 \subset V'$. Let U, V be opens in X such that $U' = U \cap \bar{P}$ and $V' = V \cap \bar{P}$. Then $a \in U \cap P$, $C \subset V \cup (X - \bar{P})$ and $U \cap P$, $V \cup (X - \bar{P})$ are disjoint opens in X.

Case II; $C \cap P \neq \phi$. (i) $a \in P$. This case is same to case I, (ii). (ii) $a \in \overline{P} - P$. Let $C_1 = C \cap \overline{P}$, $C_2 = C \cap (X - P)$. Then there are two disjoint neighborhoods U_1' , V_1' of a, C in \overline{P} respectively and two disjoint neighborhoods U_2 , V_2 of a, C_2 in X respectively. Let U_1 and V_1 are opens in X such that $U_1' = U_1 \cap \overline{P}$ and $V_1' = V_1 \cap \overline{P}$. Then $U_1 \cap U_2$, $V_2 \cup (V_1 \cap P)$ are disjoint opens in X such that $a \in U_1 \cap U_2$ and $C \subset V_2 \cup (V_1 \cap P)$. (iii) $a \in X - \overline{P}$. Let U, V are two disjoint neighborhoods of a and C_2 in X. Then $U \cap (X - \overline{P})$ and $V \cup P$ are two disjoint open neighborhoods of a, C in X.

Case III; $C \subset P$. (i) $a \in \overline{P}$. Let U', V' be disjoint neighborhoods of a, C in \overline{P} respectively and let U, V be two opens in X such that $U' = U \cap \overline{P}$ and $V' = V \cap \overline{P}$. Then U, $V \cap P$ are two disjoint opens in X such that $a \in U$ and $C \subset V \cap P$. (ii) $a \in X - \overline{P}$. $X - \overline{P}$ and P are disjoint neighborhoods of a, C in X respectively.

THEOREM 2.8. If \overline{P} is normal and some U_n is normal, then X is normal, where $\{U_n\}$ is a sequence in X for X-P by DCS/x property.

Proof. Let C_1 , C_2 be disjoint closed subsets of X.

Case I; C_1 , $C_2 \subset X - P$. Since $h_n(C_1)$, $h_n(C_2) \subset U_n$ and $h_n(C_1) \cap h_n(C_2) = \phi$, we can take two disjoint neighborhoods of C_1 , C_2 in X.

Case II; $C_2 \cap P \neq \phi$. Let $F_1 = C_1 \cap \bar{P}$, $F_2 = C_2 \cap \bar{P}$, $G_1 = C_1 \cap (X - P)$ and $G_2 = C_2 \cap (X - P)$. Let U_1' , V_1' be disjoint neighborhoods of F_1 , F_2 in \bar{P} and U_2 , V_2 be disjoint neighborhoods of G_1 , G_2 in X. (i) $C_1 \subset X - P$. $(U_1 \cap U_2) \cup (U_2 \cap (X - \bar{P}))$ and $V_2 \cup (V_1 \cap P)$ are disjoint neighborhoods of C_1 , C_2 in X, where U_1 , U_2 are opens in X such that $U_1' = U_1 \cap \bar{P}$ and $V_1' = V_1 \cap \bar{P}$. (ii) $C_1 \cap P \neq \phi$. Put $W_1 = U_1 \cap P$, $W_1' = V_1 \cap P$, $W_2 = U_1 \cap U_2$, $W_2' = V_1 \cap V_2$,

 $W_3=U_2\cap (X-\bar{P})$ and $W_3'=V_2\cap (X-\bar{P})$. Then $C_1\subset W_1\cup W_2\cup W_3$, $C_2\subset W_1'\cup W_2'\cup W_3'$ and $W_1\cup W_2\cup W_3$, $W_1'\cup W_2'\cup W_3'$ are disjoint opens in X. (iii) $C_1\subset P$. W_1 , $V_1\cup (X-P)$ are disjoint open neighborhoods of C_1 , C_2 in X respectively.

Case III; $C_2 \subset P$. (i) $C_1 \subset P$. It is trivial.

- (ii) $C_1 \cap P \neq \phi$. It is same to Case II (iii).
- (iii) $C_1 \subset X P$. $(U_1 \cap P) \cup (X \overline{P})$ and $V_1 \cap P$ are two disjoint neighborhoods of C_1, C_2 in X.

THEOREM 2.9. If X and Y are topological spaces with DCS/x property and DCS/y property respectively, then $X \times Y$ is DCS/(x, y) space.

Proof. Let C be a proper closed subset of $X \times Y$ such that $(x, y) \notin C$, and let $x \in P \subset X$, $y \in Q \subset Y$ be open sets in X and Y, respectively, such that $(x, y) \in P \times Q \subset (X \times Y) - C$. Let $\{U_i\}_{i=1}^{\infty}$, $\{h_i\}_{i=1}^{\infty}$ and $\{V_i\}_{i=1}^{\infty}$, $\{k_i\}_{i=1}^{\infty}$ be the open sets and homeomorphisms for X - P and Y - Q in X and Y, respectively. We define a sequence of homeomorphisms in $X \times Y$

$$\phi_i(a,b) = \{h_i(a), k_i(b)\}\$$
 for each $(a,b) \in X \times Y$,

and

$$\{W_i\}_{i=1}^{\infty} = \{(U_i \times Y) \cup (X \times V_i)\}_{i=1}^{\infty}.$$

Then $\{W_i\}_{i=1}^{\infty}$ is a decreasing sequence of open sets in $X \times Y$ such that $\bigcap_{i=1}^{\infty} W_i = \phi$.

Since $C \subset (X \times Y) - (P \times Q) = \{(X - P) \times Y\} \cup \{X \times (Y - Q)\}, \quad \phi_i(C) \subset \{h_i(X - P) \times Y\} \cup \{X \times k_i(Y - Q)\} \subset (U_i \times Y) \cup (X \times V_i) = W_i \text{ for each } i = 1, 2, \cdots.$

Hence $X \times Y$ is DCS/(x, y) space.

THEOREM 2.10. If P is a separable subspace of X then X is separable.

Proof. Let A be a countable dense subset of P, and let $\{h_i\}_{i=1}^{\infty}$ be a sequence of homeomorphisms in X such that $\bigcup_{j=1}^{\infty} h_j(P) = X$. Then $D = \bigcup_{i=1}^{\infty} h_i$ (A) is a countable dense subset of $h_i(P)$ for each i.

References

- [1] V. M. Klassen, The disappearing closed set property, Pacific J. Math., Vol 43, No. 2, 1972, 403-406.
- [2] N. I. Levine, Some remarks on invertiable spaces, Amer. Math. Monthly, 70, No.

- 2, 1963, 181-183.
- [3] V. M. Klassen, Complexes with the disappearing closed set property, Proc. Amer. Math. Soc., Vol. 36, No. 2, 1972, 583-584.
- [4] J. Dugundji, Topology, Allyn and Bacon Inc. Boston, 1966.

Kyungpook University