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ABSTRACT
Let X,,..., X. be a random sample from a distribution with cumulants K;, Kj,....
The statistic t:in(_)é—_@ has the well-known ‘student’ distribution with y=n—1

degrees of freedom if th2 X are normally distributed (i.e., K:=0 for i>3). An Edgeworth
series expansion for the distribution of ¢ when the X; are not normally distributed is obtained.

The form of this expansion is Prob (¢<z)=Prob (°<z)+f(x)2P.(x)/ v’:‘where-
# is studant’s £, P:(x) is a polynomial of dagree 3i—1 whose coefficients are functions
of the first ;+2 cumulants, and f(z)=exp (—z%/2)/ +27.

The Edgeworth series is inverted to yield the Cornish-Fisher expansion #,==13+2Q:(x)/ ¢7;:

where t,,t3, anl x=x, are tha 100p parcaatile points of thz non-normal ¢, “student’s” ¢
and the unit mormal, respactively, and @:(z) is a polynomial of degree i+1 in x whose
coefficients are functions of the first i+2 cumulants.

Comparison between the values obtained by the computer simulation and by the

approximate formula shows good agreement on each of the 100p percentile points.

1. Introduction

Let X, X,,..., X, be a random sample from a distribution with cumulants
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K, K, .... The statistic t:“/_”()#l)_ has the well-known ‘student’ distrib-

ution with y=n—1 degrees of freedom if the X; are normally distributed (ice.,
£;=0 for i> 3),

However, in a variety of cases, it is necessary to test for the mean of a
population which does not come from normal distribution and X and S are no
longer independent.

The effect of non-ncrmality on ¢ for some small sample sizes has been disc-
ussed by a number of writers but the results do not have much practical value
due to the small sample numbers [7]8],

So of most general interest are the results for Edgeworth series because it
indicates the variation from the student ¢ distribution that one might expect to
be asscciated with given non-normal values.

Gayen [4], starting with the first four terms of a Gram-Charlier series ex-
pansion of the probability density function of the population, thereby ignoring
population cumulants of order greater than four, tabulated the approximate
‘correction it is necessary to apply to ¢ (up to 24 degrees of freedom) for non-
zero values of the third and foruth order cumulants. Tiku [107 using Hermite
and Laguerre polynomials has obtained the distribution of ¢ in terms of popul-
ation cumulants up to the eigth order.

With an Edgeworth series expansion for the non-normal distribution and inv-
ersion of the series to yield the Cornish Fisher expansion, this paper presents an
approach to find the cumulative distribution function and the value of 100p

percentile point of the non-normal ¢

2, The Edgeworth Series Approximation

Let X and Y be two independent random variables with distribution function
F(x) and G(»).
We consider “Charlier’s Differential Form?”

F(u) =exp[ X (K;— K*) (—D)?/j1]G () .1
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where the sequence K; and K;* are the cumulants of X and Y, respectively

and D is the differential operator D=d/du. To simplify the notation let

Aj=K;— K 2.2y
Then Charlier’s differential form becomes

F(u) =exp(Z4j (—D)?/j1 ]G () (2.3)
To put this in more managerable form, we expand the differential as

exp[ZAj (—D)/j11G(w) =2 ui(—D)i/j! 2.4

where y; and 2; have the recursive relationship (117,

Charlier’s differential form may be expanded as

F()=G@)+X i (—D)i/51G () 2. 5)
If G(u) has a density function
g() = 5,0 .6
then
F)=G () = Tptina (= D)7/ G+ D1 @) 2.7

In many cases of interest, Y is a standard normal variable and the derivat-
ive of g(u) may be expressed as Hermite polynomials.
The Hermite polynomials may be defined as
gy H;(u)=(—D)’g(w) (2.8)

and hence

F)=Gw—g@ X .ﬁ%{; H;_,(x)

The Gram-Charlicr approximation is obtained by turncating, e.g.,

F)y=F,)=CG{u) —g@) % _5'1'!]* H; (2.9
PR

In many applications, the cumulants of X depends on an auxiliary parameter
A and the expansion of F({x) is regrouped as an asymptotic series in power
of A

This is the so called Edgeworth series.

So the distribution function is of the form



F(Z)=G(Z)—A4(Z)e(2) (2.10)
where A(Z) = %Pi(Z) /A

and P;(Z) is a polynomial in Z.

A computer program using Algebraic Manipulation Package (12] is establi-
shed to calculate the Edgeworth series approximation of non-normal t in terms
of the population cumulants and the sample size N up to (1/N)**2 accuracy.

The input of the program are the first six cumulants of the non-normal t
and the cumulants of the standard normal variable [5), The output of the

program has 57 terms and we have
4 i
Prob (< Z)=Prob (t°<Z)+g(2) ;lP,-(Z)/( VN)

where 1 is student’s ¢, P;(Z) is a polynomial of degree 3i—1 whose coeffici-
-ents are functions of the first ;+2 cumulants.

The result is consistent with the approximation of the distribution function
of student’s ¢ given by Fisher.

So we conclude that the distribution function of non-normal ¢ is equal to that
©of the normal ¢ plus adjustment factor.

These factors are tabulated at table 2.1

1
6 YN

For instance, the first adjustment factor is described as

(222K, +ZKy)
3. Inverse Transformation from Edgeworth Series

Let X=X, be the 100p percentile of the standard normal distribution G(x),

and let Z=Z, be the corresponding percentile point of a second distribution
F(2). Then

F(2)=G(x) =G (2+ (x—2)) G.1)
By Taylor’s theorem

F(2) =G (2) —¢(2) B(2,%) (3.2)
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Table (2.1) Coefficients for the Edgeworth Expansion of the Distribution

Function of the Non-normal ¢

ADJUST DIVIS PRODUCT COEFFICIENTS OF
MENT OR  OF

FACTOR K:; Ki Ko K KiK. Ki Ks K:Ks Ki K,K: Kj
I 6V YA 2
1
VA -2
il 36n Z: —4 3
Z 6 —9
VA 40
. VA 540 —180 140
I 6480 v Z+ —1890 —324 1350 —1050
VA —1296 4050 —2625
1 —162 675 —525
Zi —20
VA —540 180 —100
1 38880 n? VA 4320 2 810 648 —135 —2160 1800
Zs 3240 —7290 —864 5184 2835 —16200 9000
VA 17010 —3240 2160 —4455 6430 —900
V/ 8100 12150 —19440 6480 ~14985 46980 —18900

where B(z,x) :Z}l (z—x)H;_, (2) /7!

and H;_,(2) is Hermite polynomial.
If F(z) has an expansion of the type (2.10), then we may solve for x and z
by equating (2,10) and (3.2), That is

3 Py =E =) Hiss ()1 3.3)
where y=1/2

Giving (z—x) in powers of y

z2—x=0,(2) +a,(R)y+ a2y +..., G.49

where ¢; is polynomial of z.
“To find z in terms of x, (3.4) is rearranged

z2—x=bo(») +b (Nz+b(N2E+,..., (3.5)
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A
=
&

where &; is polynomial of .
From (3,5)
5480(7) = (1=5.(3)) 2= b, () 22— by (9) 25—, . . . (3. 6)
The next step is to invert (3.6) to express z in power of (x+4%0) and then
the percentile point of x in terms of the percentile point of a normal popula-
tion is obtained.
Our computer program established to carry out the above procedure gives

42 terms with the following form.
=134+ 3Q:(*)/ ¥ (3.7)
where £, #; and x=x, are the 100p percentile point of the non-normal ¢,

student’s ¢ and the unit normal respectively and y=~N—1,

20:(x)/ J;t can be treated as the adjustment factors due to the sam pling

from non-normal population and Q:(x) is a polynomial of degree i+1 in x

whose coefficients are functions of the first {42 cumulants.

The six terms among the result corresponding to ¢; are in agreement with
the expansion of ¢ given by Fisher and Cornish [3] while the remaining 36
terms represent the four adjustment factors.

These factors are shown at table (3, 1),

Table (3.1) Coefficients for the Cerrish-Fisker Expansion of the Percentile
Points of the Non-normal ¢ Distribticn

ADJUST ™ DIVI PRODU COEFFICIENTS OF
VIEN .
FACTOR SOR CTOF g o o k. KK, K K, KX, K: KK: K

I 6vy Xz -2

1 —1
I 72v X3 —6 20
) X 18 -5
I 6480 +'» X¢ 324 —1110
X2 —1080 1296 —5130 2675
1 270 162 —945 653
IV 1555202 xs 3240 —19440 3458 —24624 —4269 34560 3600
X3 —38880 —17520 —&640 —27216 144180 —827390

X —68040 —21069 —25920 65448 69660 —151200 45055




Hwang: Edgeworth and Cornish-Fisher Expansion 9

4. Discussion

Comparison between the values obtained by the computer simulation and by
the approximation formula for each percentile point on two distribution, recta-
ngular distribution and reduced log-weibull distribution is carried out to check
how good our estimate is.

For each non-normal population and for each sample size, 999 values of the
simulated ¢ are obtained and then these ¢ are rearranged in the increasing order.
The 100p percentile point of ¢ is defined as the (px 1000)th value in this or-
dered sample. The above simulation procedures are repeated 10 times and so we
have 10 simulated values for each of the 100p percentile point.

There is good agreement between the results from the approximation formula
(Eq. (3.7)) and the corresponding values from the simulation.

Each result from the approximation is in the range of three sigma limit
calculated from the mean and standard deviation of the 10 simulated values.

The absolute value of the difference between these two estimations becomes
smaller as the degrees of freedom increase as we expect.

The rectangular distribution generates , values much closer to the standard ¢
than the reduced log-wecibull which shows the remarkable cifference around
the tail area which we are mostly interested.

The negative kurtosis of a rectangular population does not give an effect on
¢ for the practical purpose if the sample size becomes around 16 while the
negative skewness of the reduced log-weibull causes an extreme effects to ¢
even with the sample size 31,

This skewness in the parent population cause ¢ to be skew in the opposite
sense decreasing it in the other side, so we can make false decision of declaring
the positive value of ¢ significant while there are not and negative values not

significant when they are [1],
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