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HOMGREN'S THEOREM AND ITS APPLICATION
TO THE WAVE OPERATOR

BY JONGSIK KIM

Introduction.

In this paper we shall generalize the classical Homgren's theorem on the
uniqueness of Cm-function solution of the Cauchy problem of the m-th order
with analytic coefficients. Our generalization (d. § 2) results in the unique­
ness of the solution, Cm-function of t valued in Q)' (Ox), of the Cauchy pro­
blem of the m-th order with analytic coefficients. This result mainly based
on the recent results of Treves [6J on the abstract version of the Homgren's
theorem. .

We shall also show that the above generalization can he usefully applied
in the wave operator theory (d. §3) in deriving the supports of the funda­
mental solutions of the wave operator and the uniqueness of the solutions,
C2 function 'of t valued in Q)' (Rxn) , of the wave equation with the initial data
in Q)'(Rxn).

1. Notations and definitions.

Let Rn he the n-dimensional Euclidean space. The element in Rn will he
denoted by x= (xl, "', x n). We denote by R n, the dual of Rn and its element
will he denoted by ~= (~l, "', ~n). When we want to specialize a special
component, we shall sometimes use the notation (x, t) to he an element in
Rn X RI as (Xl, "', xn, t) and (~, r) to be an element in the dual space R n
X R I as (~l, "', ~n, r).

A linear partial differential operator in n-independent variables x= (xl, "',
x n) with complex coefficients defined in an open subset Q of Rn is a polyno­
mial in the partial differentiations and has the form

P(x, Dx) = :E Ca(x) Dxa.
laj$;m

Here a is a multi-index, that is, an n-tuples of integers aj~0; Ia I de­
notes its length al+···+an• Also

Dxa= (DI)a1... (Dn) an
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where Djai= ( -i a:j ) a
i
•

When P (x, Dx) is a partial differential ,operator defi:q.ed in Q, then the func­
tion Pm (x, ~) on Q X R" is called the principal sy""wol where Pm (x,~) is
such that ' ,,' "

Pm(x,Dx)= 2:: ca(x) Dxa.
lal=m

Fixing x in Q, we consider the set of zeros of Pm (x,~) as a function of ~ :

DEFINITION 1. 1. The set Cp(x) is called the characteristic cone of P(x,
Dx) at the point xEQ. Every covector ~ECp(x) ,different from zero is said
to be characteristic with respect to P(x, D x), at the point x.

Let S be a CLhypersurface in Q. By ihis we mean a subset S of Q such
that for every' Xo of Q has an open neighborhood Uo where there is a 0­
function q;(x) in Uo with the following property; gradient of q; does not
vanish anywhere in Uo and sn Uo is exactly the set of points xE Uo such
that cp (x) =0.

DEFINITION 1. 2. The hypersurface S is said to be noncharacteristic if any
normal covector ~ to S at any point :r: of Sis noncharacteristic.

We shall denote by LIx the Laplacian operator

(_a)2+ +(~)2
ax! ox" .

Q)' (Q) will be the space of all distributions in. the open subset Q of Rn. For
details of unexplained definitions and notations' we refer to Treves [7J.

2 General version of the classical Hoingren's theorem.

In this section we shall generalize the classical Homgren's theorem. Let Q
be an open subset of Rn and (- T, T) be an open interval in RI. .Let a
partial differential operator P(y,Dy ) (y=(x,t».is of the type

(2.1) Dtm+ 2::cao, a(x, t)DtaoDxa
ao+ I al ::;;m'

"0<00

where y= (x, t) EQ X (- T, T) eRn+!. ,
We ~ssume that the' coefficient cao, a (x, t) a~e. analytic in Q X (- T, T). Then
the classical Homgren's theorem states that

zj u is a Cm-function of (x, t) satisfying (2.1) in Q X (- T, T) and
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D/'u=O for all:CED and k=O, 1, 2, "'m-:-:-1, t~n ,u=O in the neighborhood of
Dx {O}.

The classical Homgren's theorem has been investigated in many various
ways. An outstanding one of them is the abstract version of the Homgren's
theorem derived from the study of the uniqueness results of linear partial
differential equations which follows from the dual form of the abstract Cau­
chy-Kovalevska theorem (d. [6J). The abstract version of the Homgren's
theorem applied in the case of a single partial differential operator of or­
der m>O, P(y, Dy) [y= (Yb •••~ yN) is the variable in an open subset U of
RNJ can be stated as' follows.

THEOREM 2. 1. Suppose that the coefficient of the differential operator P (y,
D y ) are analytic in the open set 1t. Let I be a CLhypersurface in U subdivi­
ding 1t into two parts and 'nowhere charateristic with respect to P(y, D y).

Then there is an open neighborhood of I in U, ?t, such. that every distribu­
tion u in U, satisfying there P(y, D y) u=O and vanishing on one side of I,
also vanishes in fit.

In the case when the partial differential operator P(y, D y ) is of type
(2. 1), we can' use the theore~ 2. 1 to derive a general ver~ion of the classical
Homgren's the6rem applied to the solution of (2.1) which is a Cm-function
of t valued in Q)' (Q) .

THEOREM 2.2. Let u be a cm-function of t valued in Q)' (Qx ) satisfying
P(y, Dy)u=,O in Q X (- T, T) ~here P(y, D y) is of the type (2.1) with an­
alytic coeffici~s. If Dlu=O when t=O for all k=O, 1, .•. , ·m-1 in D, then
u=O .in some neighborhood 9i Q X ,{O}. •

Proof. Consider ii(x, t) =H(t)u (:c, t) where H is the Heaviside's functi­
on, equal to one on the positive half-line and to zero on the negative half­
line. Since u is a em-function of t and Dtk w=O when t=O for all k=
,0, I? ... '. m-:"'l, we have (d. [5J)

D/ii=H(t) Diu, k=O, 1, ···m,

and heIiceii alsosa:ti~fies P(y, D y ) u=o. Of course, by the definition of ii,
ii==O for t<O. . Since the C1 hypersurface t' 0 is nowhere characteristic
with respect to P(y, Dy), . we can apply the theorem 2.1 to complete our
~~. .

3. .Applicatio~s t9' the wav~ operato~.;
". • .' .-- l . .>' ..

In this section· we shall make applications of the theorem 2. 2 to. the wa-
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ve operator. We recall first that one of the fundamental solutions of the wa­
ve operator

in Rn+l is

E(x, t) =H(t)U(x, t)

where U(x, t) is a distribution whose Fourier transform with respect to x­
variable is sin(I,;lt)/I.;1 and H(t) is the Heaviside function. Since H(t) =0
when t<O, E(x, t) has its support in the upper half -space t~O. Let us
define the forward light cone r + as

r+= {(x,t)ERn+lllxI2~t2, t~O}.

We shall show that an application of the theorem 2.1 says that any funda­
mental solution of the wave operator, which has its support in the upper
half space t~O, has its supports in r+. Thus in particular, E(x, t) has its
.support in r +.

To see this, let us recall that the fundamental solutions of the wave ope­
rator is the solution of the linear partial differential equation

(3.1)

where ;; is the Dirac measure at origin, it follows that if Q is any open
.subset of Rn which does not contain origin, then in Q X (- T, T) the fun­
damental solutions are the solutions of the homogeneous wave equation

a2u
at2 -il,xu=O.

THEOREM 3. 1. Any fundamental solution of the wave operator, whose sup­
port lies in the upper half space t ~ 0, has its support in the forward light
~one r+.

Proof. It suffices to prove that the fundamental solution vanishes identi­
.cally in the complement of the forward light cone r +. The characteristic
hypersurface of the wave operator is the hy}iersurface whose normal covec­
tor at every point of the hypersurface lies on the characteristic cone !';j2=r
where (,;, ,,) ERn+1•

Let (Xo. to) belongs to the complement of r +. Then we can find a non­
characteristic CLhypersurface Sl passing (Xo. to) and intersecting with the
noncharacteristic CLhypersurface t=o, which we shallcail So, in the houn-
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dary of a compact set K in R:xn such that K does not contain the origin.
(Geometrically obvious construction of Sl can be done by the CLpartitions
of unity. d. Fig. I)

t

Izl"? :

We can deform Sl continuously to SO by noncharacteristic CLhypersurfaces
Sa (O<a<l) such that Sa nSO equals to the boundary of K and in the upper
half space t;;;; 0, S~ lies above sa if a<fJ. Since the fundamental solution
vanishes on the lower half space t<O, by the theorem 2.1, the fundamen­
tal solution vanishes in the neighborhood of K. As K is compact, there
exists a(O<a~l) such that the fundamental solution vanishes on the clo­
sure of the region Da surrounded by Sa and SO. Now if we apply the theo­
rem 2.1 to the noncharacteristic CLhypersurface sa, we conclude that there
exists S~(a<fJ~l) such that the fundamental solution vanishes on the clo­
sure of the region D~ surrounded by s~ and SO. Let r (O<r~l) be the upper
bound such that the fundamental solution vanishes on the closure of Dr' sur­
rounded by Sr and SO. Then it follows that r=l, since otherwise we can
apply the theorem .2. 1 on Sr to get a contradiction. This shows that the
fundamental solution vanishes at (xo, to), thus completing the proof.

In the remaining of this section we shall show that the theorem 2. 2 can
be applied to deduce that the Cauchy problem of tne wave equation has the
unique solution as CLfunction of t valued in Q)' (Rxn). Thus we think of

a2u
(3.2) at2 -Axu=f(x,t) in Rn+1,

(3.3) when t=O, u=uo(x), ~~ =U1 (x) in Rn.

We shall use the following existence part of solution of (3.2)-(3.3) (d.
[7J):

Let Uo, U1 be any two distributions in Rn, f(x, t) any continuous function of
t valued in Q)'(Rxn). There is a CLfunction of t valued in Q)'(Rx") which is
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a -solution of (3. 2):-'" (3. 3). , .

TIiEOREM 3.2. Let uo, U1 be any two distributions inRn, f(x. t) any conti­
nuous function of t valued in Q)' (Rxn). Then the Cauchy Problem (3. 2) - (3. 3)
of the wave equation has a unique solution as a C2-function of t valued in
Q)' (Rxn).

Proof. Let vex. t) and w(x.:t) he any two solutions of (3.2)-(3.3) as CL
functions of t valued in 'Q)' (Rxn)~ We note that the chaFa:~teristic cone of
the wave operator is·.lfj2~-;2:=rhele£ore if (xo. to) (to?t» is any point in
Rn+1, we can find ~ nonc~~cteri!'!tic"Cl,,-hypers:urfac(;f/S1 passing (xo. to) and
intersecting with l;he noncharaCterist~c Cl~hypersurfa'ce t=O, say So. in the
boundary of a cOtDpa~t set' "K (d.). ;'.'

. '''' ...• ".-;~: - ~- ~._ ~- ,.....:"~ ".. ~~-'-.-.- ", _. ---

~~--:::+----:::--:--------""'o;:'-ZFig. I

We pan def.orm. 8 1 continuously to 8 0 by the noncharacteristic CLhypersur­
face Sa (O<a<n such that Sa nSo is the boundary of K and SP lies above
Sa. if. a<fJ. ,in the upper half space t:;;;;O. Since u=v-w is a CL£unction

of t valued inQ)' (Rx") and u=O, ~; '=0 when t=O. ,;-e cali' apply ,the

theorem 2.2 ito conclude that u vani~hes on the cl~sure. of the region D a sur­
rounded by Sa and So for some a (O<a ~1). Now if we apply the thoo­
rem 2.1 to the hyperilurface Sa. we see that there existsfJ (a<f3~'l) such
dult u vaDislies l>n the closure of D p• the'region surrounded by 8 P and Sf}.
Let r (0<,::;;;1) be the upper bound such that u vanishes on the closure of
Dr- Then,= 1 as is shown in the proof of the 'theorem 2. 1. Since (Xth to)
(to:;;;;O) is arbitrary and the symmetric argument can be applied for (xo, to)
(to<O) , this completes our proof. :
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