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INFINITESIMAL VARIATIONS OF INVARIANT SUBMANIFOLDS
WITH NORMAL (f, g, u, P, A) -STRUCTURE

By U-HA:-IG Kr AND JOO:\-SIK PARK

Introduction.

Recently infinitesimal vanatIOns of submanifolds of a Riemannian manifold
have been studied by Chen (cf. [2J), Yano (cf. [2J, [7J) and many au­
thors.

On the other hand Yano, Okumura and one of the present authors (cf.
[9J) have studied infinitesimal variations of invariant submanifolds of a
Kaehlerian manifold.

The purpose of the present paper is to study infinitesimal variations of
invariant submanifolds with induced (f, g, u, v, A) -structure of the ambient
manifold with normal (f, g, u, v, A) -structure.

In the preliminary § 1, we state some properties of invariant submanifolds
with induced (I, g, u, v, A) -structure of the ambient manifold with normal
(f, g, u, v, A) -structure.

In § 2, we prove fundamental formulas in the theory of infinitesimal va­
riations and study invariance-preserving variations, that is, infinitesimal va­
riations which carry an invariant su bmanifold into an invariant submanifold.
In § 3, we study f-preserving variations, that is, invariance-preserving va­
riations which preserves a tensor field f of type (1,1) in (f,g, u, v, A.)-struc­
tures induced on invariant submanifolds. In § 4, we compute the variations
of u, v, and ;..

In § 5, we calculate Tcb Tcb, Tcb being defined in such a way that the
variation is j-preserving if and only if Tcb=O. In the later part of § 5, we
consider an infinitesimal invariance-preserving variation of a compact invari­
ant submanifold with induced normal (f. g, u, v, A) -structure of the even
dimensional sphere S2m with normal (f, g, u, v, A)-structure and get an inte­
gral formula involving Tcb Tcb.

In the last § 6, under the same assumptions as those in the later part of
§ 5, we prove theorems on f-preserving and isometric variations.
We would like to express here our sincere gratitude to Professor K. Yano
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<1.1)

who gave us many suggestions to improve the :first draft of the paper.

§1. Invariant submanifolds with induced (f, g, u, 11, A) -structure of
a manifold with normal (f, g, u, 11, il) --':structure.

Let M2m be a real 2m-dimensional manifold covered by a system of COOr­
<1inate neighbourhoods {U ; xh}, in which a manifold with a tensor field f
of type (1, 1), a Riemannian metric g, two I-forms u, v and a function A
~atisfying

utf/=AVj, fthut=-):vk,

Vtf/=-AUj, ft4vt = iluk,

Utut=vtv=I-il2, Utv=O,

fl', gji, Uj, Vi and A being respectively components of /, g, u, v and A with
respect to a local coordinate system, uk and vh being defined by Uj=gikuk
.md Vj=gjkvh respectively, where here and in the sequel the indices k, i, j,

M. run over the range {I, 2, 3, •••, 2m}, then the structure is called an (I. g, u,
"v, il) -structure (cf. [4J, [8J). It is known that such a manifold is even di­
mensional (cf. [4J). H we put f/=f/gtj, we can easily see that fji is skew­
symmetric.

We put

Sjl'=(f, fJjl'+ (17jUi-17,-Uj)uk+ (17jVj-P'iv j)vh,

.(f,fJjl' denoting the Nijenhuis tensor formed with fl' and 17j the operator
(If covariant differentiation with respect to the Christoffel symbols ril' for­
med with gji. H Sjl' vanishes, then the (f,g, u, v, il)-structure is said to be
normal (cf. [8J).

The following theorem is well known (cf. [8J).

THEOREM 1.1. Let M2m b.e a manifold with normal (f,g, u, v, il)-structure
.satisfying 17jVj-17jvj=2fji (or equivalently 17jUi+P',-uj=-2ilgji). If the func­
tion il (1-12) does not vanish almost everywhere, then 'We have

(1.2)
[

17jfl'=gjiCif>uk_vh) -IJiCif>Uj-Vj),

P'jUi= - 19ji -if>fji, 17jVj= -if>1gji+ fji,

P'j1=uj+if>vj,
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1J being constant. Moreover, if M2m is complete and dim M2m>2, then M2m
is isometric with an even dimemsional sphere.

Let M" be an n-dimensional Riemannian manifold covered by a system of
coordinate neighbourhoods {V; ya} and with metric tensor gcb, where here
and in the sequel, the indices a, b, c,'" run over the range {1, 2, 3, "', n} .
We assume that M" is isometrically immersed in M2m by the immersion i :
M"~M2m and identify i(M") with M" itself. We represent the immersion
i locally by xh=x"(ya) and put Bbh=o~, Ob=O/oyb, which are n linearly
independent vectors of M2m tangent to M". Since the immersion i is isome­
tric, we have

(1. 3)

We denote by Ci 2m-n mutually orthogonal unit normaIs to MIl, where
here and in the sequel, the indices x, y, z, ... run over the range {n+1, n+
2, "', 2m}. Then the equations of Gauss are written as

(1. 4) (lcBbh = hcbxCxh,

(lc being the operator of van der Waerden- Bortolotti covariant differentiation
along M" and hcbx are second fundamental tensors of M" with respect to the
normals Cxh, and those of Weingarten as

(1. 5)

where hc"x=hcbxgba=hcb"gbag"x, (gba) = (gba)-l and gz:z; denoting the metric
tensor of the normal bundle.

If the transform by f of any vector tangent to M" is always tangent to
MIl, that is, if there exists a tensor field Iba of type (1,1) such that

(1. 6)

(1. 7)

we say that M" is invariant in M2m. This shows that

fihBbiCxh=O.

Thus we put

f..hC i =1 xC h'y y x,

from which, fyx=-fxy, where fyx=f/g"x' We put

(1. 8)
(

uh=uaB h+uxC ha x ,

vh=vaBah+vZCzh,

ua and va being vector fields of M", U X and V X being functions of M".
From (1. 1), (1. 6), (1. 7) and (1. 8), we find



244

(1. 9)

(1.10)

(1. 11)

(1. 12)

(1. 13)

(1. 14)

.(1. 15)

(1. 16)
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fr/fca= -Ob"+UbUa+VbVa,

f/fbtlgetl~gcb-UeUb-VcVb,

fbaub= - Av", fbavb=AUa,

UzUb= -VxVb,

fxYfy%= :-°x%+uxu%+vxv"',

uXfxy= -AVY' VXfxy=AUy-

We also have from (1. 6), fjiBiBbi=f/geb.

Thus putting f/geb= fcb' we see that fcb is skew-symmetric. Equations (1. 9)
""-'(1.13) show that a necessary and sufficient condition fba, gcb, Ub, Vb and
A to defi~e an (f, g, u, V, il)-structure is that

(1.17) Ux=O, vx=O,

that is, the vector un and vn are always tangent to the submanifold Mn (cf.
'[4J).

In the sequel we assume that the submanifold M" has an (I, g, u, v, il)­
structure.

Differentiating (1. 6) and (1. 7) covariantly along Mn and usmg (1. 2).
(1. 4) and (1. 5), we find

(1.18) C7c!ba=gcb(ifJua-va) -Oca(ifJub-Vb),

(1.19) C7c!yx=O,

(1. 20) fbahcax= hcbYf/',

from whch,

(1. 21)

that is, M n is minimal and

(1. 22)

On the other hand, differentiating uh, vh and il covariantly along Mn and.
using (1. 2), (1. 6) and (1. 4), we get

(1.23)

(1. 24)

(1. 25)

C7cUa= - ilgca-ifJfca,

C7cVa= -ifJilgea+fea,

C7cA=uc+<Pve>
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'(1. 26)

We put

Scba=[f, fJcba+ (PcUb-PbUc)Ua+ (Pc'Vb-Pbl'c)va,

[f, fJcba denoting the Nijenhuis tensor formed with ha. Then we have from
(1. 18), (1. 23) and (1. 24)

Scba=O.

Thus the (f, g, u, v, i.) -structure induced on Mn is also normal.

Transvecting (1. 22) \vith fi and using (1. 26), we get

{l. 27)

Equations of Gauss and Codazzi of the submanifold Mn are respectively
given by

(1. 28) Kdcba=KkjihBiBciBbiBah+hdaxhcbx-h/xhdbI,

(1. 29) KkjihBiBcjBbiCxh- (pdhcbx-Pchdbx) =0,

where Kdcba is the curvature tensor of Mn.
Finally, we get from the Ricci-identity, (1. 18), (1. 23) and (1. 24)

(1. 30) - Kdcbe!/+ Kdceahe= (1 +(P) {gdb!c4-!cbOd4-gcbfaa+o/fdb}.

Transvecting (1. 30) with f/ and using (1. 9), (1. 12) and (1. 17), we
have

(1. 31)

+ (1 +92) {(n-4+2;(2)gcb+2(ucUb+VcVb)}.

Using the Ricci-identity, (1. 23), (1. 24), (1. 25), (1. 18), (1. 12) and (1. 17),
we obtain

(1. 32) K dcbe (ueud +vevd) = (l +92) {2 (1- ;(2)gcb- (UcUb+VcVb») .

Thus we can get the following useful identity from (1. 31) and (1. 32) for
later use

{1. 33)

§ 2. Infinitesimal variations of invariant submanifolds with induced
(f, g, U, v, ;() -structure.

We consider an infinitesimal vriation of invariant submanifold Mn with
induced (j, g, u, v, J..) -structure of the ambient manifold M2m with normal
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(f, g, U, v, }.) -structure given by

(2.1)

where ~h(y) is a vector field of M2m defined along Mn and c is an infinite­
simal. We then have

(2.2)

where Bbh=a~h are n linearly independent vectors tangent to the varied sub­
manifold. We displace Bbh parallelly from the varied point (xh) to the ori­
ginal point (xh). We then obtain the vectors

(2. 3) Bbh=Bbh+ril'(X+t;c)~iBhic

at the point (xh), or

(2.4)

neglecting the terms of order higher than one with respect to c, where

(2. 5) f7b~h=ab~h+rjI'Bbi~i.

In the sequel we always neglect terms of order higher than one with re­
spect to c. Thus putting

(2.6)

we have from (2. 4)

(2.7)

If we put

(2.8)

then we get

(2.9)

because of (1.4) and (1.5).
Now we denote by Cl 2m-n mutually orthogonal unit normals to the

varied submanifold and by Cyh the vectors obtained from Cl by parallel
displacement of Cl from the point (xh ) to (x"). Then we have

(2.10) cl=cl+riih(x+~c)~iC/c.

We put

(2.11) . oC/=Cl-Cl

and assume that oC/ is of the form

(2.12) oCl=TJlc= (TJ/Bi+TJ/zCxh)c.
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Then, from (2. 10), (2. 11) and (2. 12), we have

(2.13) Cyh=c/-rjih~jc/c+(YJ/Bah+YJ/:Cxh)c.

Applying the operator 0 to BbiCyigji=O and using (2.7), (2.9), (2.12}
and ogji=O, we find

(f7b~y+hbata) +YJyb=O,

where ~y=~%g%y and YJyb=YJ/gcb, or

(2.14) YJ/=- (f7a~y+hbay~b),

f7a being defined to be f7a=gacf7c' Applying also the operator 0 to C/Cxigjf
=gyx and using (2.12) and Ogji=O, we find

(2.15)

where YJyx = YJ/gu;'
We assume that the infinitesimal variation (2. 1) carries an invariant sub­

manifold into an invariant submanifold, that is,

(2.16) fih(x+~c)jN are linear combination of iN·.
Now using the first equation of (1.2) and (1. 6), we see that

fih(x+~c)IN

= (ft+fJojftc) (Bbi+ab~ic)

=[ft+~j{-FjkhJi+Fji"fkk+gji(<j>uk-vh)

-O/(<j>Ui-Vi)} c][Bbi+ (Obei)c]

=fbaBak+[ff(f7b~i)-rjkh~jfbaBak

+~b (<j>uk-vh) _~k(<j>Ub-Vb) ]c,

which and (2. 2) imply

(2.17) f/'(x+~c)Bbi

=fbaBi+[fik(f7b~i)- fba(f7aek)

+~b(<j>uk_vh) _~h(<j>Ub-Vb)]e,

or, using (1.6), (1.7), (1.8), (1.17), (1.20), (1.22), (2.8) and (2.9),.

(2.18) fik(X+~e)Bbi=fbaBah

+ [(f7b.;e)fea- fbe(f7e~a) +2fbeheax';x

+~b(<j>Ua-Va)-~a(<j>Ub-Vb)] Bake

+ [fyxf7b~y-fbef7e~x-~x(<j>Ub-Vb) ]Cie.
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Thus (2. 16) is equivalent to

(2.19) f/'(f7,,~Y) -f"e(f7e~z) -~z(<ptl,,-v,,)=0.

An infinitesimal variation given by (2.1) is called an invariance-preserving
variation if it carries an invariant submanifold into an invariant submanifold.
Thus we have

THEOREM 2. 1. In order for an infinitesimal variation to be invariance-pre­
.serving, it is necessary and sufficient that the variation vector ~ satisfies (2.
19).

COROLLARY 2. 2. If a vector .field ~h defines an invariance-preserving variat­
ion then another vector field eh which has the same normal part as ~h has
.the same property.

Suppose that an infinitesimal variation given by (2.1) carries a submani­
fold a!'=:ch(y) into another submanifold xh=xh(y) and the tangent space of
the original submanifold at (a!') and that of the varied submanifold at the
-corresponding point (xh) are parallel. Then we say that the variation is
parallel (cf. [7J).

Since we have from (2. 6), (2. 7) and (2.9)

(2.20) B"h=[o"a+ Cf7"~a-h,,az~z)eJBah

+ (f7,,~z+hbaz~a) Czhe,

we have the following assertion (cf. [7J):
In order for an infinitesimal variation to be parallel, it is necessary and

:sufficient that

(2.21)

(3.2)

§ 3. The variations of I"a and f y
z•

Suppose that an infinitesimal variation x"=a!'+~heis an invariance-preserving
variation. Then putting

(:3.1) hh(:c+~e)lM= (f,,4+Of,,4) Bah,

'we have from (2. 18) and (2. 19)

of"a=[feaf7"~e-f,,ef7e~a+2f{he4z~Z

+~,,(<ptla_va) _~a(<jJu,,-v,,)Je.

if an invariance-preserving variation preserves fi', then we say that it is
f-preserving.
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PROPOSITION 3. 1. An invariance-preserving variation is f-preserving if and
'Only if

(3.3)

+tjb(qJUa-Va) -tja(</JUb-Vb) =0.

Now applying the operator 0 to (1. 3) and using (2.6) and (2.8) and Ogji
=0, we find (cf. [7J)

(3.4)

from which,

(3.5) ogba= - (C"b~a+C"ar;b-2hbaxr;x)e.

A variation of a submanifold for which ogcb=O is said to be isometric.
We now put

(3.6)

:and

orcba=fcba-rdz,

where f cb
fZ are Christoffel symbols of the deformed submanifold.

Substituing (2. 2) and (2. 20) into (3.6), we then obtain by a straight·
forward computation,

{3.7) Orcba=[(C"cC"br;h+K"jihtj"BciBbi)BfZh

+hcbx (C"atjx+htf"xr;d) ]e,

from which, using equations (1.28) of Gauss and those (1. 29) of Codazzi
-of the submanifolds (cf. [7J) , we have

(3.8) ofcba= (C"cC"btja+ Kdcbar;d) e

- [C"c(hbexgx) +C"b(hcexr;x) - C". (hcbxr;x) Jg.ae

-because of (2. 9) .
A variation of a submanifold for which oFcba=O is said to be affine.
Assume that an infinitesimal variation xh=xh+tjhe is 'invarnce-preserving.

Hence we have

(3.9)

Then using (2. 13), we find

f-_hC i =/- xC- h
I Y Y x·

(3.10) fih(x+r;e) [C/-Fj/tjjC/e+ (l]/Bai+7JyxCxi)eJ

= (fyx+ofyx)Cxh,
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from which,

or, using (1. 2), (1. 6), (1. 7) and (1. 17),

fyZC/'-fyz(T}zaBa"+T}x%C/')c

+ (T}ifbaB}+T}yzfz%C/')c+~y(tfrua-va)Bahc

= fyzCzh+ (ofyx) Czh,

we have

(3.11)

(3.12)

ofyz= (-fyw7}wZ+r;/Bfwz)c,

fyzT}za=T}/fba+~y(iflua-va),

or, usmg (2.14) and (1. 20),

(3.13) . f yZ(f7a~x) = (f7b~y)iba_~y (iflua.-va).

PROPOSITION 3. 2. Suppose that an infinitesimal variation is invariance-pre­
serving. Then the variation of f yX is given by (3.11).

§ 4. Variations of ua, va and A.

In this section we compute the variations of ua, va and A on the subma­
nifold.

N9W we get a vector field ij,h which is defined intrinsically along .the de­
formed submanifold. If we displace ij,h back parallelly from the point (x) lit

to ($)h, we obtain

-. and hence forming

(4.1)

we find

(4.2)

We have, from (1.8) and (4.2),

(4.3)

which and (1. 2) , (2. 7) and (2. 12) imply

(aua) Bah+ (oux) Czh

= - CUb (f7b~a- hbax~z) +uYT}ya+A~a+ ifl~bibaJB}e

-[Ub(f7b~z+hbaz~a) +uYT}yz+A~z+ifl~YfyzJCzhc.

Then using (1. 17) and (1. 26), we get
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(4.4)

from which, using (3. 4),

(4.5)

Thus we have

PROPOSITION 4. 1. Under an infinitesimal variation (2. 1) of the submanifold,
the variation of ua, Ua are given by (4.4) and (4.5) respectively.

Similarly we get a vector field Vb which is defined intrinsically along the
deformed submanifold. If we displace Vb back parallelly from the point (xh)

to (x") , we obtain

and hence forming

(4.6)

we find

(4.7)

We have from (1. 8) and (4.7)

(4.8) o(vaBi+vzCzh) =~i(OiVh)c.+rjih~ivie,

which and (1.,2), (2.7) and (2.12) imply

(ova)Ba"+ (iJvz)Ci

=[-vb (f7bt;a-hbaz~z)-v:Y1J:/-rpA~a+efbaJBa"e

+[-vb(f7bt;z+hbaz~a)-v:Y7J:yz_rjJAt;z+~:YfyzJCzhe.

Then using (1. 17) and (1. 26), we obtain

(4.9) ova= (~bfba_rjJA~a_vbf7bt;a)e,

from which, using (3. 4),

(4.10)

Thus we have

PROPOSITION 4. 2. Under an infinitesimal variation (2. 1) of the submanifold,
the variations of va and V a are given by (4.9) and (4.10) respectively.

Finally, to obtain the variation of A, applying the operator 15 to uau~=

1-.:l2 and using (4.4) and (4.5), we have

(4.11) o.:l= (ua+rjJva)~ae.
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Thus we have

PROPOSITION 4. 3. Under an infinitesimal variation (2. 1) of the submanifold,
the variation of A is given by (4.11).

Furthermore we have from (1. 9)

(4.12) o(fbafaC
) = (Oub)Uc+Ub(OUc) + (Ovb)VC+Vb(OVC).

If the variation preserves fba and ua, we have from (4.12)

(4.13)

Transvecting (4.13) with Uc and vc, we find respectively

(4.14)

(4.15)

Transvecting (4.14)

(1- ;'2) OUb+Ucvb (ovc) =0,

(1- A2) OVb+VcVb (Ovc) =0.

with ub, (OUb)Ub=O. Then

(5.1)

O(UbUb) =-2A(oA) =0, that is, OA=O.

Applying the operator a to (1.11), we can get from above o-va=O. So from
(4.14) and (4.15), OUb=O and OVb=O. Thus we have

PROPOSITION 4.4. If an infinitesimal f-preserving variation preserves ua,

then tke variation preserves Ua, va, V a and A.

§ 5. An integral formnla.

In this section, we calculate TcbTcb, Tcb being defined in such a way that
the variation is f-preserving if and only if Tcb=O. In the later part of this
section, we consider an infinitesimal invariance-preserving variation of a
compact invariant, submanifold with induced (/, g, u, v, A) -structure of the
even dimensional sphere S2m with normal (/, g, u, v, A) -structure and get an
integral formula involving T cb Tcb.

First of all, we define T cb by

T cb= (C'c~e)felJ-f/(C'e~b) +2fcehelJz~z

+~c(ifJub-Vb) -~b(ifJuc-VC>.

Then we find that a .variation of invariant submanifold is i-preserving if
:and only if Tcb=O.

If we take account of (1. 9), (1.11), (1.12), (1.17), (1. 26) and (l.
'Z7) , we have

(5. 2) T cb Tcb=2 (17c~a). (l7c~a) -8hcbz~z (17c~lJ)



Infinitesimal variations of invariant submanifolds with nonnal (I, g, u, v, A) -structure 253

+4 (hcbx';:x) (hcbyt;y)

- ueuaC (Vct;e) (f7c.;:a) + (Vet;c) (f7a.;:c) ]

-veva[ (Vct;e) (f7ct;a) + (f7e';:c) (f7a.;:c)]

+ 2cjJJ..';cva (f7ct;a- f7a.;c) +U';cua (f7c.;a- f7ar;c)

-2f/f}(f7e';b) (f7c.;a)

- 2fabE;b(cjJUc- Vc) (f7c.;a -Va.;c)

+2 (1- J..2) Cl +cjJ2) t;ct;c - 2cjJ2 (t;cUc) 2

+2cjJ(';cuc) (';aVa) -2 (t;cVC )2.

On the other hand, we have

(5. 3) f7buf'= (f7bf7b';c).;c+ (f7b';c) (f7b';c)

- (n-l) (rpue_ve)jac';a(f7et;c)

- fbet;b(cjJUc-Vc) (f7e';c) +jbe(rpua_va) (f7e';b)t;a

- jbefac (f7bf7e';c) ';a- fbefac (f7e';c) (f7b';a)

because of (1. 18), where we have put

wb= (f7b';c) .;c- fbefac(f7e';c)';a,

from which, using the Ricci identity and (1. 33),

(5.4) f7bWb= (Vbf7b';c) ';c+ (f7b';c) (VbE;c)

- (n-I) (cjJue_ve) (f7e';c)fac f;a

- jbet;b(rpUc-Vc) (f7e';c) +f be (cjJua_va)';a(f7e';b)

+Kda';d.;a- (1+cjJ2) (n-2)';a';a

- (1+cjJ2) (ua.;a) 2

- (1 +cjJ2) (va.;a) 2_ fbefac (f7e';c) (f7b';a)'

Comparing (5. 2) with (5.4), we have

(5.5) Tcb Tcb= 2f7b W b-2t;c (Vbf7b';c+ Kcbe)

-8 (hcbx';x) (vc';b) +4 (hcbx';x) (hcbyt;y)

- (ueua+veva) [(f7c';e) Cf7ct;a) + (f7e';C> (f7a.;c)]

+2cjJJ..t;cva (f7ct;a - f7at;c) +Ut;cUa (f7c.;a - f7a.;c)

+2 (1 + rp2) (n-1- J..2) .;a';a+2 (ua.;a) 2+2ep2 (va.;a) 2
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+29S(~cuc) (~ava) -2flJe(~a-va)~a(Pe~b)

+2nfac~a(9Sue-ve) (pgJ,

and (5.6),

(5.7)

or, equivalently

(5.6) TcbTcb=2pb ( Wb-2hcbx~c~x)

-2~c[pbpb~c+ Kcb~b_217b(hcbx~x) J
-2(hcby~Y) (17c~b+Pb~c-2hcbx~X)

- (ueua+veva)[(Pc~e) (pc~a) + (Pe~c) (l7a~c)]

+29Si/~cva (l7c~a- pa~c) +2i/~cua(pc~a- pa~c)

+2(1+9S2) (n-1- i/2) ~a~a+ 2 (ua~a) 2

+2~ (va~a) 2+29S (gcuc) (~aVa)

-2jbe(9Sua-va)~a(Pe~b) +2njbe~b(if;uc-vc) (l7c~e)'

Now we assume that the ambient manifold is an even dimensional sphere
S2m and that Mn is a compact invariant submanifold with induced (I. g, u, v,
il)-structure of S2m. Moreover an even dimensional sphere S2m induces a
normal (I. g, u, v, A) -structure and satisfies differential equations of theorem
1.1 with 9S=0 (cf. [l]).

Thus using Pe(flJeva~a~b) =_~a';a+ (ua~a)2+n(va~a)2+jbe~b'V.a(Pe~a)

+ fbeva~a (pe~b)

we apply Green's theorem and obtain

J[TcbTcb+2~c {pb17bgc+ Kcb~b_217b(hcbx~X)}

+ 2hcby~y (pc~b+17b~c- 2hcbx~x)

+ (ueua+veva) {(l7c~e) (17c~a)+ (17e~c) (pa~c)}

-2A.~cua(pc~a-l7a.;c) -2(n-il2)~a~a

+2n(va.;:a) 2+ 2jbe';bV (17e~c)

+2nfbe';:bvc(Pc~e)]dV 0,

dV being the volume element of Mn.
From (3.4) and (3.5), the variation of dV is given by (cf. [7J)

(5~8) . OdV= (f7a~a-haax~x)dVe.

For a compact orientable submanifold Mn, we have the following integral
formula:



..:l.;a=-ub/7b.;a, ..:l';a= ub17a';b,

';bfba=vb17b';a, t;bfba= -vb17at;b,
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f[~c (/7b17b~c+ Kcb~b)

+ ~ (17c~b+17b~c) (/7c~b+/7b~c) - (/7b~b)2JdV=O,

which is valid for any vector ~c in Mn (cf. [6J, [9J) , from which

(5. 9) f[~C {(17b/7b~c+Kcb~b) -2/7b(hcbx~:J)+17c(hbbx';ot')}

+ ~ (/7c';b+17b~c-2hcbY~Y) (17c~b+/7b~c-2hcbx';x)

- (17c.;c-h/x~x) (17b.;b)

+ (hcby~Y) (17c(b+ /7b~c- 2hcbx~x) JdV=O.

Thus we have an integral formula from (1. 21), (5.7) and (5.9)

(5.10) Se- TcbTcb+ (17ct;b+/7b~c-2hcbY~Y) (/7c';b+17bt;C-2hcbx~z)

- 2 (17c.;c) 2+U';cUa (/7c.;a -17a';')

- (ueua+v"Va) {(17c~e) (17c~a) + (/7e~c) (/74e)}

- 2njbe';bV (/7c~e) - 2jbe';bVc (/7et;c)

+2(n- ;(2)';a.;a- 2n (va.;a) 2Jd V=0.

§ 6. Isometric and (-preserving variations.

Similar to the later part of § 5, we consider in this section an infinitesi­
mal invariance-preserving variation of a compact invariant submanifold with
induced Cf, g, u, v, A) -structure of the ambient manifold S2m. with normal (I.
g, u, v, ..:l) -structure. Using some integral formulas involving Tcb Tcb, we prove
theorems on I-preserving and isometric variations.

We assume that an invariance-preserving variation of the submanifolds
preserves ua, va, Ua and Va' Then we have from (4.4), (4.5) (4.9) and
(4.10)

(6.1)

(6.2)

from which, we get

(6.3)

Transvecting the later equations of (6.1) and (6.2) with ~a, we find
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~atl'(/7a~b) =A~a~a, ~tzvb(/7a~b)=0.

From (4.11), we obtain

(6.5)

Using equations (5. 10), (6.2), (6.3) and (6.4), we get

(6.6) Je- TebTcb+ (/7e~b+/7b~e-2hcbY~y).(l7e~+l7b~e-2hebz~z)

-2(/7e~c)2-2ueua(l7e~e) (l7e~a)

-2nvCvb(/7"~e) (/7c~e)

+2(n+A2)~a~4-2n(va~a)2JdV o.
On the other hand we have from (1. 9), (6. 2) and (6.5)

(6. 7) vave(l7a~b) (/7e~") =~a~a- (~a)2,

and from (6. 1),

(6. 8) uau,,(/7e~a) (l7c~") =A2~~a.

Thus we get from equations (6.6), (6.7) and (6.8)

(6.9) Je- TebTe,,+ (l7e~,,+l7"~e-2he"y~Y) (/7e~"+/7b~e-2he"z~z)

- 2 (/7c~c) 2JdV=0.

From this integral formula, (1. 21) and (5. 8), we have

PROPOSITION 6. 1. Suppose that the ambient manifold is an even dimensional
sphere with normal (f, g, u, v, A)-structure and an invariance-preserving varia­
tion preserves ua, va, Ua and va•

Then in order for an invariancrrpreserving variation of a compact invariant
submanifold with induced (f, g, u, v, A) -structure to be isometric it is necessary
and sufficient that the variation is volume-preserving and f-preserving.

Furthermore, if a variation of the submani£old is affine, we have from
(3.8)

VcV"~a+Kt1eba~d - Vc (h"az~z) - Vb(hcaz~z)

+Va(hebz~z) =0,

from which, using (1.21)

/7e(Va~a)=0,

that is, Va~a=constant. thus assuming the submanifold to be compact, we
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have P a!;a =0. From this fact and proposition 6. 1, we obtain

THEOREM 6. 2. Assume that the ambient manifold 'is an even dimensional
sphere with normal (f, g, u, v, A)-structure and an invariance-preserving varia­
tion preserves ua, va, Ua and Vat Then an invariance-preserving variation of a
compact invariant submanifold with induced (f, g, u, v, A) -structure is isometric
if and only if the variation is affine and f-preserving.

On the other hand, if the isometric variation preserves ua and va, then
the variation is affine and oua=O and ova=O. Thus we have

COROLLARY 6. 3. Suppose that the ambient manifold is an even dimensional
sphere with normal (j, g, u, v, ).) -structure. If the submanifold with induced
(f, g, u, v, A) -structure is compact, and an invariance-preserving isometric vari­
ation preserves ua and va, then the variation is f-preserving.

Moreover, we have from proposition 4.4

COROLLARY 6. 4. Suppose that the ambient manifold is an even dimensional
sphere with normal (f, g, u, v, A)-structure and an invariance-preserving varia­
tion is f-preserving and preserves ua• Then the variation of a camact invariant
submanifold with induced (f, g, u, v, A) -structure is affine if and only if it is
isometric.

Now we assume that an infinitesimal variation IS fibre-preserving ua, ua,

va and Va, that is,

and 1) are functions on submanifold Mn. Then we have from

(6.10)

where a, (3, j.L
(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

from which, we get

(6.15)

(6.16)

(

£eua=aua, £eua={3ua,

£eva=j.LVa, £eva=1)Va,

ubpbt;a = - aua- At;a,

ubpat;b= f3ua+At;a,

efba=vbpbt;a+ j.Lva,

t;biba = - vbpat;b+ 1)Va,

aua +ubpbl;a = (3ua- Ubpat;b,

j.LVa +vbpbt;a = 1)Va- vbpat;b·

Transvecting (6.15) with Va, we find
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~6. 27)

{6. 17) ubva (17b~a) = - ubva (17a~b) .

rransvecting (6. 11), (6. 13) with ~a and (6.12), (6. 14) with ~a, . we get

~6.18) ~aub(l7b~a)=_).~a~a-«ua~a,

~aub(17a~b)=).~a~a+{3ua~a,

(6.19) ~avb(17b~a)= - p.va~a, ~avb(l7a~b) =I)va~a.

Thus we have from (5. 10), (6. 13) and (6. 18)

(6.20) fC- TcbTcb+ (17c~b+17~c-2hcby~Y) (17c~b+17b~c-2hcb.r';.r)

- 2 (17c';c) 2+2(n+ A2)~a';a

- (ueua+vva) {(17c';e) (l7c/;4) + (17e/;c) (174/;c)}

+2.8).(ua~a) +2a).(ua~a) -2n(va';a) 2

-2(n+1) p.vcv (l7c~e) -2nvvb(l7c~e)(l7b~e)

-2VVb(l7e~c)(17b/;e)]dV=O.

Transvecting (6.11), (6.12) with ua, ua and (6.13), (6.14) with V a, va re­
-spectively, we get the following equations:

(6.21) ubua(171ia) = -«(1- ).2) - A~aUa,

(6. 22) ubua(l7b~a) =(3(1- ).2) +).~aua,

(6. 23) vbva(l7b~a) = - p.(1- ).2) - ).~aua,

(6. 24) vbva(l7b~a) =1) (1- ).2) +).~aua,

from which,

(6.25) ~a=~C-«(1-12)-,8(1-12)],

(6. 26) ~aua= ;;(C- p.(1- ).2) -I) (1 - ).2)].

Aoreover from (6.11), (6.12), (6.13) and (6.14), we find

u~(l7b~a) (l7c~a) =«2(1- ).2) +2a).~aua+ ).2~a~a,

u~(l7a~b) (l7a~c) =,82(1- ..(2) +2,81~aua+12~a~a,

vcvb(l7c~a) (l7b~a) =~1J~b- (~bUb)2- (~bVb)2

+p.2 (1 - 12) +2p.).~aua,
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vcvbCV'afJ (pae) =~afa- (~aua)2- (,faz'a) 2

+ 2l.!)..;aua+l.!2 (1- ?2).

Using equations (6.20), (6.23) and (6.27), we get

,{6.28) J[- TcbTcb + ({7c';b+Pb~c-2hcbY~Y) ({7ce+{7b.;c-2hcbx~:t)

- 2(Pc.;c) 2 - a2(1- ).2) - {J2 (1- }.2) + j1.2 (1- ).2) _))2 (1- ).2)

- 2(n-1) ,u).~aua+2n(~aua)2+2j1.l.!(1- ).2) JdV=O.

'On the other hand, we have from (1. 9), (6. 13), (6.24) and (6.27)

~bfba~cfca=t;br;b-(eUb)2- (~bVb)2,

efbat;cfca=r;b~b-(eub)2- (~bvb)2

+ 2j1.2 (1 - }.2) +2fl.l.! (1- ,F)

from which

(6.29) ,u2 (1- ).2) + fl.l.! (1- }.2) +2j1.?t;aua=0.

Thus we have from (6.28) and (6.29»

'(6.30) J[- TcbTcb+ ({7c~b+{7br;c-2hcby~Y) ({7c~b+{7br;c-2hcbx~x)

- 2 ({7c.;c) 2- a 2 (1 - ).2) - {J2 (1- IF) - ,u2 (1 - ).2) _))2 Cl - }.2)

- 2 (n+ 1) fl.). (.;aua) +2n (.;aua)2JdV=O.

We assume next that the variation of a compact invariant submanifold IS

isometric. Then we have from (1.26), (3.4), (6.11)'"'-'(6.14), (6.25) and
(6.26)

'(6.31) a={J=j1.=l.!.

And we get from (1. 23) and (1. 25)

{7c (t;aua) =ua{7c~a - ).~c,

6. (~aua) = -2).{7c.;c+ua{7c{7c';a-uc.;c.

Moreover if the variation on a compact submanifold is isometric, we have
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Vc~c ·0 with the help of (1. 21) and (3.8), from which,

(6.32)

(6.33)

vc(~aUa)=UaVc~a-iI.';c,

L1(~aua) =-uc';c+UaVcvc~a.

Now we find from the equations of Gauss (1. 28) and Codazzi (1. 29)

(6. 34) Kcb~cuh= (n-l) .;cuc,

(6.35) /1dhcbX = Vchdbx
,

Since isometric ,variation is affine, we have from (3.8), (1. 21) and (6.35)

uavcVc~a+Kaa';dua=o,

from which, usmg (6.33) and (6.34)

L1 (.;aua) = - n';cuc.

Hence if ail. has definite sign and the submanifold is compact, we have from
(6.25), (6.26) and (6.31)

.;cuc=O and a={3=f.L=v=O,

from which, using (4.4), (4.5), (4.9), (4,10) and (6.11) "-' (6. 14)

oua=OUa=Ova=Ova=O.

From these facts and (6.30), we have

THEOREM 6. 5. Suppose that an invariance-preserving isometric variation of. a
compact invariant submanifold with induced (f, g, u, v, iI.) -structure of the even
dimensional sphere with normal (j, g, u, v, iI.)-structure is fibre-preserving utz

and vtz such that £~ua=aua and £~va=f.Lvtz, where a and f.L are functions
on the submanifold. Then if ail. has definite sign, the variation is f-preser­
ving and preserves ua, ua, vtz and va•
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