Stochastic Square Duels With Continuous

Interfiring Times
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I, INTRODUCTION

Many attempts have been made to analyze the reality of combat operations.
In 1916 Lanchester [5] set up differential equations that can depict the mac-
roscopic features of a combat where two opposing forces have large numbers
of combatants.

In recent vyears, the theory of stochastic duels [17,[6] has been developad
to describe encounters on a more microscopic scale. Weapon effectiveness para-
meters such as hit(kill) probability, conditional kill probability on hit, average
rate of fire, cover, concealment, mobility, and so forth can be incorporated
into the stochastic duel models and therefore these models may be useful in
designing optimal levels of effectiveness parameters and evaluating firing tact-
ics and strategies.

Ancker and Williams [27 constructed triangular (two versus one) or square
(two versus two) duels where both duelists of one side fire simultaneously at
fixed time intervals. They compared two square duels, one with both duelists
of one side concentrating on an opponent and the other with each duelist of
one side assigned to a seperate opponent, and concluded that the second case
is superior to the first one as a firing strategy.

This paper presents general solutions for square duels listed in Table 1 with
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Table 1. Square Duels with Various Strategy Combinations
Forces Firing strategy
Type Duelists
Blue Red (28,18)
A, o—* B
14 : I
1. Square duel-1 i p s ll (S,5) heterogeneous (A,, 4., By, B,y
haia'
A da FrT=
- 14 4B
A oc— +—— B
N\ < e
2. Square duel-2 ‘,\f s (C,0) homogeneous
rd » &
A — +—->B
A 14
3. Square duel-3 : ' ,S) heterogeneous (B, B,)
A ; I-:B homogeneous(A)
“.Jte
AT —8
4. Square duel-4 N . 7 I homogenecus
- ,>\
A - ¢ N s B
s +——>8
5. Square duel-5 \<" s a.c homogeneous
Id
’ ) «
A, +—--Mp
6. Square duel-6 random random (R,R) homogeneous

continuous interfiring times and firing strategies such as standby (S), concen-

trated (C), individually seperated (/) and random (R) firings.

In each square duel, the winning ;probabilities of a given side with limited

and unlimited duel times are obtained. Examples with negative exponentially

distributed interfiring times are given and relative advantages among firing

strategies are discussed.

II, PRELIMINARIES

A. Assumptions

We assume that:

(i) Both sides, Blue and Red, consist of two contestants each, and any side
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that kills both opponents before it loses its members will be declared the win-
ner of the square duel.

(ii) Both sides have certain engagement strategies (fs¢:) where f; and fe
indicate the firing strategies (S),(C),(I) and (R) employed by Blue and Red
respectively when they start the duel.

(iii) Each square duel has four different intermediate duel pairs denoted by
(its» Jt.) where Blue with i members and strategy f; is counter-paired with Red
with j members and strategy . In each intermediate duel pair (i, j:,) both
sides start the duel with unloaded weapons and unlimited ammunition supply
and both duelists of each side are to fire simultaneously when strategy (C) or
(1) is employed.

(iv) In case of hetercgeneous duelists, both duelists 4, and A4, of the Blue
have the fixed kill prcbabilities p4, and pa. and interfiring time probability
density functions (pdf) f(¢;41) and f(¢; Ag) respectively, whereas we have
Ai=A:=4 in case of homogeneous duelists. pz,ps,,p5 f(¢;B1), f(¢;B;) and
Sf(#;B) are similarly defined for Red.

For standby strategy (S5):

(v-8) A standby duelist participates in the duel only after the one previo-
usly engaged is killed and therefore only one versus one duel, ie., “fundamen-
tal” duel is maintained until either side loses both members.

(vi-§) No time -delay is assumed in replacing the killed with the standby.

For concentrated strategy (C):

(v-C) Both duelists of one side concentrate their simultaneous firings on an
opponent until it is destroyed.

(vi-C) Both duelists shift to the remaining target immediately after their
aimed target is killed.

For individually seperated strategy (I):
(v-I) Each duelist of one side is seperately assigned to a different opponent.
(vi-I) If one of the opponents is killed, both duelists immediately concent-

rate their firings on the remaining opponent.
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For random firing strategy(R):

(v-R) Both duelists of one side are simultaneously engaged in a square duel.
However their firing strategies are randomly selected between strategy (C) and
().

(vi-R) The kill processes immediately after an opponent is killed follow

assumptions (vi-C) or (vi-I).
B. Nomenclature

We define that:

P(T;tstr): The prckeability that Blue wins when the duel time is limited to
T and both are engaged in a square duel (¢:,2:). Here, the bar(—)
indicates the winning side.

P(T;tstr): The probability of a draw, We note that there is no superscript bar.

P*(s;ls,tx): The Laplace transform of P(T';Zz,tz).

P(ts,t:): The probability that Blue wins when the duel time is unlimited.

p(t; te,22)dt: The prcbability that Blue wins in time interval [, t+dt] when
both are engaged in a square duel (Zs,z).

_p(t;t_e,tp,k) dt: The prcbability that Blue with % losses wins in time interval [#,
{+dt] when both are engaged in a square duel (¢s,%z).

At ;—z:a,jt,,) The prcbability that Blue kills Red cpponent(s) first during time
interval [#, £+4d¢] in an intermediate duel pair (ir,, ji,)-

h*(s3is,, jio): The Laplace transferm of k(i Jta)-

H(is, ji): The prcbability that Blue kills Red opponent(s) first in a duel pair
(its, Jio) with unlimited duel time.

h(t;i:,)dt: The prcbability that Blue with i members and strategy ¢, kills
counter-paired passive target(s) in [, ¢+d¢].

h*(s;2,,): The Laplace transform of A(¢;44,).

J*(s3Ay): The Laplace transform of f(¢;A)).

Similar quantities can be defined for Red side.

Now,we derive h*(s;is,, ji,) and H(iy,, j.,) as follows: By definitions, we have
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) h(z;z;jt,,)dzzh(t;;,,)f:' h(zije)dr di, and
@ W)= et i) [T b d
:f: h(z:js) [fo et h(tin)de] de.

By the Mellin inversion integral [37],

* - . 1 erio h* (s4-2314,)
i . — B zr
[l higar= o [0 edz

where real line z=c is chosen in such a way that all singularities liec on the

left of line z=-c.

CHico

Fig. 1. Evaluation of Integral

Hence,
(®) Wit =gy [ WGzt ] b ede] S
_ 1 eHE . X( _oud dz
_—Zn—ife-fm (s +23i) B (= 23 z .
If we define lim 2*(s;7,7) =H (itpjts)
™0

() H@uju) = [

27t

:fo h(t;z',,,)ft h(zije)de dt

c+io . .
R*(z5ie) ¥ (— 25 —dzi

€ -
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With the above preliminaries, we will formulate various square duel models

listed in Table 1,

III, SQUARE DUEL-1:(S,S)

In the “fundamental” duel of Williams and Ancker [6], the probability
h(t;4;)dt that duelist 4; kills a passive target during time interval [Z, f-4dt]

and its Laplace transform A*(s;A4;) can be expressed as

. - n- (n) (4. YN . pA-'f*(S;Ai)
(53) h(t; 4) dl:nZ=1 Daga”t (8 4;) and A*(s;4) = T— g f* (5 4)

respectively where p,,4-¢,=1 and f™ (¢;4,) is the n-fold convolution of f(%;
A;). Similar expressions can be obtained fer B;.
Then, with assumptions (i)-(iv), (v-S) and (vi-§), a standby square duel

model with hetercgeneous duelists can be formulated as follows,
©) P(T:85,9)= [ (45,50 +4(tT,5,1)7 de
where
£(:5,8,0) = (h (A1, B1) 3k h(41,B2)) (1),
p(8:8,8,1) = (h(A, By) % h (4, By) %k (4, B,)) (1) +
(h (41, B,) kh( 4y, By) k(45 By)) (1)

and sk indicates a convolution,

Taking Laplace transform on both sides of equation (6), we have

(7) P*(s;5,5) :sL (h* (51, By) -B* (s; 4, B,) +h* (s: 4y, By)
(53 AL B R (3 By +h* (53 4, B)
“h* (53 4, By) «h* (53 4, By))
where h*(s;i,,,j:,) is given by equation (3),
The inversion of equation (7) is generally not an easy task. Accordingly
one may use numerical inversion techniques of Dubner and Abate [4] to com-

pute P(T;S,S) from P*(s;8,S).
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From the final value theorem in the Laplace transform theory, that is,
(8) lim s.&*(s) =lim £(T),
50 T
‘the probability P(S,S) can be obtained as
(9) P(S,8)=lim s:P*(5;S,S)
570
= H(Zl’Bl) ¢ H(Z—I;Bz) "I_H(Zl;Bl) 'H(Al)FZ)
« H(4,By) +H(Ay,By) - H(A3By) - H(AyBy)
where H(7:,j:,) is given by equation (4),
The probability P(T;S,8) of a draw is given by
(10) P(T;S,S):fT{p(t;ES,O) +p(135,8,1) +p(;5,5,0) +p(; S, S, 1)} dt

Example-1

Let f(¢;4) =rye ™ and f(¢;B;)=rz.e78}! for i,j=1, 2 respectively., We note
‘that r,, and r,, are the average rates of fire for 4; and B;.
If we take Laplace transform on these and substitute them into equation (5)

we have

*(5: A) = r4;pa, * — i
(1) h*(s;45) b and A*(s;B)) = ﬁ——aH*mj)A,

From equations (3), (7) and (11), we obtain

(12) P*(s;85,9) 2%{<S+Z+x>[<s+5ﬂ>+(s+5+y><s+;+y>]+

<s+;+x><s+:+x><x+z+y>]

where u=r, pa,, v=r4,ps,, X=rsps, and y=rz po,.

From Heaviside expansion thecrem [3], we have

clal)l=5n6s)

and

09 e (2 =B e ) o)

where £ indicates Laplace transform.
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Then, P*(s;5,S) is inverted to yield
(14) P(T;ES):C'O_’_Cle—(u+x)T+Cze—(u+y)T+Cs€-(v+x)T+C4e—(v+y)1‘
where
s u u ¥ x v v
Co= G G TG G G T ) G G5

c,= u(u—o)u(u+x—ov—y) —oy]—ov2x(x—y)
(u+x) (w—0) @+x—v—p) (x—y)

H

u?(u—0) —uwy
R R )Y (e T Frous
C,= v%x
+x) (u—v) (x—2) ,
C olwp(x—y) +or(u—0)]
YT o) Fr—o—3) w=o) (y—x) .
Henece,

(15) P(S,8)=C,
which can also be obtained from equations (8) and (12).

For the case of homogeneous standby duelists, ie., 7, p, =7, ps,=u and
7,05, =7p, 5, =%, equation (15) reduces to

P(S.8)=(- )+(qu ()2

x U4-x

IV. SQUARE DUEL-2:(C,C)

We first define h(¢;24c) dt as the probability that both duelists of Blue

with strategy (C) kills a passive opponent in time interval [¢, £4-df]. Then,
h(¢;24c) and its Laplace transform are

h(t;240)dt=3, (1—q.2)q.2f™ (15 4) and
(16)

(51240 = Cte )0 (0D

respectively. For Red side A(#;2Bc) and h*(s;2Bc) are similarly defined.
With assumptions (i)-(iv) and (v-C)-(vi-C), we find
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(17) P(T;&C):f’{p(z;é,c,O) +5(4;C,C, 1)} dt

where

# (#;C,C,0) = (h(24c, 2B.) 5k k (24., B)) (2)
- #(:G,C, 1) = (h(24c,2Bc) %k h(24c,B) % h(4,B)) (1) +
(h (24¢,2B<) %h(A,2Bc) %k (A, B)) (2).
Hence,

(18) P*(5C,C) = (* (52, 2B) - [ (h* (5 272, B) +h* (5; 24c, B
y=—

h*(s;4,B))+h* (5;24c,2B.) +h* (s;4,2B)  -h*(s; 4, B)},
and then, from equation (8), we have
(19) P(C,C)=H(24c,2B<)+ {(H(24c,B) + H(2Ac,B)-H(4,B))
+H (24¢,2Bc)y« H(A4,2Bc)- H(4,B).

Example-2
As in Example-1, interfiring times are assumed to be negative exponential,

“Then, from equation (16), we have

.r. _ ra(l—gs?) . __r(1—¢?)
(20) * (s,2Ac)-s—+rmz)4 and h*(s;2Bc) (=g,

Substituting equations (11) and (20) into equations (18)-(19), we can ob-
tain P(T;C,C) expressed as equation (14) with «,0,x and y replaced by r.(1

—q4%), raps, r5(1—g,s%) and rsps respectively, and then P(C,C) can be rewritt-

€n as

@D PEO =g s e e )+

() (it N+ =)

<mp4 —i—rZA(IﬁA—— g:2) > < npﬁf;apg )
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V. SQUARE DUEL-3:(C,S)

By following similar procedures as in section ][ and N, the winniing proba-
bility of Blue side with strategy (C) against Red with strategy (S) can be ob-

tained as follows:
(22) P(T;E,S):f: (5(t:C,8,0) +P(4;C,8,1)) dt
where #(2;C,S,0) = (h(24c,B;) kh(24c,By)) (1),
and  p(t;C,S,1) = (h(245,By) 5kh (245,B,) sk h (4,By)) (1) +
(h(24¢,By) %k h(A4,B,) %h(4,B,)) (1).
Hence,
(23) P* (s;C—,S):%— {h* (s;245,B,) - h* (53 24c, B,) +1h* (5324, By). h*(s;24c,By)y
ok * (s A,B,) +h*(5:245B). h*(s; 4,B,) -h* (s34, B,)})

and
(24) P(C,S)=H(24:,B,) - (H(24c,By) + H(24¢,B,) - H(A,By)} +
H (24¢,B,) - H(&,B,) - H(4,By).
For Blue side, we have

(25) P*(s;C,8) = (L) (h* (5245, B,) +h * (s34, B) +h* (53240, By)

h*(s;A,B)) +h*(s; 4,B,) +h*(s;24c,By)
h* (55240, By) +h* (53 4,By)},
and
(26) P(C,S)= H(24:,B) (H(4,B))+H(4B)-H(4,B,)}
+H(24.,B) - H(24:,By) - H(4,By).
Example-3

Let interfiring times be negative exponential as in Examples 1 and 2,

Putting equations (11) and (20) into equations (23)-(26), P*(s;C,8) and
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P(T;C,S) can be expressed as equations (12) and (14) where ra(l—g4®) ,74pss
repe, and rs.ps, are substituted for u,0,x and » respectively, and then P(C‘: S)

can be rewritten as

@ PCS) = (25 ) G )

b ) (ki s w)

( “Parff;s.ﬁa, )( “P:iib;ez!’s, >

Similarly, for Red side, we obtain

(28) P(C’g):< r,ﬁ(l—r;‘,ﬁj#rmpm )K mp::l;:ps. >+< rAP:f:e:Pex )

(et H S ) =)

and it can be easily shown that P(C‘,S) +P(C,5—'—):1,

In particular, if Red’s duelists are homogeneous and ri=rs, equations (27)

and (28) reduce to

N 522002 ) ((2—2) (2atba) +15)
PC9=(5l5m R Ve s e L R

and

<y P 2 pa?{pa2(4—3pa) +2paps(1—pa) — ps’)
PC.5) “2( pa(2—pa) +ps ) + (paQ2—pa) +1s}% (patps)?

Then, the difference of the above two probabilities, i.e., the relative ad-

vantage of strategy (C) against strategy (§), is given by

(29) D(C,$)=P(C,8)—P(C,S)
[(patps) ((pa(2—pD)?) (patps) —ps* (pa(2—pa) +£5)}
+ (pa—ps) paps{(2—p2) (2pa+pe) +p:} 1/
[{pa@—pa) +p2} 2 (patpo)?]
The above equations P(C,S), P(C,S) and D(C,S) when p,=p,=p are de-
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picted in Fig. 2, which reveals that D(C,S)—15 as p—0 and D(C,8)—0 as
p—1, ie., concentrated strategy is always more advantageous than standby
strategy and the advantage becomes more pronounced for lower values of kill

(hit) probabilities.

pr rAler , pA-pB-p
0.7 }+
P(I, ¢C
0.6 ¢ ...‘/,.o
0.5 _M.-;..—-::.;.—
———
-.§‘

0.6 P - §_°~.’~

0.3

1 " I A A 8 L

0.r 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0,9 1.0
p

Fig. 2. Comparison of Concentrated Strategy azainst Standby Strategy
VI, SQUARE DUEL-4: (I,I)

This duel is similar to the second square duel of Ancker and Williams [2],
except that it employs continuous interfiring times whereas their duel assumes
fixed time intervals,

Let kill density functions 2(¢;24,(2)), h(¢;24:(1))and h(¢;24;) be defined
as follows:

h(t;24:(2)) di: The probability that both duelists of blue with strategy (I)

kill both opponents in [#,7+d¢].

h(t;24:(1))dt: The probability that one of the Blue duelists kills one of the

Red duelists in [¢, £4-dt].

4(t;24;)dt: The probability that Blue with strategy (I) kills at least one of

the opponents in [¢, ¢t-+dt].
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Then, h(¢;24:(2)) and h(t;24:(1)) and their Laplace transforms are given
by

h(t;24:(2)) :gl pa2(qa2)m 1 f ™ (¢; A),

(30)
h(t,2A1(l)):’§1 2 pAQA(QAZ)"-lf(") (t;A),

1) h*(s;2A1(2)):-1—1_“—;{% and *(s;24:(1)) = fl_’_‘é{}‘faf)

where
h(t;240) =h(;24:(2)) +Rh(£;24:(1)), B*(s;241) =h*(s;24:1(2)) +h*(s524:(1))
and h(¢;24:)=h(t;24c).

For Red side, h(¢;2B:(2)), h(¢;2B:(1)), h(¢;2B1),h*(s;2B,(2)), kr*(s;2B:(1))
and A*(s;2B)) can be similarly defined.

With assumptions (i)-(iv) and (v-I)-(vi-I), we obtain

(32) P(T;7,I):f: (p(6:T, 1,0y +p (5T L 1)} de

where p(t;T,1,0)= h(¢;24:(2), 2B1) + (h(24:(1), 2B1) %h(241,B)) (¢)
and  p(t;L11) = (h(2A:(1), 2B:) %h(2,,B) %h(4,B)) (1)
+ (h(24,2B:(1)) %kh(4,2B:) 5k h(4,B)) (t).

Hence,

(33) P*(s;TI) =1 (h*(53274,(2), 2Br) +h* (53 24:(1), 2B«

(h*(s; 241, B) +h* (5,241, B) + h* (s;4,B)]
+h* (53245, 2B1 (1)) -h* (s; 4,2B1) «h* (s;4,B)},
and .
(34) P(I,1)=H(24:(2),2B) +H(2A4,(1), 2B,y {H(24,B)
+H (241,B)-H(A,B)} +H (24:,2B,(1)) - H(4,2B:) “H(A4,B).
FExample-4
As in Example-3, interfiring times are assumed to be negative exponential.

Then, by equation (31), we have
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(35) 7 (53 24:(2)) = ’(f o B (s 24(0) = s+i’gf”_“’;dz) and

h*(s524;) =h*(s;240)

where 4*(s;24.) is given in equation (20),

With equations (32)-(35) and the procedures leading to equations (14)-(15)
and setting u=rs(1—g.2), v=rap,, x=rs(1—qs?), y=rsps and z=2rsprqe, We
obtain

(36) P(T3LT)=Cy+Cpem 0T Cop whPT 4 Com 0T L (0 049
where Co= L2+ (y—u)pa] | 2°[2yq:(o+2) +2(u+)]

(utx) (u+) (utx) (u4-9) @+y) (0 +x)
_ 0[2u—pautx—y)] 22(2yg4(u—0) +2(x—p)]
' (u+x) (x—3) (utx) (w—=0) u+x—ov—y)(y—x) ,

_ 2vqalu(u—v) —ovy] ,
) =) (=),

vZ
R CEEY ity Yo

C.— V(2994 (x =) +-2(u—2)]
Ym0 et —o—3) (3—%) .

Blue’s winning probability P(Z,I)=C, without time limitation can also be

obtained from equations (8), (33) and (35), and rewritten as
37y P T,I _ rapa® ; 2rapaqa
( ) ( ) ( TA(I—qu) —f—?‘g(l—gaz) >+< TA(I—QAZ) +Ts(1—gaz) )
TA(I—-qu) TBI)B TAﬁA
{( ra(l—ga?) +rsps >+< ra(l—ga®) +raps >< Tapa—+reps >}

+< n(l—gﬁ)r:liiqgs(l—qaz) )( rApA—+—::f;—q.,2) )( npﬁf:epg >.

VII, SQUARE DUEL-5: (I,C)

This duel is similar to the first square duel of Ancker and Williams [27,
except that it employs continuous random interfiring times whereas they use
fixed intervals between firings.

With arguments similar to sections [y and V[ and using assumptions in sec-
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tion I, the winning probabilities of both sides are cbtained as follews.

For Blue side with strategy (I) against Red with strategy (C), we have
(38) P(T;T,C):fr{p(t;f,C,O) (6 TC, 1) de
whersz
p(t;I—,C’,O):h(t;ZZI(Z),2B:)+(h(2/—17(1),2Bc)*k(2ff,B))(t)
and
»(t;5,C,1) = (h(27A: (1), 2B<) k(241 B) %h(4,B)) (1)
1 (h(24:, 2B:) %h(4,2Bc) kh(4, B))(®).
Hence,
(39) P*(s;I_,C):%— {h* (s:24,(2), 2Bc) +h*(5524,(1),2B¢) -
Ch* (5324, B) +h* (s; 241, B) «h*(s; 4,B) ]
LB (53245,2B0) k¥ (53 4,2B) k¥ (s34, B)},
and
(40) P(1,C) = H (24:(2), 2Bc) + H(24:(1), 2Bc) - {(H(24:,B)
+H(24:, By- H(4,B)} +-H(24:,2Bc) - H(4,2Bc) - H(A,B).
TFor Red side,
(41) P* (5 L,C) =L (h* (5324, 2Bc) « h* (3 4,2B0) + 1 (53 4,2B2) -

h*(s-,A,E)H/z*(s;zE(l),2Bc)-h*(s;2A,,E) J*(s34,B)Y

and

(42) P(I,C)= H(24,2B.) - (H(4,2Bc) + H(4,2Bc)-H(4,B))

+ H(2A:(1), 2Bc) -H(24:,B) - H(4,B).

Example-5

Let interfiring times be negative exponential. Then, we can obtain P(T;I,
C) expressed as equation (36) with #,0,%,y and z replaced by ra(l—qa?),rapa,
rs(1—q.%),rsps and rs(1—g:?) respectively.

Then. P(I,C) can be written as

43 — — TApAZ ”M‘_qf—’—
(43) P(L,E) <r4(1-qA2)+rs(1—qbz))+< ra(1—ga?) +ra(1—g+%) >
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[( r,q(lr:(;;)q-f))’sps )+< m(l—f;ﬁl)’ —}-rspa)( np:ﬁlpg )]

+ < ra(l —r;,,(zl)?}-qriz()l —qs?) ) ( Tapa —{—::ff—qu) ) ( n‘bZA—{;spa )

For Red side, we have

(4 P (1,5):< m(1—r;,,(21)1griz()1_452) > [< np:fb(rlazlq—s—z;az) )

+< np,,—{-;:la—qsz) )< n/urff:aps )]*(u(l—qiggﬁfr:(l—gﬁ)>

( reps >< repe )
ra(l—qi2) +rsps rapatreps /,

To show the superiority of individually seperated strategy (/) against conc-
entrated strategy (C), three measures D:(1/C), D;(1/C) and D(1,C) are def-
ined as

(45) D.(I/Cy=P(I,C)—-P(C,C),

(46) D:(1/C)=P(L,I)-P(C,D),
and

(47) D(1,C)=P(I,C)—P(I,C)
respectively. Then, from equations (21), (37) and (43)-(46), we obtain

De(1/C) =< rA(l-q:;}pfn(l—qﬁ) >< rA(l—qrj%a+rspe )<77Arf7>20

and D:(I/C)=D:(I/C) which show that strategy (I) is always better than stra-

tegy (C) no matter which of (C) and (I) the opponent side uses.
If ra=r,, pa=ps=p, equations (43)~(44) and (47) reduce to

o 242—9p412 ~ 22— 11p1 12
PTCy=_"2 T2 p,O) =
CO=3e=pa g TEO=30 565,

_ b4
PO = ep

‘which are plotted in Fig. 3, It shows that D(1,C) increases to vifaspin-

<Creases to 1 but decreases to zero as ?» goes to zero.
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P,
Fig. 3. Seperated Strategy Compared with Concentrated Strategy

VIII, SQUARE DUEL-6: (R, R)

This is the case when both sides are allowed to select initial firing strategy
among strategies (I) and (C) at random. Thus, Blue and Red are engaged in
one of the four types of square duels, (C,C), (C,I), (I,C) and (L) with
equal probability.

Hence Blue’s winning probability P(T;R,R) with strategy (R) and limited

time 7 can be expressed as
(48) P(T;E,R)_—__ZIT{P(T;C—,C)+P(T;C’,I)+P(T;ITC)+P(T;ITI)}
where  all probabilities inside the bracket may be obtained from equations

(17), (32) anl (38).

Then, the Laplace transform of equation (48) becomes

(49) P* (s;F,R):(§1;> {h*(s; 2:(2), 2Be) 4 Ch* (53 242, 2Bc)

k¥ (53 2A:(1), 2Bc) ]+ [h* (s524c, B) +h* (5 24c, B)
h* (s A,B)]+[A*(s524c,2Bc) +h*(s324¢,2B:(1))]

h*(ss A,2B) ok (s;/T,B)}
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and
(50) P(R,R)= ‘éf {(H (24:(2),2Bc) + [H (24c, Be) + H(24: (1), 2Bc) ]

[H(24c,B) + H (24c,B) - H(4,B) 1+ [H(24., 2B.)
+H (24c,2B:(1))] - H(4,,2Bc) - H(4,B)}.
In particular, if pa is sufficiently small such that .2 is negligible, 7*(s;4),
h*(s;24c), h*(5;24:(2)) and h*(s;24:(1)) in equations (5), (16) and (31) can
be written as

B (s dy=—PT A oy m (o) = 2P (534

I—q.f*(s;4), T I=(1=2p) (53 ),

(51) h*(s,2A1(2))=O, }Z*(s,ZAI(I)): 1_(?@‘5;[4()&}:1()3’14),

and thus

(32) A*(s;24:) =1*(s5524) =h*(s;24:(1)).

Then, Blue’s winning probabilities in equations (19), (34) and (40) all red-
use to

(53) P(Blue)=H(24:,2Bc) -[H (24, B) 4+ H(24c,B) « H(A,B)]

+H(24,2Bc)y - H (4,2B,) - H(4, B)

where P{Blue) is the prcbability that Blue wins when duel time is unlimited
and p, and ps have small values. We note that equation(53) implies that

strategy (I) has ro advantage over strategy (C).

Example-6,
Let interfiring times be negative exponential. Then, by substituting equat-
ions (11), (20) and (35) into equations (49)-(59), we cbtain

B oy 1 ripa’ ra(l—gq.%) )
P*(s;RR)=— — N\
(s ) 2s {(H—m(l—qﬁ) +r3(1—qaz)>+[<s+n(l—q,az) 4r:(1—q.%)

+ (s—}—m (1 —ZAZA?A—?M(I —gf))} ) [( s—{—rAZAI(—I—;Z;Z—)H;ps >

+< sff-rA(l-r?;jZ) +712p3 >< s—}—r,;;f:fl—reﬁa )]

+ [( ra(l —;gj ;f?l —4.%) ) +< s+ra(l _2;1;)q+r(1 —q.%) >]
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( s+rApA-+7:ArfA(l—qb2) )( s+n§f—?—rﬂpa )},

and

G4 P(R, R):%K n(l-—qaz)rii{):za(l—q;z) >+[< ra(lﬁ;jz)-—q;:s)(l—gnz) )
+< rA(l—qAE;AiAriA(l—qaz) )j[( fA({f-—(;A—Z-)q—f?)’zpa )
T (m (1 —qrjgss—l—repz;) ( np:i}l?rspa >] + [(m(l —;fz()lgrib(zg— q52)>

+< 2r8psqs )]( Tapa >< Tapa >
ra(l—qa%) +rs (1—gqs%) ) \rapatrs(L—qs®)/\ rapatreps /-
When ps and p; have small values, equations (51)-(52) becomes

rapa * (e 9A0) =h* (52 _fzfA/)A
ey and A*(s;24c) =01*(s;24;) = S

h* (s; A) =

Using these in equation (53), we obtain

(53 P(Blue):( 2“‘[5:%‘7’5‘113 >{< 274192Arf:6173 >+< 2“?:[‘?7’3175 )

<7EALf:eps >}+< 2np2;f§rsps )( np:fgrrps >< raj::ﬁrej)a )

which coincides with the results of equations(21), (37), (43) and (54) when
1—q4a2=2p4, 1—qs2=2p5, pa®=0 and ps2=0,

IX, CONCLUSIONS

This paper presents general solutions for stochastic square duels with conti-
nuous interfiring times and various firing strategies such as standby (§), conc-

entrated (C), seperated (I) and random (R) firings,

Analyses of these square duels with negative exponential interfiring times
and equivalent values of rates of fire and single shot kill prcbabilities reveal

three important facts:
i) Strategy (C) is advantageous against the opponent’s strategy (§) and the

advantage becomes more pronounced for lower values of single shot kill prob-

abilities.
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ii) Strategy (I) is always better than strategy (C) no matter which of (8)
and (I) the opponent uses and its relative advantage increases to a quarter as.
single shot kill probabilities increase to one but decreases to zero as they go to
zero.

iif) However, strategy (I) has no advantage over strategy (C) for small
values of single shot kill probabilities.

In this paper, square duels with strategies (C) and (I) are based on the
~assumptions that duelists are homogeneous and both duelists of one side fire

simultaneously, The problem of relaxing these assumptions and extension of

square (2X2) duels to more general (mxn) duels are now being investigated.
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