AN INFINITESIMAL DEFORMATION CARRYING A HOLOMORPHICALLY PLANAR CURVE INTO A CURVE OF THE SAME KIND IN A KAEHLERIAN MANIFOLD

By Sang-Seup Eum

§ 1. Introduction.

In a Riemannian manifold M with local coordinates $\{x^i\}$, we consider the point transformation

$$\bar{x}^i = x^i + \varepsilon v^i,$$

where ε is an infinitesimal constant and v^i is a vector field of M. If the infinitesimal point transformation (1.1) under the condition

$$g_{kj}\frac{dx^k}{ds}v^j=0,$$

where g_{kj} is the Riemannian metric and s is the arc-length of the curve, maps any geodesic into a geodesic, the equation of Jacobi:

$$\frac{\partial^2 v^h}{\partial s^2} + R_{kji}{}^h v^k \frac{\partial x^j}{\partial s} \frac{\partial x^i}{\partial s} = 0$$

is satisfied, where $\frac{\delta}{ds}$ denotes covariant differentiation along the curve,

 R_{kji}^h is the curvature tensor of M and the terms of order higher than one with respect to ε are neglected. If the solution of the equation (1.3) vanishes at a point p_0 and at another point p_1 and if it does not vanish between p_0 and p_1 then the points p_0 and p_1 are said to be conjugate on this geodesic.

Recently K. Yano and I. Mogi studied the distance between consecutive conjugate points on a geodesic in a Kaehlerian manifold and proved the following [2]

THEOREM A. In a Kaehlerian manifold of positive constant holomorphic curvature k (>0), the distance between two consecutive conjugate points is constant and is given by $2\pi/\sqrt{k}$.

Received by the editors July 9, 1977.

This research was supported by the fund of MOST, ROK government 1977

On the other hand, a curve $x^{i}(t)$ in a Kaehlerian manifold defined by

(1.4)
$$\frac{\partial^2 x^h}{\partial t^2} = \alpha \frac{dx^h}{\partial t} + \beta \varphi_j^h \frac{dx^j}{\partial t}$$

is, by definition [1], a holomorphically planar curve or an h-plane curve, where φ_j^h is the Kaehlerian structure and α, β are certain functions of t.

The purpose of the present paper is to study an infinitesimal deformation carrying an h-plane curve into a curve of the same kind in a Kaehlerian manifold and to obtain a result analogous to the theorem A on an h-plane curve in a Kaehlerian manifold.

§2. An infinitesimal deformation carrying an h-plane curve into a curve of the same kind in a Kaehlerian manifold.

Let us consider a 2n-dimensional Kaehlerian manifold with local coordinates $\{x^i\}$. Then the Riemannian metric g_{ji} and the Kaehlerian structure φ_j^i satisfy the following equations

$$\varphi_i^k \varphi_j^i = -\delta_j^k$$
, $g_{kk} \varphi_j^k \varphi_i^k = g_{ji}$, $\nabla_k \varphi_j^i = 0$.

In a Kaehlerian manifold, we consider a curve $L: x^h = x^h(s)$ parameterized with its arc-length s and satisfies the differential equation

$$(2.1) \qquad \frac{\delta^2 x^h}{ds^2} = a\varphi_j^h \frac{dx^j}{ds}, \quad (a>0)$$

where $\frac{\delta}{ds}$ indicates covariant differentiation along L and a is a constant.

If we use an arbitrary parameter t of L, then the equation (2.1) turns into

(2.2)
$$\frac{\delta^2 x^h}{dt^2} = \alpha \frac{dx^h}{dt} + \beta \varphi_j^h \frac{dx^j}{dt},$$

where
$$\alpha = -\frac{d^2t}{ds^2}$$
, $\beta = a\frac{dt}{ds}$.

Since the integral curve of (2.2) is called a holomorphically planar curve [1], we shall call the integral curve of (2.1) also a holomorphically planar curve or an h-plane curve in a Kaehlerian manifold.

Let v^i be a vector field defined along h-plane curves and assume that for any infinitesimal constant ε , the point transformation:

(2.3)
$$\bar{x}^i = x^i + \varepsilon v^i, \quad g_{kj} v^k \frac{dx^j}{ds} = 0$$

maps any h-plane curve into an h-plane curve. Then we say that v^i preser-

ves the h-plane curve.

Now we ask for the condition that v^i preserve the h-plane curve.

By straightforward computations, we have

$$\frac{d^2x^h}{ds^2} + \{_{k}^h{}_{j}\} (\bar{x}) \frac{d\bar{x}^k}{ds} \frac{d\bar{x}^j}{ds} - a\varphi_{j}^h(\bar{x}) \frac{d\bar{x}^j}{ds}$$

$$(2.4) = (\partial_{i}^{h} - \varepsilon v^{l} \{l^{h}\}) \left(\frac{\partial^{2} x^{i}}{\partial s^{2}} - a \varphi_{j}^{i} \frac{dx^{j}}{\partial s} \right)$$

$$+ \varepsilon \left[-a \varphi_{k}^{h} \frac{\partial v^{k}}{\partial s} + \frac{\partial^{2} v^{h}}{\partial s^{2}} + K_{lkj}^{h} \frac{dx^{k}}{\partial s} \frac{dx^{j}}{\partial s} v^{l} \right],$$

where $\{k^h\}$ is the Christoffel symbol, K_{lkj}^h is the curvature tensor of the Kaehlerian manifold and terms of order higher than one with respect to ε are neglected.

In the sequel, we always neglect terms of order higher than one with respect to ε .

On the other hand, we get

(2.5)
$$\left(\frac{d\bar{s}}{ds}\right)^2 = g_{kj}(\bar{x}) \frac{d\bar{x}^k}{ds} \frac{d\bar{x}^j}{ds} = 1 + 2\varepsilon\rho,$$

where we have put

(2.6)
$$\rho = g_{kj} \frac{dx^k}{ds} \frac{\delta v^j}{ds}.$$

Using the relation (2.5), the left member of (2.4) turns into

$$\left(\frac{\partial^2 \bar{x}^h}{d\bar{s}^2} - a\varphi_j^h \frac{d\bar{x}^j}{d\bar{s}}\right) \left(\frac{d\bar{s}}{ds}\right)^2 + \varepsilon \left(\frac{d\rho}{ds} \frac{dx^h}{ds} + a\rho\varphi_j^h \frac{dx^j}{ds}\right).$$

Therefore if v^i preserves the h-plane curve then we have

$$(2.7) \qquad \frac{d\rho}{ds} \frac{dx^h}{ds} + a\rho\varphi_j^h \frac{dx^j}{ds} = \frac{\partial^2 v^h}{ds^2} + K_{lkj}^h v^l \frac{dx^k}{ds} \frac{dx^j}{ds} - a\varphi_j^h \frac{\partial v^j}{ds}.$$

From the relation (2.6), we have a system of differential equations along an h-plane curve

(2.8)
$$\rho = a\varphi_{kj}v^{k}\frac{dx^{j}}{ds},$$

$$\frac{d\rho}{ds} = a\varphi_{kj}\frac{\delta v^{k}}{ds}\frac{dx^{j}}{ds},$$

$$\frac{d^{2}\rho}{ds^{2}} = a(\varphi_{kj}\frac{\delta^{2}v^{k}}{ds^{2}}\frac{dx^{j}}{ds} + a\rho).$$

§ 3. Distance between consecutive conjugate points on an h-plane curve in a Kaehlerian manifold of constant holomorphic curvature.

In this section, we are going to consider an infinitesimal deformation carrying an h-plane curve into a curve of the same kind in a Kaehlerian manifold of positive constant holomorphic curvature k.

In this case, the curvature tensor $K_{lk_i}^h$ is of the form:

(3.1)
$$K_{lkj}^{h} = \frac{k}{4} \left(g_{kj} \delta_{l}^{h} - g_{lj} \delta_{k}^{h} + \varphi_{kj} \varphi_{l}^{h} - \varphi_{lj} \varphi_{k}^{h} - 2 \varphi_{lk} \varphi_{j}^{h} \right).$$

Substituting (3.1) into (2.7), we obtain

$$(3.2) \qquad \frac{\delta^2 v^h}{ds^2} - a\varphi_j^h \frac{\delta v^j}{ds} + \frac{k}{4} v^h = \left[\frac{d\rho}{ds} \delta_j^h + (a + \frac{3}{4}k) \rho \varphi_j^h \right] \xi^j,$$

where we have put $\frac{dx^{j}}{ds} = \xi^{j}$.

If the solution v^h of the equation (3.2) vanishes at a point p_0 and at an another point p_1 and if it does not vanish between p_0 and p_1 then the points p_0 and p_1 are said to be *conjugate* on this h-plane curve.

Taking account of (3.2) and the third relation of (2.8), we get

(3.3)
$$\frac{d^2\rho}{ds^2} = -c\rho, \qquad c = a(a + \frac{3}{4}k) + \frac{k}{4}.$$

Consequently above equaton gives

$$(3.4) \rho = A \sin \sqrt{c} s + B \cos \sqrt{c} s,$$

where A and B are constants.

Now we assume that $v^i=0$ and consequently $\rho=0$ when s=0. Then we have

$$(3.5) \rho = A \sin \sqrt{c} s$$

from (3.4).

Substituting (3.5) into (3.2), we have

$$(3.6) \frac{\delta^{2}v^{h}}{ds^{2}} - a\varphi_{j}^{h} \frac{\delta v^{j}}{ds} + \frac{k}{4}v^{h} = A\left[\sqrt{c}\left(\cos\sqrt{c}s\right)\delta_{j}^{h}\right] + \left(a + \frac{3}{4}k\right)\left(\sin\sqrt{c}s\right)\varphi_{j}^{h}\xi^{j},$$

A being a constant.

In this place, if we put

$$(3.7) \qquad \frac{\delta v^h}{ds} = q^h, \quad p^h = q^h - b\varphi_j^h v^j,$$

where b is a non-zero constant given by the relation

$$(3.8) a - b + \frac{k}{4b} = 0,$$

then we easily see that

$$(3.9) bv^h = \varphi_j^h (p^j - q^j).$$

Differentiating the second relation of (3.7) and substituting it into (3.6), we obtain

$$(3.10) \quad \frac{\partial p^h}{\partial s} + \frac{k}{4b} \varphi_j^h p^j = A \left[\sqrt{c} \left(\cos \sqrt{c} \, s \right) \hat{\sigma}_j^h + \left(a + \frac{3}{4} k \right) \left(\sin \sqrt{c} \, s \right) \varphi_j^h \right] \xi^j,$$

by virtue of (3.8).

Regarding (3.10) as a system of simultaneous ordinary differential equations with respect to p^h , there exists a system of solutions $p^h(x(s))$ along an h-plane curve, and moreover this system of solutions is determined uniquely by the system of initial values $p^h(x(0))$ at the point s=0 on an h-plane curve.

On the other hand, we can see that

$$(3.11) p^h = -\frac{A}{a} \left[\frac{k}{4b} \left(\sin \sqrt{c} \, s \right) \xi^h + \sqrt{c} \left(\cos \sqrt{c} \, s \right) \varphi_j^h \xi^j \right]$$

satisfies the differential equation (3.10) along an h-plane curve.

Therefore under the system of initial conditions

$$(3.12) p^h(x(0)) = -\frac{A}{a} \sqrt{c} \left(\varphi_j^{h\xi_j}\right)(x(0)),$$

 p^h defined by (3.11) is a system of unique solutions of (3.11).

Substituting (3.11) into (3.9) and integrating, we can see that the system of solutions v^h of the system of differential equations (3.6) is determined uniquely by

$$(3.13) v^h = -\frac{A}{a} (\sin \sqrt{c} s) \varphi_j^h \xi^j$$

under the system of initial conditions

(3.14)
$$v^h(x(0)) = 0, \quad \frac{dv^h}{ds}(x(0)) = -\frac{A}{a} \sqrt{c} \left(\varphi_j^{h\xi j}\right)(x(0)).$$

From the first equation of (2.8) and (3.5), we can see that, if v^h vani-

shes at a point, then ρ vanishes at this point and consequently $\sin \sqrt{c} s$ vanishes also at this point.

Conversely, from (3.13) we can see that if $\sin \sqrt{c} s$ vanishes at a point, then v^h vanishes also this point.

Thus if v^h vanishes at a point $p_0(x^h(0))$, then point at which $\sin \sqrt{c} s$ vanishes immediately after s=0 is given by $s=\pi/\sqrt{c}$. Thus we have the following

THEOREM. In a Kaehlerian manifold of positive constant holomorphic curvature k, the distance between two consecutive conjugate points on an h-plane curve is constant and is given by π/\sqrt{c} , where $c=a(a+\frac{3}{4}k)+\frac{k}{4}$.

If we consider the case of a=0 in (2.1), then the h-plane curve becomes to a geodesic and \sqrt{c} takes the value $\sqrt{k}/2$. Therefore above theorem assures the theorem A stated in §1.

References

- [1] S. Tachibana and S. Ishihara, On infinitesimal holomorphically projective transformations in Kaehlerian manifolds, Töhoku Math. Jour., 12 (1961), 77-101.
- [2] K. Yano and I. Mogi, On real representations of Kaehlerian manifolds, Annals of Mathematics, 61 (1955), 170-189.

Sung Kyun Kwan University