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INFINITESIMAL VARIATIONS OF INVARIANT SUBMANIFOLDS
WITH NORMAL (f, g,u,p, 2)-STRUCTURE

By U-Haxng K1 AND JoonN-SIK PARK

Introduction.

Recently infinitesimal variations of submanifolds of a Riemannian manifold
have been studied by Chen (cf. [2]), Yano (cf. [2],[7]) and many au-
thors.

On the other hand Yano, Okumura and one of the present authors {(cf.
[9]) have studied infinitesimal variations of invariant submanifolds of a
Kaehlerian manifold.

The purpose of the present paper is to study infinitesimal variations of
invariant submanifolds with induced (f, g, «, v, 1) -structure of the ambient
manifold with normal (f, g, «, v, 4) -structure.

In the preliminary §1, we state some properties of invariant submanifolds
with induced (f, g, #, v, 2) -structure of the ambient manifold with normal
(f, g, u, v, A) —-structure.

In §2, we prove fundamental formulas in the theory of infinitesimal va-
riations and study invariance-preserving variations, that is, infinitesimal va-
riations which carry an invariant submanifold into an invariant submanifold.
In 8§83, we study f-preserving variations, that is, invariance-preserving va-
riations which preserves a tensor field f of type (1,1) in (f,g,u, v, A)-struc-
tures induced on invariant submanifolds. In §4, we compute the variations
of u,v, and A.

In §5, we calculate T,,7<%, T, being defined in such a way that the
variation is f-preserving if and only if T,,=0. In the later part of §5, we
consider an infinitesimal invariance-preserving variation of a compact invari-
ant submanifold with induced normal (f, g, «, v, A)-structure of the even
dimensional sphere S27 with normal (f, g, u, v, A)-structure and get an inte-
gral formula involving 7, T<.

In the last §6, under the same assumptions as those in the later part of
§5, we prove theorems on f-preserving and isometric variations.
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who gave us many suggestions to improve the first draft of the paper.

“'1. Invariant submanifolds with induced (f,g,u,v, 1)-structure of
a manifold with normal (f, g, u, v, 1) -structure.

Let M2m be a real 2m-dimensional manifold covered by a system of coor-
dinate neighbourhoods {U; z¥, in which a manifold with a tensor field f
of type (1,1), a Riemannian metric g, two 1-forms #,v and a function 21
satisfying

fitfe=—0tupt+voh
fifiga=gji—ujui—v;v;
.1) wff=rv; fhut=—ioh
v ff=—2u;, fPvt=Iub,

wut=v0t=1—2%, uo=0,

f# g;iu;,v; and 2 being respectively components of f,g,u,v and 2 with
respect to a local coordinate system, #* and v* being defined by u;=gyub
_and v;=g;v* respectively, where here and in the sequel the indices &, 1, j,
-- run over the range {1,2, 3, ---, 2m}, then the structure is called an (f, g, %,
v, A)—structure (cf. [4],[8]). It is known that such a manifold is even di-
mensional (cf. [4]). If we put fif=f;g:; we can easily see that fj; is skew-
symmetric.
We put

Sjih [f; f]] + (Vluz_'ViuJ)”h'[" (V]vt V‘lvj)vh

Lf, f£1;* denoting the Nijenhuis tensor formed with f# and p; the operator
of covariant differentiation with respect to the Christoffel symbols 7";* for-
med with g;;. If S;* vanishes, then the (f, g, %, 7, 1) -structure is said to be
normal (cf. [8]).

The following theorem is well known (cf. [8]).

THEOREM 1.1. Let M?® be a manifold with normal (f,g,u,v, A)-structure
satisfying U jv;—Vw;=2f; (or equivalently [ ju;+V u;=—2Ag;;). 1f the func-
tion A(1—A2) does not vanish almost everywhere, then we have

v i fr=g;i(¢ub—vt) —0(¢u;—v,),
1.2) Viui=—2g;i—0f;i Vivi=—0¢Agi+ i
VjA=u;+¢v;,
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¢ being constant. Moreover, if M?™ is complete and dim M?®>2, then M?>*"
is isometric with an even dimemsional sphere.

Let M* be an n-dimensional Riemannian manifold covered by a system of
coordinate neighbourhoods {V; 4} and with metric tensor g, where here
and in the sequel, the indices g, b,¢, -~ run over the range {1,2,3, -, n}.
We assume that Mn is isometrically immersed in M?= by the immersion i :
M»———>M?m and identify i(M”) with M~ itself. We represent the immersion
i locally by z*=2%(y*) and put Bjt=0,2*, 0,=0/0y*, which are n linearly
independent vectors of M?2" tangent to M=*. Since the immersion i is isome-
tric, we have

(1- 3) gcbzgjchiji'

We denote by C,} 2m—n mutually orthogonal unit normals to M=, where
here and in the sequel, the indices z,y, 2, --- run over the range {rn-+1, n+
2, -+, 2m}. Then the equations of Gauss are written as

(1 . 4) VcBbh = hcbxczh’

7. being the operator of van der Waerden-Bortolotti covariant differentiation
along M* and h.,* are second fundamental tensors of M* with respect to the
normals C;*, and those of Weingarten as

(1° 5) Vtcxh= —‘hca.zBah’

where hca:r"_“hcbzg ba:hcbzg bagz.ta (g ba) = (g ba) ~1 and Ezx denOting the metric
tensor of the normal bundle.

If the transform by f of any vector tangent to M* is always tangent to
Mr, that is, if there exists a tensor field f,* of type (1,1) such that

(1.6) fBi=f*B},

we say that M" is invariant in M?m. This shows that
funByCh=0.

Thus we put

1.7 frCi=Ff,=C.H,

from which, f,.=—/f:y, where f,.=f,%g..,. We put

uh= uaBah -+ uxcxh’
(1.8)
vh=vEB vz Ch,

#% and v* being vector fields of M*, u* and v* being functions of M~».
From (1.1), (1.6), (1.7) and (1.8), we find
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(1.9) Jofet=—0p*tuput +vpv°,

(1.10) fEf2gea=g bty — .03,

(1.11) Froub=—2v?, firvb=2u°,
(1.12) uut=1—12—u,u* v,p*=1—Ai2—v 0%
(1.13) w0t = —u, v,

(1.14) U= "—"TVzVp,

(1.15) f2fy =0t ugu* +v,0%

1. 16) Wi fpy= — A0y V% f gy ity

We also have from (1.6), f;;B/Bs=f:ge.-
Thus putting fg.s=fs we see that f; is skew-symmetric. Equations (1.9)
~(1.13) show that a necessary and sufficient condition f3%, g, us vs and
A to define an (f, g, u, v, A)-structure is that

(1' 17) uz=0a 7):,:0,
that is, the vector #* and v* are always tangent to the submanifold M=» (cf.
L4D.

In the sequel we assume that the submanifold M* has an (f, g, %, v, 1)~

structure.
Differentiating (1.6) and (1.7) covariantly along M* and using (1.2),

(1.4) and (1.5), we find

(1.18) Ve fs*=ge(put—v%) — . (dus—s)
1.19) 7. fy¥=0,

(1.20) Fo*hea™=h?f3%

from whch,

@1.21) ke, =0,

that is, M* is minimal and

(1.22) T*hea™ =1 hyo”.

On the other hand, differentiating #*, ©* and A covariantly along M* and_
using (1.2), (1.6) and (1.4), we get
(1- 23) cha-:_lgm_qsfca’
(1. 24) Vew,= _'¢'lgca +feer
(1- 25) Vcl=“c+¢vn
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(1- 26) uheaz=0, v%h.;,=0.
We put
Scbaz[f, Flat+ Wauy—P sue) ut+ (P 05— yr) v,

[f, fO4* denoting the Nijenhuis tensor formed with f;2. Then we have from
(1.18), (1.23) and (1.24)

St =0.
“Thus the (f, g, u, v, 2)-structure induced on M= is also normal.
Transvecting (1.22) with f; and using (1.26), we get
(1.27) fdbffhya™= —ha*.

Equations of Gauss and Codazzi of the submanifold M" are respectively
given by

(1.28) Kiep®= K, B4* B By B4+ hg® choy* — h 2 ch gy,
(1.29) K;;"B#B I ByiCry— (P gh ™ — 7 chap®) =0,

where K;.,% is the curvature tensor of Mr.
Finally, we get from the Ricci-identity, (1.18), (1.23) and (1.24)

(1.30)  — Kyt Kieefor = (1 +¢2) {gas f*— FeeOa® —8es Sa +0F as} -

Transvecting (1.30) with f,¢ and using (1.9), (1.12) and (1.17), we
bhave

(1. 31) chwfbefad =—K;+ chbe (u‘ud -+ 'v""vd)
+(14+¢2) {(n—4+220) g3+ 2(uup+v.vs)} .

Using the Ricci-identity, (1.23), (1.24), (1.25), (1.18), (1.12) and (1.17),
we obtain

(1.32) K (wu?+vevd) = (1+¢2) 21— ga— (wuptvop)}

Thus we can get the following useful identity from (1.31) and (1.32) for
later use

'(1' 33) cheafbefad: —ch+ (1+¢2) {(nﬁz)gcb+ucub+7"cvb} .

8 2. Infinitesimal variations of invariant submanifolds with induced
(f, g, u, v, \)-structure.

We consider an infinitesimal vriation of invariant submanifold M?* with
induced (f, g, u, v, A)~structure of the ambient manifold M2 with normal
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(f, g, u, v, A)-structure given by
2-1) Zh=zk(y) +&-(y)e,

where £h(y) is a vector field of M?” defined along M and ¢ is an infinite-
simal. We then have

2.2) Byt =B+ (05£%)e,

where Bjt=0,z" are n linearly independent vectors tangent to the varied sub-
manifold. We displace Bj* parallelly from the varied point (z*) to the ori-
ginal point (z*). We then obtain the vectors

(2.3) B =Byt +I';# (z+€e)€/Bye

at the point (z%), or

2.4) Byt=Byh+ (7iEM)e,

neglecting the terms of order higher than one with respect to ¢, where
(2.5) 7yt =0,E0+ T ;2 ByIE%.

In the sequel we always neglect terms of order higher than one with re-
spect to e. Thus putting

(2.6) OByt =Byt — Bk,
we have from (2.4)
2.7 OBgt=(Psth)e.
If we put
(2. 8) gh=gaBh+£2C,h,
then we get
2.9) Vuch= (Vyé*—hs?.6%) B+ (D s6*+ hp,"E9) C1

because of (1.4) and (1.5).

Now we denote by C,* 2m—n mutually orthogonal unit normals to the
varied submanifold and by C,* the vectors obtained from C,* by parallel
displacement of C,* from the point (Z*) to (z*). Then we have

(2. 10) Ci=C+ T (z+E) T .
We put
(2.11) " Cp=Cr—C}

and assume that dC}* is of the form

(2.12) 6Ci=nte= (9,2B+7,7C,P)e.
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Then, from (2.10), (2.11) and (2.12), we have
(2.13) C,r=C}—T;;}63C je+ (9B +1,°CP)e.

Applying the operator 6 to B,iC,ig;;=0 and using (2.7), (2.9), (2.12)
and dg;;=0, we find

(75§ y+ hoays®) +945=0,
where £,=¢%g,, and 7,,=9,°gq, or
(2.14) n,0=— (P ,+h?,Eh),
7+ being defined to be p*=gp.. Applying also the operator ¢ to C,iC,ig;;
=g,z and using (2.12) and dg;=0, we find
(2.15) Nyz+7zy=0,
where 7,,=7,%g.,.

We assume that the infinitesimal variation (2.1) carries an invariant sub-
manifold into an invariant submanifold, that is,

(2.16) fA(z-+£€) By are linear combination of Bjh.
Now using the first equation of (1.2) and (1.6), we see that
f#(z+&e) By

= (fF-+E90;fe) (By + 0pé'e)
=[fA+E =T 3 [+ T 1 ik + g i (Pub—ob)
— 04 (pui—v;)} e]LByi+ (8569 €]
=f?Bl+[ fF(Ps&)) — I 46 f* Bt
+ &5 (gut—vb) —EF (Guy—1vp) Je,
which and (2.2) imply
(2.17) fh(z+Ee) By
=f B+ 206 — fi2 (P P
+E5(pub—vh) — ER (Gup—13) Je,
or, using (1.6), (1.7), (1.8), (1.17), (1.20), (1.22), (2.8) and (2.9),
(2.18) f#(z+&e) By =f,"Bt
+LWPsE) foe— [ (P .£%) +215h 2 26%
+&p(pur—v2) — £ (duy—vy) | Bhe
+L A" 67— f327 £5— E% (Pup—p) JC e,
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Thus (2.16) is equivalent to
(2.19) 2 W8E7) — 12 (P £%) — 6% (dup—3) =0.
An infinitesimal variation given by (2.1) is called an invariance-preserving

variation if it carries an invariant submanifold into an invariant submanifold.
Thus we have

THEOREM 2.1. In order for an infinitesimal variation to be invariance-pre-
serving, it is necessary and sufficient that the variation vector & satisfies (2.
19).

COROLLARY 2.2. If a vector field &k defines an invariance-preserving variat-
ion then another vector field &% which has the same normal part as & has
. the same property.

Suppose that an infinitesimal variation given by (2.1) carries a submani-
fold z*=z"(y) into another submanifold #*=z*(y) and the tangent space of
the original submanifold at (2*) and that of the varied submanifold at the
corresponding point (z*) are parallel. Then we say that the wvariation is
parallel (cf. [7]).

Since we have from (2.6), (2.7) and (2.9)

(2. 20) Ebh = Eo“ba + (‘7 bf" - hba.rsz) EjBah
+ (Fss®+hsa*€%) Crle,

we have the following assertion (cf. [7]):
In order for an infinitesimal variation to be parallel, it is necessary and

sufficient that
(2.21) Fss=+ hp75%=0.

§3. The variations of f;* and 7=

Suppose that an infinitesimal variation z*=z*+-£*: is an invariance-preserving
variation. Then putting

(3.1 fA(z+&e) Byi= (f5*+0f®) B.h,
‘we have from (2.18) and (2.19)
(3.2) Of =L f Vs — eV £°+2 f°h 28

+ &3 (put—v%) — &2 (pus—y) Je-

If an invariance—preserving variation preserves f;%, then we say that it is
J-preserving. e
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PROPOSITION 3.1. An invariance-preserving variation is f-preserving if and
only if
(3' 3) (nge)fea__fbe (Vega) + szeheaxsz
+6&5 (pus—v°) — &2 (Gup—vp) =0.

Now applying the operator 6 to (1.3) and using (2.6) and (2.8) and dg;;
=0, we find (cf. [7])

(3' 4‘) 5gcb= (Vcsb+ VbEc - 2hcsz’) &
from which,
(3.5) oghe=— (pbee+pagh—2hba £7)e.

A variation of a submanifold for which dg.;=0 is said to be isometric.
‘We now put

(3.6) I #=(8.Bs++T;#(z) BJByY) B+,
and
51’cba=Fvba'—rcb¢:

-where I, are Christoffel symbols of the deformed submanifold.

Substituing (2.2) and (2.20) into (3.6), we then obtain by a straight-
forward computation,
{8.7) 5]151,“2[(VchEh‘*‘KkjihSchiBbi) Bs;,

+ho® (P8R %) e,

from which, using equations (1.28) of Gauss and those (1.29) of Codazzi
of the submanifolds (cf. [77), we have
(3.8) O 2= (P 6%+ Kyop*é4) e

—“[Vc (hbexgz) +Vb (}lcugz) —r. (hcbzgz) ]g‘aE
because of (2.9).
A variation of a submanifold for which 67",;2=0 is said to be affize.

Assume that an infinitesimal variation Z*=z*+ £k is 'invarnce—preserving.
Hence we have

3.9 FCi=F=C k.
‘Then using (2.13), we find
(3.10) FM(z+£e)[C)i—T;6iC e+ (9,2 B,  +2,7C.H) €]

=(fy*+of,5CH
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or, wsing (1.2), (1.6), (1.7) and (1.17),
17CP~fy7 (9Bl +7.2Ch)e
+ (0 f5* B+ 7,2 *CF) e+ &, (ut—0%) Ble
— fyz@zh+ @ fyI) Ezh, :
from which, we have
(8.11) Ofy*= (=11 +0y"f ") &
(3.12) St =, i £y (gus—v),
or, using (2.14) and (1.20),
(3.13) I WPeE) = PP) f— &y (Pur—v®). o
PROPOSITION 3.2. Suppose that an infinitesimal variation is invariance~pre-
serving. Then the variation of f,* is given by (3.11).
84. Variations of u¢, vz and A.

In this section we compute the variations of #%, % and 1 on the subma-
nifold. , . )

Now we get a vector field #*@ which is defined intrinsically along the de-
formed submanifold. I we displace #* back parallelly from the point (z)*
to (z)%, we obtain
o gh=ah - I ;} (z+Ee) G
and hence forming

@1 Gy,
we find
4.2 ] Sub=ith—ub+ I ;PCtute.
We have, from (1.8) and. 4.2),
4.3) 8(usBt+urC.F) =¥ (Bpul) e+ I A e,
which and (1.2), (2.7) and (2.12) imply
(6u®) B2+ (6u®) C,P

= —[u (P56 — h¥2,£%) +urp,+ 26%+ $&8f 1 BFe
— D‘b (V”S"-I— hba.:é:a) + uy,?yx.,}_ AE= +¢Eyfyzjcxh5_
Then using (1.17) and (1.26), we get
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4.9 Out=— (pEf,2+ 26 +ubp €%,
from which, using (3.4),
(4' 5) auaz - (¢Ebfba+254_ubl74§b) .

Thus we have

PROPOSITION 4.1. Under an infinitesimal variation (2.1) of the submanifold,
the variation of u® wu, are given by (4.4) and (4.5) respectively.

Similarly we get a vector field #* which is defined intrinsically along the

deformed submanifold. If we displace * back parallelly from the point (z*)
to (z*), we obtain

Fh=ph+ I ;5 (x4 Le) Eipie

and hence forming

(4.6) . foh=ph—phk,
we find
4.7 Ovh=ph—vh+ I ;A ivie,
We have from (1.8) and (4.7)
(4.8) 0 (v BA+v*C.h) =& (gpvh) e 4 I P E 0%,
which and (1.2), (2.7) and (2.12) imply
(0v°) Bt + (9v%) CA

== [—' vb (VbEa - hba.z‘fx) - vyﬂya— ¢26a + Ebfba:IBahe
+[ P (T 3654 hp,"6%) —vI9, 5 — P AE=+E2fF]C re.
Then using (1.17) and (1.26), we obtain

(4.9) : ovr= (22— page—vbp ,£9)e,
from which, using (3.4),
(4. 10) 57’4= (fbfba—¢2€a+vaaEb) £.

Thus we have

PROPOSITION 4.2. Under an infinitesimal variation (2.1) of the submanifold,
the variations of v* and v, are given by (4.9) and (4.10) respectively.

Finally, to obtain the variation of A, applying the operator & to w%u,=
1—22 and using (4.4) and (4.5), we have

(4.11) 0A=(u,+ ¢v,) Ee.
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Thus we have

PROPOSITION 4.3. Under an infinitesimal variation (2.1) of the submanifold,
the variation of 1 is given by (4.11).

Furthermore we have from (1.9)

4.12) 0 (fo°fa") = (up) ue+uy (5uf) + (Gv3) v+ (50°) .
If the variation preserves fi* and #2, we have from (4.12)
(4.13) (Oug) ut + (0vy) v+ (60°) =0.
Transvecting (4.13) with #, and v,, we find respectively
(4.14) (1— 42) Oug+u,vy (0v°) =0,

(4.15) (1— 22) Gup+ v, (60°) =0.

Transvecting (4.14) with «%, (0u;)ub=0. Then
O (ubug) =—21(64) =0, that is, 1=0,

Applying the operator 4 to (1.11), we can get from above §v*=0. So from
(4.14) and (4.15), 0u;=0 and dv,=0. Thus we have

PROPOSITION 4.4. If an infinitesimal f—preserving wvariation preserves u®,
then the variation preserves u, v°% v, and A.

§5. An integral formula.

In this section, we calculate T<7T,, T, being defined in such a way that
the variation is f-preserving if and only if T,4;=0. In the later part of this
section, we consider an infinitesimal invariance-preserving variation of a
compact invariant submanifold with induced (g, %, v, A)—structure of the
even dimensional sphere $?* with normal (Jf, g, #, v, 1) -structure and get an
integral formula involving T,;7.

First of all, we define T, by

(5- 1) ch = (V cfe) feb—'f c‘ (‘7 esb) + zfcehebz £
+&. (¢ub~' vb) —& (¢u,—'a¢) -

Then we find that a variation of invariant submanifold is f-preserving if

and only if T.,=0.
If we take account of 1.9), (1 11) (1.12), (1.17), (1.26) and (1.

27), we have
(.2 T T4=2(P .£,) (7°€%) —8hepE* (F°EY)
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+ 4 (heps€7) (h1,E7)
—utugl (Fe£e) (Pe€%) + (P.£0) (Pe69) ]
— vl (7.6.) (Pe€%) + (P o€ (7€) ]
+2¢2& v, (o€ —paée) +248u, (P& — page)
=211 T eks) (Pe€%)
—2fEs(Bu.—v,) (P& —paée)
+2(1—2) (1+¢D) £.6°— 2% (Eu)?
+2¢ (§u°) (§av2) —2(6.09)2
On the other hand, we have
(5.3 b= (7*e) &+ (P26) (P oé.)
— (n—1) (Pur—v°) f2£,(7 £.)
— fBe&y (put—v) (P £.) + 1% (gus—v2) (P .6s) Ea
— frfe T o) Ea—Srf o (7 £ (Poka)
because of (1.18), where we have put
wh= (P5) €, — o f* (7.£.) s
from which, using the Ricci identity and (1.33),
(5.4) Py W= (7s7%) &+ (756°) (746.)
— (n—1) (gut—v°) (7 L) fE,
— freby (gut—vr) (Po£0) + b ($ur—v%) €, (7 o£5)
+ Kg£980— (1+¢?) (n—2)€,6°
— (1+¢) (u,6°)?
— (1 +¢8) (v 2—flefec(P£.) (Fika) .
Comparing (5.2) with (5.4), we have
(5.5) T Toy=25y WP —28° (P20 3¢ o+ KopE?)
—8(hepE®) (Po€Y) + 4 (hep€™) (h,E7)
— (wu,+vrv,) [(PeE) P60 + (7€) (P2€9) ]
+ 24280, (PeEs—2Ee) + 226 u, (P62 —26°)
+2(1+¢%) (n—1—22) £,6°+ 2 (u,€%) 2+ 287 (v%6,) 2

253
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+2¢ (&u.) (€%0,) — 2% (gut—v) £, (P &)
+2nfog, (put—v*) (P £.),

or, equivalently

(5.6) T T =20 (Wy— 2h,5,5°67)
— 280 1.+ Koyt —207% (hy.67) ]
—2(hyE?) (P 4+ V66— 2hepoE7)
— (Wu,+v0,) (7 £) FED) + (P .6,) (Fee) ]
+20AE 0, (FeEe—P2E°) +22E u, (P& —pa&e)
+2(1+¢2) (n—1—2) £,85+2 (u,£%)2
+28% (0,62 +2¢ (§°u,) (£°0,)
—2 fb (pur—v2) €, (7 £5) +2nf &, (du—2v°) (7.£.).

Now we assume that the ambient manifold is an even dimensional sphere
S?m and that M*is a compact invariant submanifold with induced (f,g,#, v,
A)-structure of S2», Moreover an even dimensional sphere 527 induces a
normal (f, g, #, v, )-structure and satisfies differential equations of theorem

1.1 with ¢=0 (cf. [1]).
Thus using 7. (f%06,6;) = — %6, (. 2+ 1 (v,6%) 2+ fP630* (7 .£,)

+f beﬂa&a (V egb)
and (5.6), we apply Green’s theorem and obtain
(5- 7) Jt T‘-b ch + 25 ‘ {V bV 6Ec + ch‘sb_‘ 27 b (hcbzfx) }

+2h 89 (F 4+ T 46 c— 2hp,E%)

+ (weu,+vov,) {7 .E) PE2) + (P.E) (P2E9)}
- =22 u,(PeE— L) —2(n—22) £2€,

+2n(0,6%) 2+ 2 frlpf (P £.)

+2n foegvt (7 £,) JdV=0,

dV being the volume element of M=
From (3.4) and (3.5), the variation of dV is given by (cf. [7])

(5- 8) -0dV= (V aéa— haaz‘s :) dVe.

For a compact orientable submanifold M*, we have the following integral
formula:
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j[éf Ptr .+ K 8%

+ 5 (P& 73E) (Po85+ 740 — (7,69)20d V=0,
which is valid for any vector & in M» (cf.[67,[97]), from which

6.9)  [Le (T itt Kath) — 275 (hsme,) + 7. (b))

5 (Pt 7o 2hay ) (PoEh+ o6 —2heb £)

- (chﬂ_hcczgx) (Vb&b)
+ (h2,89) (7 b5+ P se— 2h3,67) 1A V=0,
Thus we have an integral formula from (1.21), (5.7) and (5.9)

G.10) ([ Tt (784 P 2hy ) (PEP+phe—2hb,89)
—2(P.£°)2+ 226 u, (P2 —pase)
— (#ust+vtv,) {(F.£.) (P6%) + (P.60) (FoE9))
—2nfbespr (7 £.) —2f P850 (P .E0)
+2(n—A2) £,6%—2n (v,£%)2]d V=0.

§6. Isometric and f-preserving variations.

Similar to the later part of §5, we consider in this section an infinitesi-
mal invariance-preserving variation of a compact invariant submanifold with
induced (f, g, %, v, 2) -structure of the ambient manifold S$?* with normal (f,
g, u, v, A)-structure. Using some integral formulas involving 7,7, we prove
theorems on f-preserving and isometric variations.

We assume that an invariance-preserving variation of the submanifolds

preserves u¢, %, u, and v,. Then we have from (4.4), (4.5) (4.9) and
4.10)

(6.1 Agr=—ubgyee, 2§,=ubp oLy,

(6.2) Epflo=ntte, Ebfy,=—vt0 s,

from which, we get

(6.3) WP = —1wP €0, VW als=—" 560

Transvecting the later equations of (6.1) and (6.2) with &, we find
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(6. 4) Eaab (V aE b) =25a50y Eavb (V aE b) =O-
From (4.11), we obtain
6.5) u*,=0.

Using equations (5.10), (6.2), (6.3) and (6.4), we get
(6.6) I[— T T+ (F £ytT 56— 2ha?E,) {7 eEP+ pEc— 2R ,67)

—2(P £9)2—2utu, (7 .£.) (F°6°)
—2nv¢0, (P56°) (P .£.)
+2(n+ A2 §26,—2n(v*E,) 2 [d V=0.
On the other hand we have from (1.9), (6.2) and (6.5)

6.7 20, (P o€5) (P°EY) =6%6,— (£%0,)3,
and from (6.1),
6.8) wuy (P £,) (PeEY) = 22L4E,.

Thus we get from equations (6.6), (6.7) and (6.8)
(6- 9) J‘E_ TCb ch+ (V ;5 b’l‘V b‘Sc'— 2hcby€:y) (V cf b+ |74 bé c_zh‘.bz'fz)

—2(p£9)%1dV=0.
From this integral formula, (1.21) and (5.8), we have

PROPOSITION 6.1. Suppose that the ambient manifold is an even dimensional
sphere with normal (f, g, u, v, A)—structure and an invariance—preserving varia-
tion preserves u®, v*, #, and v,. : ‘

Then in order for an invariance-preserving variation of a compact invariant
submanifold with induced (f,g,u,v, A)—structure to be isometric it is necessary
and sufficient that the variation is volume—preserving and f-preserving.

Furthermore, if a variation of the submanifold is affine, we have from
3.8
Ve 60t KacsaE? =V o (Roxt™) — Py (eazf®)
+7 4 (hepo£7) =0,
from which, using (1.21)
7.7 .£%) =0,

that is, [,£*=constant. Thus assuming the submanifold to be compact, we
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have 7,64=0. From this fact and proposition 6.1, we obtain

THEOREM 6.2. Assume that the ambient manifold 'is an even dimensional
sphere with normal (f,g,u,v, 2)-structure and an invariance-preserving varia-
tion preserves u®, v%, u, and v,. Then an invariance-preserving variation of a
compact invariant submanifold with induced (f,g,u,v, A)-structure is isometric
if and only if the variation is affine and f-preserving.

On the other hand, if the isometric variation preserves u¢ and v?, then
the variation is affine and du,=0 and dv,=0. Thus we have

COROLLARY 6.3. Suppose that the ambient manifold is an even dimensional
sphere with normal (f, g, u, v, 2)~structure. I1f the submanifold with induced
(f, g, u, v, X)~structure is compact, and an invariance—preserving isometric vari-
ation preserves u® and v%, then the variation is f—preserving.

Moreover, we have from proposition 4.4

COROLLARY 6. 4. Suppose that the ambient manifold is an even dimensional
sphere with normal (f, g, u,v, A)-structure and an invariance-preserving varia-
tion is f—preserving and preserves ut. Then the variation of a comact invariant
submanifold with induced (f,g,u,v, A)-structure is affine if and only if it is
isometric.

Now we assume that an infinitesimal variation is fibre-preserving u%, wu,,
7% and v,, that is,

Leut=aus, £u,=5ug,
(6.10)
Levt=pv?, £0,=v7,

where «, B, # and v are functions on submanifold M*. Then we have from
(6.10)

(6.11) ubp fe= —qus— 154,
(6.12) w7 ofy=Ptta+ Ao,
(6.13) Eofyr=0tpéat pon,
(6.14) ¥ fpa= — 0P ofp 0,
from which, we get

(6.15) au+ub 84 = But — uy [P 2E8,
(6.16) 10+ € y=vv, — VP 4.

Transvecting (6.15) with v,, we find
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€6.17) ubr (F36,) = —ub? (P aks) .
Transvecting (6.11), (6.13) with £, and (6.12), (6.14) with &2, we get
6.18) Eaub (pt,) = — A6%6,— auté,,
geub (7 ,64) = A62E,+ Py
(6.19) &b (7 4é.) = — nv*ts, 90 (F.65) =vvoé,.

Thus we have from (5.10), (6.13) and (6.18)
€6.20) j[— T Tyt (7 5t 7 e 2hepyl?) (PoED+ e — Qheh £7)

—2(P.£9)2+2(n+ A2) £4€,

— (ufu,+v00,) {7 L) (P°€%) + (P .£.) (P2E9)}
+282(u"E,) + 202 (u%,) — 20 (v°E,)?
—2(n+1) oot (P £,) — 200t (P .£.) (F5E%)
— 200y (P £.) (P¥69) 1d V=0.

‘Transvecting (6.11), (6.12) with u,, «* and (6.13), (6.14) with v,, v* re-
spectively, we get the following equations:

(6.21) e (P30 = — a(1— 1) — 3&ou,,
(6.22) ubu® (F3€,) =P (11— 22) + A%,
6.2 VP2 (Fi€) = — p(1— 2% — A&%u,,
(6.24) DPos (736) =v (1— 22) + As%u,
from which,

(6.25) tru =g —a(1- ) — -],
(6.26) grug—gi[ — (1= —»(1- )]

Joreover from (6.11), (6.12), (6.13) and (6.14), we find
usut (P%62) (P c£2) =a?(1— %) +2aa8%u,+ 226°E,,
uput (PoE8) (W) = B2 (1— A2) +2BA&u,+ A%€E,,
05 (P £a) (PP6D) =688, — (E%up)%— (§%03)2

+ 12 (1 — 22) +2u 8%,
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vy (7 ,60) (F°68) = — Eb&y+ (Ebuy) 2+ (Eb0p)?
— pAbu,— vA&u,— v (1—22),
ooy (7 ,8,) (PoE8) = &6, — (E%,)  — (£%0,)2
+2v28%,+2 (1~ 22).
'Using equations (6.20), (6.23) and (6.27), we get

(6. 28) j[— T T+ (P b+ V€~ 2hepy6?) P60+ P06 — 2R ,67)

—2(F£)2—a?(1—28) — B2 (1—28) + 2 (1— A%) — 2 (1— 29)
—2(n—1) uA&su,+2n (%, )2+ 2uv (1—22) 1d V=0.
‘On the other hand, we have from (1.9), (6.13), (6.24) and (6.27)
E 26 fea=E08,— (Ebuy)?— (EPup)2,
E 128 fra=E26— (EPup) 2 — (Ebuy)?
+212(1—42) +2uv (1— 22)

—+ 4/1/26”1‘%,
from which

(6.29) 22(1—2%) + v (1— 2) +2u26%,=0).

Thus we have from (6.28) and (6.29))
(6 30) I[_ ch T‘:b’{_ (Vch+Vb‘§c_ 2hcbyéy) (705b+7b50-2h¢b161)

—2(P.E) 2 —a?(1— A2) — B2 (1— A2) — ;2 (1~ A2) —12(1— 22)
—2(n+1) pA(6%u,) +2n(&%,)2]d V=0.

We assume next that the variation of a compact invariant submanifold is

isometric. Then we have from (1.26), (38.4), (6.11)~(6.14), (6.25) and
(6. 26)

(6. 31) a=f=u=y.
And we get from (1.23) and (1.25)
P (E%u,) =u,l7°€* — AE°,
A (E%u) = — 247 £+ ulV Lo —u ke

Moreover if the variation on a compact submanifold is isometric, we have
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p.£6=0 with the help of (1.21) and (3.8), from which,

(6.32) re(Eou,) =u,eea— A&,

(6.33) A(E%u,) = —ut . Fu b 7eée.

Now we find from the equations of Gauss (1.28) and Codazzi (1.29)
(6.34) Ka&ub=(n—1)&,,

(6. 35) Vahes™ =V hap®

Since isometric variation is affine, we have from (3.8), (1.21) and (6.35)
uPV £+ Kaabus=0,
from which, using (6.33) and (6.34)
“ A(&%,) = —n&u,.

Hence if A has definite sign and the submanifold is compact, we have from
(6.25), (6.26) and (6.31)

&u,=0 and a=F=p=v=0,
from which, using (4.4), (4.5), (4.9), (4,10) and (6.11)~(6. 14)
out=1~0u,=0v=0v,=0.
From these facts and (6.30), we have

THEOREM 6.5. Suppose that an invariance—preserving isometric variation of @
compact invariant submanifold with induced (f,g,u, v, 2)-structure of the even
dimensional sphere with normal (f, g, u,v, X)-structure is fibre—preserving u®
and v® such that £ ut=au* and £ °=pv®, where o and p are functions
on the submanifold. Then if al has definite sign, the variation is f-preser-
ving and preserves u®, u,, v* and v,.
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