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Optimal Shutdown Control of Nuclear Reactor:
A Numerical Solution
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Abstract

The problem of optimal shutdown control of nuclear reactor rving nonlinear dynamics

is considered. Since the problem, being a bounded state space problem, is difficult to solve

by conventional analytic methods such as Pontryagin’s maximum principle, it is approached

directly by the quasilinearization technique,

and solved numerically. The solution obtai-

ned in this manner proves to be an improvement over the previous results.

1. INTRODUCTION

In a typical power nuclear reactor, it is required
to maintain the neutron population at some

constant level for its steady state operation.
During the operation, however, fission fragments
such as Xenon-135 and Samarium-149 and their
decay products are produced, which absorb neut-
rons, and adversely affect the equilibrium of
neutron concentration in the reactor. These fission
products are often called “poison”. If the reactor
is abruptly shut down, an extremely large amount
of poison accumulates in the reactor, and makes
it impossible to restart the reactor. This inability
of restarting after shutdown, which may last 2
days or more for a typical reactor, is not toler-
able in many situations, and it is desirable to
make by some means as short as possible the
duration during which the reactor cannot restart.

For this, it has been suggested in [3) (4] (5] and
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(6] that the reactor should be shut down,
abruptly, but,

not-
according to a given shutdown.
program so that the poison build-up thereafter be-
effectively controlled.

The process of poison build-up and its control
can be approximately modelled by a second-order-
For the

problem of controlling the process while minimi-

nonlinear differential equation [1) (2].

zing the maximum poison concentration after-
shutdown, Rosztoczry and Weaver in (5] applied
Pontryagin’s maximum principle and reduced the
optimal control problem to a nonlinear two point
problem. But the difficulties
involved for an analytic solution were so severe
that the authors suggested a subotimal controllers

boundary value

of bang-bang type such as one-pulse or two-pulse
controllers. In (3], Ash employed the method of
dynamic programming to obtain a digital computer
algorithm as an optimal shutdown program. This.
result, however, was obtained under the assum--
ption that the controller can take only zero' or-
its maximum value. As a consequence, when the-
state is on the boundary of a Xenon override--
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constraint, the controller needs to be of a multi-
pulse type and does not allow the state to stay
on the boundary.

In this paper, the quasilinearization technique is
employed in reformulating the problem as a ma-
and then the
problem is solved using gradient projection method.

thematical programming problem,

The result obtained in this manner shows that
the optimal control policy is different from that
of (3],

less.

not of bang-bang type and the cost is

II. Problem Statement

Since, among others, Xe-135 has a relatively
large cross-section for thermal neutron absorption,
the effect of Xe-135 only is usually accounted as
a poison in the mathematical model.

Let [0, T} be a given time interval for the
shutdown operation. The process of poison build
up during the period of (0,T] is given by the
balance equation ((1),13], (43(5))

XD - 1 X (D= oxp(DXWD+LID
+rxZ 90
d—{d(tQ“=—m(t)+rr2f¢@ D

where ¢(#) is the thermal neutron flux, X, is the

macroscopic fission crosssection and, X(¢) and ¥

(#) are xenon and iodine concentration at t. Others:

are parameters of nuclear reactor.
For simplicity, the model Eq.(1) may be given
in a normalized dimensionless form as in the

following;

d_x(i_)__ =—(w+rat(IDDx()+ goy () + gzt (1),

dy(t) _ -
T u(H—y(D w

where x and y indicate X/Xo, and I/l with X,
and I, denoting the equilibrium concentrations of
Xenon and lodine, # denotes the normalized ther-
mal neutron flux, and w, 7, go and g, are nonn-
egative constant parameters. It is well established
in (33 and [5) that the variables involved in the
proess must be constrained due to physical restri-
ctions. Specifically, it is required that 0<{#($)<1,
0<y(HOL] and 0<a(D<xe, 0Lt T, where x.>1
the amount of

is a constant determined by

positive reactivity for partial xenon override. The
objective of control is to make as short as possible
the period during which the reactor cannot restart,
which justifies as the cost functional the following
expression:

x(T) T
5T p) @

where G,F and y are positive constants expressed

CaGN=G6 y(T)(1+F

in terms of w, 7, g, and g2 The expression C(zx)
in Eq. (2) actually denotes the peak value of
xenon concentration after the complete shutdown,
i. e., C(*))=max x(Ot>T where x(D,>T, is
the solution of (1) with #(£)=0.

Therefore the optimal control problem is to
w(1), 0<t<T with
0<#($<1 such that its response of (1) at the
initial state x(0)=1, y(0)=1 satisfies the constr-
aints 0<{x(#)<x. and 0<y(H<1 while minimizing
the cost furictional Clu(+)).

find a measurable control

III. Numerical Solution

Let N be a given positive integer and let A=
% » Then the equation (1) can be rewritten in
the discrete-time form as:

Xinn=xitAt{—Qwtroud xi+ goyi+gau:)

Yin=yi+Adt(ui—yi], i=0,1,..N—1, 6))
where x: and y; denote the normalized xenon and
iodine concentrations at the i-th time, respectively.
Applying the quasilinearization method to Eq.(3),

one obtains
xfii=[1—At(w+rou§)]xf“+Az‘goy{“+At(gz
-—raxf)ui-'”——dtrnxfuf
Y= A0y + 4 tult? @
where x¢ (or »?) is the xenon (or iodine) concen-
tration at the i-th time and at j-th iteration.
This system is solved using the specified initial

condition x(0)=y(0)=1 so that x{*' and yi*' are
given explicitly as some linear functions of #i*},
k=0, 1,---,i_1, i.e.,

J+l__ i+l J+l i+l i+l
Xy T=ag (.”o s BT e ui—l)

j i i+l j+l i+l ; —
y:“:,sg“(u:,*, wlt, .., uitl), i=1,2..N,
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Then the following mathematical programming

problem is solved at each iteration to give the

new optimal control zj*!:
Minimize Gﬁ;;“(ug“, u,;‘t{)
af,”( wit, o, wit)

i+1 i+l 1
By (uu ) eeer UGG

x[1+F

5
)
subject to

@ 0<uiLl, i=1,...N
id Ogaf”(ué”. u{i{)gxc, i=1,...,.N

GiD) 0B ( # wo wl) <1, =1 N
Optimum shutdown programs were computed for
the reactor having the following cases of const-
ants.
Case 1. ¢o=2x10" neutrons/cm?sec (Equilibrium
thermal neutron flux)
7:=0.003,7:=0. 056
A1=2.9x10"%sec™! 21.=2.1x10"%sec!
0x=3.5x107%cm?
Case 2. ¢o=1x10"neutrons/cm?sec
r==0.002, r1=0.061
Ar=2.9x10"%ec™! A.=2. 1210 %sec™?
0x=3,21x10"%cm?
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Fig. 1. Optimal Shutdown Programs

Fig. 1 shows the computed optimal shutdown
program for the above two easss.

Fig.2 indicates corresponding trajectories on the

Xe-] state space. Fig.3 shows the convergence of
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the cost. In the figures, ¥min denotesthe minimized
peak value of x while x is not on the boundary

Xe.
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Fig.: Cptirmal trajectories on the Xe-I state
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Fig. 3. Convergence' of the cost.

Observe that the numerical solutions obtained

are either single pulse trajectories or trajectories
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that follow the Xenon boundary. A single pulse
control occurs when the Xenon trajectory meets
at the end of the

limited

the override constraint xc
allowed control time Tand the strongly
Xenon override.

Fig. 4 shows the reduction in the Xenon peak
as a function of the control time parameter .,
while Xenon override constraint x. remains fixed.
Fig.5 shows the reduction in the Xenon peak as a
function of the Xenon override constraint Xe,
while the allowed control time T remains fixed.

Finally, the results obtained here are compared
- with the pulse type shutdown program previously
obtained in (4). The comparison for the norm-
alized values is given in the Table 1 and 2 below
for the parameters of Case 1. In the figures, x»
denote the normalized peak value of x after the

abrupt shutdown.
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Fig.6. Shutdown programs (pulse type)
and corresponding Xenon concentration
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Fig. 4. Reduction of the peak value of Xenon
with x. fixed.
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Fig.7. Shutdown programs (non pulse type)
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Table 1 : Pulse Control

xe/%5C%) Zuin/%5(%)
43. 50.
36. 61.
21. 71.

Table 2: Optimal control on the Xe boundary

Xo/%5(%) Zain/%5(%)

474 44.55
46.6 45.88
37.9 47.0
33.2 48.5
23.7 . 54.2
18.96 59.8

(Same parameters as Table 1D

These tables 1 and 2 are illustrated inFig.5. Fig.6
and Fig.7 show the difference between the pulse
type control (shutdown program) and our optimal

control for the strongly limited Xenon override,
IV. Concluding Remarks

The problem of optimally controlling Xenon
poison in the reactor has been presented. The
computational results show that the optimal shut-
down programs need not be bang-bang type for
the strongly limited Xenon override constraints,
and the fractional reduction in the Xenon poisoning
is greater than that of the pulse type in (3} This
is a definite improvement. Also, we can observe
that the amount of reduction in Xenon concentr-
ation depends on the given control duration and
the Xenon overide constraint. It is remarked that
other problems involving nuclear plant reactors

are discussed in a recent survey article in [12].
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