A Note on Independence of Quadratic Forms

Sung-Shin Han*

This note is to demonstrate that the extention of Theorem 4.15 of Graybill [1] on the independence of quadratic forms is possible. For the self-contained exposition, Theorem 4.15 is rewritten.

Theorem 4.15 If Y is distributed $N(\mu, \sigma^2 I)$, the positive semidefinite quadratic forms Y'AY and Y'BY are independent if tr(AB) = 0.

Theorem 4.15 may be extended as follows:

Extention Theorem If Y is distributed $N(\mu, \sigma^2 I)$, the positive semidefinite quadratic forms Y'AY and Y'BY are independent if and only if $\operatorname{tr}(AB) = 0$.

It is easy to see that the following theorem together with Theorem 4.10 of Graybill²⁾ proves Extention Theorem.

Theorem tr(AB) = 0 if and only if AB = 0 where

A and B are positive semidefinite and symmetric.

<Proof>

(\Rightarrow) Let $A=P'\Lambda_AP$ and $B=Q'\Lambda_BQ$ where Λ_A and Λ_B are diagonal matrices whose diagonal elements are eigenvalues of A and B, respectively. Then,

(1)
$$\operatorname{tr}(AB) = \operatorname{tr}(P' \Lambda_A P Q' \Lambda_B Q)$$

 $= \operatorname{tr}(\Lambda_A P Q' \Lambda_B Q P')$
 $= \operatorname{tr}(\Lambda_A R' \Lambda_B R)$ where $R = Q P'$

^{*} Assistant Professor of Economics, Yonsei University

¹⁾ Y denotes an $n \times 1$ random vector. A and B are $n \times n$ positive semidefinite and symmetric matrices. $N(\mu, \sigma^2 I)$ denote the multivariate normal distribution with mean μ and variance-covariance matrix $\sigma^2 I$. The $\operatorname{tr}(\cdot)$ denote trace which is defined as the sum of diagonal elements of a matrix.

²⁾ Graybill, p.84

Theorem 4.10: If Y is distributed $N(\mu, \sigma^2 I)$, the two positive semidefinite quadratic forms Y'AY and Y'BY are independent if and only if AB=0.

Reweriting (1),

(2)
$$\operatorname{tr}(AB) = \operatorname{tr}(\Lambda_A \sum_{i=1}^n \lambda_{Bi} R_i \cdot R_i \cdot \prime)$$

where λ_{Bi} and R_i , are *i*-th diagonal element of Λ_B and the *i*-th column vector of R_i , respectively.

Or,

(3)
$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \lambda_{Bi} \operatorname{tr}(\Lambda_{A}R_{i}.R_{i}.')$$

 $= \sum_{i=1}^{n} \lambda_{Bi}R_{i}.'\Lambda_{A}R_{i}.$
 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{Bi}\lambda_{Aj}(R_{ij})^{2}$

where λ_{Aj} and R_{Ji} are the j-th diagonal element of Λ_A and the j-th element of R_i .

Thus, by assumption,

(4)
$$\sum_{i,j} \lambda_{Bi} \lambda_{Aj} (R_{ij})^2 = 0$$
.

The positive semidefiniteness of A and B implies

(5)
$$\lambda_{Bi} \geq 0$$
, $\lambda_{Aj} \geq 0$; $i,j = 1, \ldots, n$.

From (4) and (5),

- (6) $R_{ij}=0$ if $\lambda_{Bi}\neq 0$ and $\lambda_{Aj}\neq 0$.
- (4), (5), and (6) imply
- (7) $\lambda_{Bi}\lambda_{Aj}R_{ij}=0$.

Note that $\lambda_{Bi}\lambda_{Aj}R_{ij}$ is the (j,i)-th element of $\Lambda_A R' \Lambda_B$, which implies $\Lambda_A R' \Lambda_B = 0$. Thus, the conclusion is immediate.

(←) It is self-obvious from the definition of trace.

REFERENCE

[1] Graybill, F.A., An Introduction to Linear Statistical Models, Vol. 1, New York: McGraw-Hill, 1961.