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A STUDY ON EXTENSIONS OF TOPOLOGICAL SPACES

By FYUNG-U PARK

o. Introduction.

The categorical approaches to the theory of extensions of topological spaces
have been considered by several authors. M. HUSek [14J has defined the
category Ext and constructed a basic functor G from the category of gene­
ralized proximity spaces into Ext. H. L. Bentley [3J has defined the cate­
gory Ex, which has Ext as an isomorphism closed and epireflective subca­
tegory, and investigated the properties of those categories. Moreover, H.
Herrlich & H. L. Bentley [4J have shown that the correspondance between
equivalence classes (modulo the relation of isomorphism) of strict extensions
and concrete nearness spaces is one-one and onto.

On the top of these, we develop further theory on extensions of topolo­
gical spaces. In particular, using the categorical languages, we try to find
relationships between various extensions. The basic categorical structures of
Ext, especially, those of the category H-Ext of Hausdorff extensions shall
be investigated. Finally, we will show that, if A is an epireflective subca­
tegory of Bans, then A-Ext is also an epireflective subcategory of H-Ext.
The author wishes to' express his appreciation to Professor Chi Young Kim
for his guidance and encouragement during the preparation of this paper.

1. The Category Ext.

The following definition is due to M. HUSek [14J.

DEFINITION 1. The category Ext is defined as follow:

Objects of Ext are extensions e : X---Y, denoted by (e, X, Y); morphisms
{)f (e. X, Y) to (e', X', Y') are all pairs (I, g) of continuous maps such that
the diagram e

X ,... Y

J g
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commutes.
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H (f,g) : (e,X, Y)~(e',X',Y') and (f',g'): (e',X'Y')~(e",X",

Y") are morphisms of Ext, the composition of (f, g) and (/', g') is defined
in an obvious way, i. e., (/', g'). (f, g) = (/'.f, g' .g).

The full subcategory of Ext, formed by Hausdorff (A, resp.) extensions
of topological spaces will be denoted by B-Ext (A-Ext, resp.), where A
is a subcategory of Bans and A-extension means its extension space belongs
to A.

Since the composition of initial maps is again initial and homeomorphisms.
are initial, it is obvious that for a map e from a topological space X into
a topological space Y, (e, X, Y) is an object of Ext if and only if e is.
injective, initial .and dense.

THEOREM 2. The category Ext has products.

Proof. Let (ei, Xi' Yi) ieI be any family of objects in Ext and let IfXi and
If Yi be the product spaces of (Xi)iej and (Yi)ier. respectively. Then cle­

arly, lfei is injective and initial since ej for each jEI and the projections.
(Pj) jeI of IfXi are both initial. lfei is obviousely dense. Thus (Ifei, IfXi'
V Y;) is an object of Ext. We assert that (lfei, lr Xi, If Yi) is precisely the:
product of (ei, Xi' Yi)ieI in Ext. Indeed, for each family of (hj, kj) : (e, U,
V)~(ej, Xj' Y j) (jEI), (h, k) : (e, U, V)~(lfei, IfXi, If Yi), where h.
= 11 hi and k . 11 ki is the unique morphism with (Pj, qj) . (h, k) = (hj , kj). It
follows from the definitions of hand k and the fact that (qj) jeI is a mono-

source. U e >- V
\ I

\ /
, k k I
\ I
\... ;!
" lTe;
lTX; > lTY;

Since Bans is productive, the following is immediate from the above
Theorem.

THEOREM 3. The category H-Ext has products.
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THEOREM 4. The category Ext has equalizers.

Proof. Let (fl' gl) and (fz, gz) be any pair of morphisms of Ext from
(ebXb Y1) to (ez,Xz, Yz) and let (Z, h) =equ(fbfz), (T,n)=equ(gbgZ) in
Top. Since gl'(el·h)=gz·(el·h) and (T,n)=equ(ghgZ), there exists a uni­
que continuous map e': Z---T such that n·e'=el·h. Let e: Z---cl(e'(Z»
be the corestriction of e' to cl (e' (Z» and let m be the natural embedding
of c1(e'(Z»into T. Then e'=m·e; therfore e is injective and initial, and
hence (e, Z, cl (e' (Z» is an object of Ext. If we let k =n' rn, (h, k) is clearly
a morphism of Ext with (/10 gl)' (h, k) = (fz, gz) . (h, k). Assume that (tt, v)
is a morphism from (e", U, V) to (eh Xb Y1) such that (fh gl) . (u, v) = (/2,
gz)· (tt, v). Then there is a pair (tt', v') of continuous maps with b·tt'=u
and n'v'=v, for (Z,h)=equ(fbf2) and (7':n)=equ(gl,gZ)' Since n is a
monomorphism, e'· tt' = v' .e". .

e .".VU /1/\
\
\

\ cl( e' (Z» / fI'
u' \

\i./
/

\

~'\ f
T

fI
U Z

-1 1·
Xl el ~Y,.

X2
----;>~ y.

Noting v' (V) c cl (e' (Z», let v" be the corestriction of v' to cl (e' (Z».
Then it is easy to show that (u', v") is the unique morphism from (e", U,
V) to (e, Z, cl(e'(Z») with (h, k)' (u', v") = (u, v). Hence «e, Z, cl(e'(Z»,
(h, k» is the equalizer of (f1' K1) and (f2' g2)'

Since Haus is hereditary, the following is immediate from the above
Theorem.
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THEOREM 5. The category H-Ext has equalizers.

Let UI ( U2, resp.) be a functor from Ext to Top that assigns to each
object (e, x, Y) of Ext, the object X(Y, resp.) of Top and to any morphism
(f, g) of Ext, the morphism f(g, resp.) of Top. Then the following is
immediate from the above constructions.

THEOREM 6. (1) The functor UI and U2 preserve products.
(2) The functor UI preserves the equalizers but U2 does not preserve the

equalizers.

For any category e, it is well-known [l2] that the completeness of e is
equivalent to the fact thaf e has products and equalizers. Thus we have,
by Theorem 2 and 4, the following Theorem.

THEOREM 7. The categories Ext and H-Ext are complete.

Since VI preserves products and equalizers, VI preserves limits and the fo­
llowing is immediate.

PROPOSITION 8. If amorphism (f, g) in Ext (H-Ext, resp.) is a mono­
morphism, then f is also a monomorphism in Top (Bans, resp.).

THEOREM 9. The ,ategory H-Ext of Hausdorff extensions is well-powered.

Proof. Let (e, X, Y) be an arbitrary object of H-Ext. If ( (e', X', Y'),
(f, g)) is a subobject of (e, X, Y), then Card (X') ~Card (X) since f is in­
jective. Let @5 be the class of Hausdorff spaces whose underlying sets are
subsets of X and ~ be the class of subobjects «e', X', Y'), (f, g)) of (e, X,
Y) where X' E@5 and Y'c p2X. Then it is easy to show that @5 and ~ are
both sets. Now, we claim that ~ is the representative class of subobjects of
(e,X, Y). Indeed, if «e", V, V), (u,v)) is a subobject of (e,X, Y), then
there exists an X' E@5 and a homeomorphism h : V --?X' such that u-f· h
where f: X'~X is the inclusion map on the underlying sets. Since e" :
V--?V is a Hausdorff extension, we see that Card (V) ~Card(P2U)~Card
CP2X) and hence there exists an injective map k: V--?P2X. Let Y'=k
CV) Cp2X be the topological space with the topology transported by k.
Then there exists e' : X'---4Y' such that (e', X', Y') is a member of~, and.

U
e

>v

~ e
;/

h X »y k

~ r \
X . ~ y-

e
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moreover, (h, k) : (e", U, V)-(e', X', Y') is an isomorphism.

It is well-known [11J that if a category C is complete and well-powered,
then the following are true;

(1) C is an (epi, extremal mono) category,
(2) C is an (extremal epi, mono) category,
(3) C is uniquely (extremal epi, bimorphism, extremal mono) -factoriza­

ble. Using this facts together with Theorem 7 and 9, we have the follo­
wmg;

THEOREM 10. (1) H-Ext is an (epi, extremal mono) category.
(2) H-Ext is an (extremal epi, mono) category.
(3) H-Ext is uniquely (extremal epi, bimorphism, extremal mono) -factori­

zable.

PROPOSITION 11. If Cf,g) (e, X, y)-(e', X', Y') is an epimorphism in
Ext, then g is surjective.

Proof. Suppose that g is not surjective, i. e., g (Y) *- Y' and let Z= {1, 2}
with the indiscrete topology. Define VI: Y'-Z, and v2: Y'-Z as follow

: VI (y) =1 for every yE Y' and

\

1, if yEg(y)
V2(y) =

2, otherwise.

Define Ul : X'-Z and U2 : X'-Z as follow: Ul (x) =1 for every xE X'
.and

1
1, if xEe'-l(g(Y»

U2(X) =
2, otherwise.

Then it is clear that (U1> VI) and (U2' V2) are morphisms from (e', X', Y') to
(l z, Z, Z) in Ext such that (Ul' VI) • Cf, g) = (U2' V2) • (f, g) but (U1> VI) *- (U2'
<:'2), and hence (f, g) is not an epimorphism.

Let F be a subset of a Hausdorff space X. It is well-known that F is
dosed if and only if there exist continuous maps f and g from X into
a Hausdorff space Y such that (F, i) is the equalizer of f and g, where i
is the natural embedding of F into X. It is also known that amorphism
J : X- Y in Haus is an epimorphism if and only if f is dense.

PROPOSITION 12. Amorphism Cf, g) in H-Ext is an epimorphism if and

only if g is dense.
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Pr"oof. Let (f, g) : (e, X, Y)~(e',X', Y') and suppose that g is not:
dense. Then there exist morphisms VI and V2 in Haus such that equ(vh
v2)=cl(g(Y» but V1*V2. Define "1 and U2 by u1=v1"e' and u2=v2"e'. Ob­
viously, (Ub VI) and (U2' V2) are morphisms in H-Ext with VI·g=V2"g. For­
eachzEX, u1"f(x) =vI"e' "f(x) =vI-g"e(x) =v2"g-e(x) =v2"e' "f(x) =u2'f(x)
which shows that U1" f =U2' f. Thus (Ub VI) • Cf, g) = (U2' V2) . Cf, g), therefore'
Cf, g) is not an epimorphism. To prove the converse, suppose that (Ub VI)
and (U2' V2) are morphisms from (e', X', Y') to (e", X", Y") in H-Ext such
that (Ub VI)-(f,g)=(U2,V2) "(f,g), Le., u1·f=u21 and V1"g=V2·g. By­
hypothesis, V1'g=V2'g implies V1=V2. Hence e"'uI=vl'e'=v2'e'=e"'u2'
Since e" is a monomorphism, we have U1;=U2' Thus (Ub VI) = (U2' V2)'

THEOREM 13. The category H-Ext is co-welt-powered.

. Pro?f. Let (e, X, Y) be any object of H-Ext and @; be the set of Haus-·
dorff spaces whose underlying sets are subsets of p2 Y. Then by the same argu­
ments as those in Theorem 9, the class m: of quotient objects (Cf, g), (e',
X', Y'» of (e, X, Y) such that Y' EG and the underlying set of X' is a.
subsets of p2 Y, is the representative class of the quotient objects of (e, X,
Y) which is a set.

THEOREM 14- If A is an epireflective subcategory of Haus, then H-Ext is­
also epireflective in H-Ext.

Proof. Since H-Ext is complete, well-powered and co-well,,-powered by­
Theorem 7,9 and 13, it is enough to show that A-Ext is strongly closed
under the formation of products and equalizers in H-Ext. For a family (e;,
Xi, Yi)iEI of objects in A-Ext, the product of the family is given by (lfei,
IfXi, If Y;), which belongs to A-Ext, for A is productive. For a pair of
morphisms Cf1' gl) and (f2' g2) from (eb Xb Y1) to (e2' X 2, Y2) in H-Ext
such that (eb X b Y1) belongs to A-Ext and for the equalizer (e, X, Y) of
the pair in H-Ext, Y is a closed subspace of Y1 by Theorem 4. Since A
is again closed hereditary, (e, X, Y) also belongs to A-Ext. This completes..
the proof., .

.We recall that a subcategory A of Haus is epireflective in Haus if and.
only if it is both productive and closed hereditary. Examples of epireflective·
imbcategories in Haus are:

(1) the category of all compact spaces and continuous maps [6J, [15J,
(2) the category of real compact spaces and continuous maps [13J,
(3) the category o( zero-dimensional £OlD.pact spaces and continuous maps..
ClJ,' .
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(4) the category of E-compact spaces for a Hausdorff space E and contin­
-uous maps [7J,

(5) the category of ~-compact spaces for a class ~ of Hausdorff spaces
and continuous maps [8J,

(6) the category of k-compact spaces for an infinite cardinal k and contin­
uous maps [9J,

(7) the category of m-ultra compact spaces for an infinite cardinal m and
<:ontinuous maps [17J,

(8) the category of completely regular spaces and continuous maps [6J,
(9) the category of Ts-spaces and continuous maps [16J.

Using the above Theorem, for any category A of (l) - (9), A-Ext is
-epireflective in H-Ext.
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