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Optimal Control of Delay-Differential System
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Abstract

The problem of optimally controlling a time-delay control system to a function as the final

target is inverstigated. Necessary conditions are presented in the form of Pontryagin’s maxi-

mum principle, and it is further shown that they are also sufficient for linear systems with

a convex cost functional. Several examples are given to illustrate the results.

1. INTRODUCTION

In many control systems, the controller action is
derived from the decision based on the delayed
state information. In these systems, controlled qu-
antities are often transmitted over a long distance
and hence the control action takes its effect after
some time. In a typical cold rolling mill where
steel plate is rolled down through several rollers,
for example, the main press roller and the thickness-
sensing gage are physically seperated by a consi-
derable distance. Since the roller speed is rather
slow, a time-dalay (spacing/speed) is introduced to
the controller-actuator regarding the information
on the steel plate thickness.

Time-delay in the state-information often causes
an undesirable system performance such as oscilla-
tion, lengthy settling time or even breakdown. The
time-delay effect can be found not only in the in-
dustrial processes but also in other engineering
systems such as rocket control systems, nuclear re-
actor control prbcesses, or in physiological and so-
cioeconomic systems. These time-delay systems are
mathematically modeled by delay differential equa
tions (15).

Control problems involving the time-delay syste-

ms have been investigated by many researchers

'to stay at that state thereafter.
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(see the references of [1J and (5)). Before 1970,
the problem was usually formulated in a fashion
similar to that of ordinary. differential system.
Thus the usual optimal control problem investiga-
ted was that of finding a controller which steers
the response of a time-delay system from a given
initial function to a final point (in a finite dimensi-
onal space) while minimizing a given cost functi-
onal. Note that, in systems without time delays,
once the target point is reached, it is usually possible
For example, once
the origin of the state space is reached in a linear
control system, the system can be kept at the origin
forever by applying a zero control function. Howe-
ver, when there is a time-delay in the system, rea-
ching‘ a final point at a given time does not guard-
ntes that the system can be kept at that state the-
reafter. It is in fact not very difficult to construct
an example which reveals the contrary result, 7.e.,
the system state reaches the origin but its speed is
nonzere due to the delay effect so that the system
can not stay at the origin for some time. In most
of the practical control systems, however, the obje-
ctive is to change the present system state to a new
state and to keep it in the new state. In rendezvous
of two or more controlled systems, the task is ca-
rried out in practice only when the rendezvous state
is maintained for somenonzerc duration. Therefore

the classical formulation in which the control sche-
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me is to steer the time delay system to a point in
R~ has been found to be practically inappropriate.

A more realistic approach for the control of time-
delay systems is to steer the response of the system
to a final function as the target. In order to regu-
late, for example, a time-delay system
(O =f(x(t), x(¢t—h), «() to an equilibrium state
in a finite time 7, it is sufficient and necessary to
drive the response to a final function x()=¥(
such that f(F (), T¢—hk), #(¢))=0on the non-zero
interval (7T~#4, TJ. From a system-theoretic point
of view. the state should be given as an z-vector
function for the class of time-delay systems. Various
examples and justification can be found in Refere-
nce (5].

In this paper, problems of optimally controlling
a system with delays both in state and control va-
riables are investigated. Necessary and sufficient
conditions are derived and several examples are
solved to illustrate the effectiveness of the result.

Throughout the paper, the norm of a vector & in
R’ (the j-dimensijonal Euclidean space) is denoted
by [4]. Column and row vectors are not distingui-
shed unless there is a possibility of confusion. For
a given matrix, B, the BT and B™! denote the tr;-
nspose and the inverse of B, respectively. Given a
compact interval 7 and a positive integer j, C/(J)
denotes the linear space of j-vector continuous fu-
nctions on I with sup norm topology, and Li.(/)
denotes the linear space of essentially bounded ;-
vecter functions on I with essential sup norm topo-
logy. z(+), or simply z in some cases, denotes the
function z(#) on an interval when it is regarded as
an element of a function space. I/, denotes the set
of points in 7 but not in 1. The partial derivatives
are denoted by subscripts, e.g.. f«(xo, y, #, v, )

=-aa7f (%, %, u, v, t){x;.xo

2. OPTIMAL CONTROL OF DELAY
SYSTEM TO FUNCTION-TARGET

‘When a time delay is involved in a control sy-
stem, it is more realistic to steer the system respo-
nse to a final function as a target rather than to
final point in R"-space. The problem of optimally

controlling a time-delay system to a final function
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has been studied by several investigators in refere-
nces (3,4,101. In (2) and (10) no magnitude cons-
traints were imposed on the control variable. In
(4] the necessary condition obtained was in an in-
tegral form of max}mum principle and the nontri-
viality of the adjoint solution was ﬁot guaranteed.

In this section, the control systems with delays
both in the state variable and in the control vari-
able are investigated. A necessary condition for
an optimal control is provided in the form of a po-
intwise maximum principle with a nontrivial adjo-
int solution. This result is applicable for the cases
where there are magnitude constraints on the co-
ntrol variables. It is further shown that this nece-
ssary condition is also sufficient for certain linear
systems with convex cost functionals. These results
are then extended to a more general target set in

function space.

2.1. Function-Target Problem

Consider a control system with a time delay

2O =f(x), xU—R), u(d), u(t—h), b,
where x is an n-vector state variable, # is an m-
vector control variable, and 0< 2 < co is the time
delay. The vector function f(x, y,%,2,t3=(f(x,
Pty Vs 8Dy [ 22y yytty 038y f "y ¥y2ts0,8)), and
its derivatives fo(x,y,%,058)5 f3(2s ¥s05058)s [fu
Cxs ysutyv,8) and  f.(x, v,u,0,¢) are continuous in
%, y,u#,v and £. The initial condition at ¢=/ is gi-
ven by x(£)=¢(tD on [fo—4h, to] and u(®=wo(t)
on [to—kh, te} where ¢(2) is a given continuous in-
itial function for the state and wo(¢f) is a given
measurable initial function for the control variable.
Let the control restraint set Q be given by Q=/{x
|[#=R™, gi(u)<0, i=1,2y-y7},

smooth scalar function for each ;.

where ¢'(x) is a

A control func-
tion #(#) on [fo, 1] is called admissible if it is
measurable, essentially bounded, and #(HESQ a.e.
on [to, £1].

The problem is t» find an admissible control #(#)
on a given interval [7o, £i] with 2,>>te+2% which
steers the corresponding system response from a
given initial function x()=¢() on [to—hk, f] to
a given smooth final function x()=¢(Hon [t,—4,

f:] while minimizing the cost functional
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C(u(-)):ft1 Y, xR, u(D), ull-,
t0
dt
Here, the scalar valued function £Cx, vyu, 510,

and the derivatives Fi'Cx, vyuty 058D, F.00x, vy 2ty 075 0),

Fu8(x yyuyv,8) and f.°(x, vyu,0,¢) are continuous

in x, yy2t,v and ¢£.

2.2 Necessary Condition
For an admissible control #(#) on [fo, #.], let Ao

(#(+)) denote the cone in L.™[fo, #,] defined by A

(D ={adu|a>0, du=L."(I), 6u(t)==0 a.e. on

[to, £1—24], ¢ (D) +qu' ()Y 0ul)<0 u.e. on

[t—2h, &1, i=1,2,--,7}. Let 2(¢) be the response

of the system for an admissible control #(#). For

each t<=[t,—h, £,], let N{¢, #(2)) denote the nxn
matrix

NU, u(@)=fu(Z@®), xU—=h), ult), ult=01, D[ fu

&), x(¢—=h), (), u(t—=h), {7
T (E@, x@=8), u(D), u(t=1), D[ [,
&, x(—n), (), ult—h), 1"

Define the mx# matrix function N{¢, #(/)) on [{;

—h, 1] by N, u() =N, w7 if N, #()

is nonsingular at ¢ and ]\70‘, w())=0 otherwise.

An admissible control #(#) is called regular with

respect to the response x(¢) if

) SEW, 2UE-R), w&), ult—h), H=d() a.e. on
[ti—n, 1],

(ii) N(¢u(#)) is nonsingular a.e. on [{,—4, £,] and
each component of the matrix function .N/'(l‘, u(t))
on [f1—h, ;] is in L.[t,—A, t].

J(ii)) For any z=L.[6,—h, ],
A;(#(+)) such that
2D =Fu(Z(D), 2U—R), u(®), u(t—h), )ou:(t)

+FoEWD, 2R, (D), u(t—h), OH0u.(t—h)
a.e. on [Hi—h H]
‘For each (%, y)ER"XR", v=Q and t<[ti—4, #],

Tlet Wi(x, v,v,1) be the set of all #=Q such that

@ FCx 3y, 0, D=¢(D),

G fulxy yertsvy ) Fulxy vyutyv38) Tf0(xy vythy 0y £
Ju(xs vy, 0,t) is nonsingular,

D (Fulxy sty vy D) A+ Fo(xy yyuty 0,8 dv| Jv=R™,

g’ () du<l0 for each j=1,--,7r such that
g’ (u) =0,

dv=R™, g () 4v<{0 for each j such that g’
(»)=0}=R".

there exists Ou.=

For each (x, ) =R"xR", u=Q, and t=[H—h, 1.7,
let Walx, vyu,0) be the szt of all »= () such rthat
(D) 7y 3, ity 0, =)
QD Fulay, vty 0y O Xy 3y tty 05 0T Fo(xty yy2ty 00 0)

So(xy ¥y 0,0, 87 18 nonsingular,
D) {Julay yetty vy D du+ oy yytty vy t) dv| du=R",

qu’ () 4u<0 for each j=1,--, 7 such that

@' () =0,
ArER™, g7 () dp<0 for each j such that
g (2y=0} =R~
Let f=(f% f) and g=(g¢% -,q"). Also, let
Vi* () =W 1a*@), x*@=h), u*(¢—h), £), and V,*
WO=WX*UA+R), 2 (), u*(@+hR), t+F).
Theorem 2.1. NECESSARY CONDITION (Ma-

ximum Principle). Let #*(#) with the response
Let #*(¢) be recular
Then there exist functions
v=(h 2 M ELL LR, G, p=(uth pd e, 07D
=L.[f{i—2h, 1], and an (#+1)-vector absolutely
continuous function 2(£)=®"Ct), »(O)=n"(L3,
(23,0, 2™()) on [to, £,] such that
(D #DF0
(D) a°(==0, t="ts, ©], #°(1)=»"<0

x*(#) be an optimal control.

with respect to x*(8).

(i) =2 =n[ L%, s*E—R), u*(), u*(i—
), O+ U+R), 2*@), u*(t+h), w* (D),
t+HID 1+ (O (D), (=R, u*(D).
#*(U—=h), D+nCG+HRDFy(x*U+R), %D,
u*{U+h), w* (D, t+h)

a.e. on [fo, £, =247,
=) =nL 120X @), x*E—h), u* (), u* (=1, 1)
+LGR AR, X u* AR, u* (D)) ]
+ (D (%W, x*U—h), «*(D, u* (U =1, )
FLnE+HD v (U +R), x* (D),
w*({+h), u*(D), t+h)
a.e. on [Hh—2h, ti—H],
—a(D=n"F* (), x*(E~R), u*(t), u*(i =), £)
L) +v(O1f(a* (), x*E—hD, ™),
u*(t—=h), B
a.e. on THi—7h, £,

(iva) RO @), aXE=1D, u*(), w*(—h), D

AU 1D, 25, u* U+hD, ¥ (D),
1+

=max [A{) F{x*(, x*U—h), u, u*({ — k), )
H=Q

F ARG QE+R, x* (@D, u*(E+h), u,
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— 56 —
£+h)]

a.e. on {to, t,—2A7,

~ Givb) n(t)f(x*(t) =), wt ), (=R, )
+n(t+h)f(x*(t+h) a*(t), ur(t+h), w (),

t+h)

=max [n(t;j(x*(t) x*(t—=h, 2, u*(f=0), &)
D‘—_-V«”t)

+n(t+h)f(;_“(t+h). PN MCE T YRS DN

a.e. on [, =2k, ti—H],
(ive) n(t\f(x*(t) x*(t—lz) u*t), u*(t=5h), &)
= max [n(t)f(x*(t). U —=h), u, ur(E=h), )
w2V
ae.on [£i—h, t].
V) uOgu(u* U +vE+R) Fulx*(t+h), x*(E),

u (), w*(), t+4)
FROFLED, U =h), € (D) w =k, O
AR+ Lo UARD . 5, w Cb+h), w™cD),
£+ 1) =0,

; a.e. on [§;,—2h, t,—4],

£COGu(a* @)+ fu(x*(E), 2*(t—h), u*(O
u*(t A), £

+n(t)fu(x*(!) A=), wr (D u(E=ks, =0,

h—h, ¢

a.e. on (4, —20, 0,

a.e. on |

. -

Vi) 2(HK0
‘ izlij"'yr’

(vi) g (g (u*())=0 ae. on [fi~2h, H],
l.:'l";:v"'-r-

o L)
To prove the zbove necessary condition, let x=

Py x)ER!, y=(3°, »)<=R"*, and }(;.;,u,v,f)
1=(,f°(x,y,z¢,v,t), Sf(x, yyusv,t)). Define scalar
! functions p"(f,},u,v,t), i=ly - yn, and ¥ {x), i=
0s1,--,7, by

plb(-;i 3’\! Uy Uy f)'—‘f’(’h YUy Uv,t)-(r'y'i(t)pl-:l': 2y R
(D =xi

x"(;) =,

~IED, =12, 0

Given an admissible control #(¢) with respense x(¢).
i let x°(£) be an absolutely continuous function on /
such that x°(4,)=0 and

"(t)"f x(t), x(t—=h), ult), uli=h), O

a.e. on 1.
Then the optimal control problem is equivalent to
the following problem: Find a bounded measurahle
control #(¢) on I with response ¥(t)=Cx°(t), x(¢))
such Lhat

x(t)-—f(x« £, v(t~lz), u(t), ult~h), t) a.=.on [

LR =00, A and w(fi=uslt). on Cto—1h o]
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LZUHD)I=0, i=1,2,yn
L. RU=R), wlt), wli—h), O
a.e. on [,
g (tNL0
and *(:;2(!-_)) i minimun. The theorem then can b2

=0 "
ESSPREN

a.e.on I, i=1,2, -, r

provad by using an argument similar to that iaref,
I
2.3. Sufficient Condition

o

In this section, tha system will be restricted tou
linear conteol system with a convex control reste-
aint set and a convex cost functional.

Consider the linear system

2 =A(H)x(D+ A2 =) +BolOult) +B,H)

u(t—h)
where the coefficient matrices are continuous on
{ ¢, £.], The convex control restraint set Q is given
by

Q={u u=R", g )K0, i=1,2,-,r}
where g*(x) is convex and continuously differenci-
Clu+»
1s given by "

Clu('))=f:: [sSCx(E), D +c™u(t), £)]d!

able in # for each 7. The cost functional

where the scalar functions s°(x,¢) and ¢°(u,t) are
continuously differentiable and convex in x and #,
respzctively, for each ¢, and are continuous in ¢ for
each x and .

Let

flxsysu, 0, ) =As )x+ AUy +Be(Du+B (v

F R, Yy sty s 1) =52, 8) +C ity t)
and let x*(¢) be thie response of the system corre-
sponding to an admissible control #*(¢) with #*(#)
=uo(t), to—h<t< b,

Theorem 2.2. SUFFICIENT CONDITION. 3u-
t—a<LtLts, and  x*(2) =¢{8),

—h<t <t Also, suppose that there exist func-
tions v=Cv', v}, vmEL =kt ], p=(u'
pYEL =200 ], : continuous
function 2(E=(n%t). n(t)) on [te. t,] with #°()
=n") such that (ii)~—{(viia) in

Theorem 2. are satisfied. Th2

ppose x*(t)=¢(t)

and an absolutely

the conditions
#*(¢) is an optimal
control.

To prove the above sufficient condition, let #(¢)
which stzers the systs:m

x(HY=¢l8)

bz an admiestble control

respanse x(¢) from the inirizl function
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Optimal Control of Delay-Differential System under Function Target Condition

on [fo—~#k, 2] to the final function x(£)=¢(?) on
{ti—n, ], Let
r=n [ LFOCaCt), xCt=), w®, wt—h), D)
=¥ (), a*(E—h), w (D), u*@—h), )1dt
Then, it suffices to show that y<0 for any admi-
ssible control #(#).
x()—x*()
IO, to—]lgtgfo
=! [ [A () —2* () + A (x(s—h) —

l

U ox*(s—R))+Be(s)(u(s) —u*(s))+Bi(s) {u
(s—h)—u*(s—h)]ds.

Since #(¢) is absolutely continuous_on [te, £,

= [ LFOD, vU—B), w®), wlt—h), -

FOx*(e), x*U—h), u*(®), w*(t—h), t)1dt

*f:; dn([x(t) —x*(D)]

_f: d”“)f:o [Ao() (X () —x*(N+A:(8) (x
(s=h)~x*(s—h))
+BO(S)(Z¢($)_u*(s))-l-Bl(s)(u(s_h)_u*(s_
k))]ds
__.nof:: [fo0x(®), x(t—h), u(t), u(t—h), t)—
FoC*@®, 2 =1, w(@), w*(t—h)]dt
+f: #(O[x(@®) —x*()]1d¢

+ [ R(OLACD () = * D)+ AuD) (x(E =)
—x*(¢—h))
+Bo(2 (u(@) ~u*(£))+Br(8) (u(t—h) —u*(t—
h))1dt
~nr(tD{x(t) —x*(£))
‘Note that x(¢1)=x*(t) =¢(¢D.
scondition (iii),

Therefore, by the

r=nt [ LS, 2=, w®, wCt—1), -

FORD), w*(A=R), u*(), wrE—h), ]dt

+f:;_h[n(t)+n(t)Ao(t)+n(t+h)‘4l<l+k)](x
(&) —x*@)dt

I In D AT

TR BAO AU By I It
#ndt

+f:_hf1(t)BoCl)[u(t)——u*(t)]dt

—57 —
t1

=nt 1 [0, O —s°x*®, DIt

=t [ s, DD —xt)dt

_f’:j'h v(E+HR AR (2 (D) —x* (1)) de

_f:_h V() Ac(D (x () —x* () dt

+ﬂ°f: [C°Cu(t), H=CCu*(t), D]t

A L DB T4 OB 1 Jae () —
w*()dt
o ——
+ [ OBt —u*(O]dt
Now, x()=¢()=x*(¢) an [#1—k, ] implies (1)
—2*(£)=0 a.e. on [{;,—%, #], that is,
Aol (2 () =2 * (D) + A (x (= B) = x*(E— 1))
+Bo(£) (1) —u* () +Bi () (u(E — h) —a* (£ — 1))
=0 a.e. on [Hi—h, £].
Also, since s°(x, #) is convex in =z,
2 Ls°(x (), ) —sCa*(), D —s:2x* (@), DO~
2*(D)H1 <0 on [to, #].
Therefore,

r<nt 1 OB, DD, Dlat

+f:_a »(O{Bu(O[u(®) —u* ] +Bi(O[u(t— )
—u*(¢~h)]}dt
+f:, [n(DBo() +n(+ B+ (u () —u*
(#)>Jdt ’
+f:i_,.”(t)30(t)[u(t)—u*(t)]dt
From the condition (iv),
f::-z}‘{’”c(u(f). D+[n@Bo(O) +n(t+h)B(¢
+h)Ju(P}dt
Sf::_%{”"cw*(t), D+ Bo(t) +n(t+k)
Bi(t+hm)Ju*(D}dt
Hence,

7£”°f:.2hfc°(”<f>' ) —CoCu*(t), D]dt
+f::2h[n(t)Bo(t)+n(t+h)Bl(t+h)](u(tj)_u*
()dt
+ 1 DB~ w(D1de

+f:i:]:hu(t+h)Bl(t+]l)[u(t)—u*(t)]dt
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1
+ [ P OBOD —u* (Bt
By using condition (v),

rgn"f:‘zhﬂcwu(t), £ —C%u*(®), t)1dt
tl
._noftl—thuD(u*(t)’ tD(u(t)_u*(t))dt

“f:-yf‘(”qu<u*Cf>><u<t>—u*(t))dt

Therefore, from the convexity of C® and g, conditions
(vi) and (vii), y<0. This completes the proof.
2.4 Examples
Example 1. Consider a second order system
() =—x'@=D+2x2) +u(), 0<1L3
2 =—222O+u(t-1), 0<t<3
The initial functions are

¢ (=1
$2(8) =0 ] —1L£<0.
() =0

The problem is to find a measurable controller z(¢)
on [0, 3] such that
la(H1<L1, 083

and the system response is steered to the zero fun-

ction, f.e.,
G (DH=0 } 0 t<3,
D=0

while minimizing the cost-functional
Clu(N=[lx*()dt

Let gCu)=(u)*—1, and let #*(¢) with the response
x*(#) be an optimal control. Suppbse u*(¢) is regu-
lar with respect to x*(#). Then there exist a cons-
veL.2[2, 3], we=L.[1, 3] and
absolutely continuous function #z(#)=(#'(¢), #2(£))
on [0, 3] such that the conditions (i) through(vii)

tant »° functions

of Theorem 2.1 are satisfied. Using the conditions
(v) through (vii) and the regularity assumption
one can easily deduce that p(#)=0 a.e. on [1, 3]
and
72 () + L2+ A +v2(t+h)]1=0,
72 () +2'(£)=0, a.e. on [2, 3].

It then follows from the solution of the adjoint

a.e. on [1, 2]

equation and the maximum condition (iv) that
sgn{(bt~1/2)+ b+ (b*—56'+5/2)

u*(t)= et~} a.e. on [0, 1]
2x*(¢41), a.e. on [1, 2]
¥ -1 —2x*2() a.e. on [2, 3]

where b! and 5% are constants.
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After a lengthy but straighx forward computation,.
one finds that, among the control functions of the
form obtained above, the following is the only co-
ntrol function which steers the response to the given

final function.

(—1, 0< <o
J +1, w<t<awai
w(H=| -1, w2<1;
\ 0, 1<tL2;
(=D, 2<L3; (see below).

The corresponding response is given by

—-2t+1, 0Lt
—2un+1, 1 <t<w,
—2(t—wi)~2un+1, w,<t<1
2420w =)+ 12— A+ £ (1= ),
1Lt 14w,
2= (1+w)]+-E (e ~2)
2*()= -2t~ l+w z * 1
[1-6 ¢ x))]+x (1'-"101)9
1+ Lt<1+w:
ol —-(1+wD?]—[2Qwa—w) +4](E—
(1+102)]
+L (e, — 2 —20 (1 -
e*Z(t’(l-‘-wz)))
+x* (14w, 1+w.<t<2
L0, 2<t<3.
0, 0<i<1;
el It<Idws
v B %_+11),<e—2w1_2)e~2(t—(1+w‘)),
D= 14w <E< 1 +wss.
— g [y (e = 2em 2y 0p]
e—z(e-(1+w2)), 1+w2gt£2;
0, 2<t<3,
where
=2 —1,

‘and

2 2w __

Note that [«*!'(#)}<1 on [1, 2]. Therefore, #*(¢»
satisfies the regulérity condition with respect to.
x*().

Now, by applying the sufficiency result, it is co-
ncluded that «#*(#) on [0, 3] obtained above is an
optimal controller.

Example 2. In this example, a time-optimal co-
input-single-

ntrol problem is solved for a single

. output delay system

()= —x(t -1 +u(t), =0.
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Given the constraint on the control variable as
la(DH]L1, =0,

it is required to find a measurable control «*(#)

the minimum time £*

te[—1, 01, to

the zero final function ¢(¢)=0, t=]i*—1, t*1.

which steers the system in

from the initial function ¢({)=2,

To solve the problem, consider a family of fixed
terminal-time problems, each of which, denotod as
(P—w), reads as follows:

(P—w) Find a pair (x(+),
x L0, w]
such that

u(NECT-1, w]

(i) x(+) is absolutely continuous on [0, w]

(i) #(B=—x¢~D+u(®), a.e. on [0, w]

(i) x()=2, t=[ -1, 0]

(iv) x(w)=0

(v) —x(t—D+u(t)=0, a.e. on [w=1, w]

(vD) qlu@))=u())*>—1<0, a.e. on [0, =]

The time-optimal control problem is then equiva-
lent to finding the least number w=¢* such that
Note that for

is not an optimal

the problem (P—¢*) has a solution.
each >0, the problem (P—uw)
control problem.

First observe that, for any w>>0, the constraints
(iD), (D) and (vi) in (P—w) imply that for each
admissible control #(-), the corresponding trajectory
x(+) satisfies x(0)=2 and —3<L3(¢)< —1 for almost
all #=[0, 1]. Further, on [0, 1], the set of attai-
nability, denoted as A(#), is given by

A ={x=R": —3t+2Lx<—t+2}, (=00, 1]
Secondly, let £* denote the minimum time for which
(P—1t*) has a solution, (x*(+), u*(+)). Then the
condition (v) & (vi) in (P—w) imply that

la*(OH1<1, t*r—2<t<t*~1

From these two observations, it can be readily co-

ncluded that t*Z%.

It turns outthat t*=% is the minimum time for
which (P—t*) has a solution. To show this, cons-
ider the following optimal control problems
(P Sy

(P~%) Find a pair (x(+), a#(+)EC[—1, w]x

] L.10, w]
“y such that the conditions (i) through (vi)
of (P—w) are satisfied and that (viD

[ wwar< [ urat
[ 0
for all (%(+), #(+)) satisfying the previous
-
conditions (i)~(vi).
Note that if (x(+), #(+)) is a solution of the pro
blem (m), then it is also a solution of (P—wd .
Applying Theorem 2.1 to the problem (P—w)‘l
with w="%, one finds that, if (x*(:), u*(:IEC,
[~-1, %]XLJ[O, %] is a solution, then there exists
a number #° and a function =(«)=C'[0, %] such
that (D) 8°<0 and 10+ |n(5)1>0, (i) with »

&)

(2 1 1
§b°+b‘+(bl—§‘b°) __E_bﬂ ([__,é_)z’

t<=[0, %]
n(t)= 1 4
| o =81, te[_e‘_y g]
5, te[%, 1]
and
4
5+n(t)), 0Lt
D w ()= sgn(6°+x(t)) <t
2 (t=1), S<<E

Arguing as in Example 2.1, one may easily obtain™
. . ~ X 7 !
the following solution to (P—w) with w=r7.

2, —1< £ <0
—3t42, 0< tg%

=) s S< <1
Sa-%r, 1< <t

0 teicl

(-1, 0< 1<

+1, Stk

WO= -+ il
—G-DHg et
L%(t—%y <t <

Since the pair (x*(«), #*(+)) given above is also
a solution of the problem (P-—w) with w:l it

3 »
the pair (x#*(+), #*(+)) is a time-
optimal solution of the problem with minimum time
t*:;

3

follows that
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2.5 Generalized Target Condition

The maximum principle derived in Section 2.2 is
for the case when all components of the target fu-
nction are given. Similar results can be obtained
for more general target sets in function space incl-
uding the case when some of the components of the
final function are free. This extension is given
below. Since modification to include delays in the
control variables is straightforward, for the sake
of brevity, systems with delays in the state wvari-
able onlv are investigated.

Let I=[t, #] and 1=t —%, #]1. Let 2<»n bea
given positive integer and let g(x, H)=g'(x, 2, -,
g*(x,¢)) be a vector function on R*x I, which is
continuously differentiable in ¢ for each ¥ and twice
continuously differentiable in x for each £. Further,
for each i=1,2,, &k, =120ty [=1,2,---y 1,

the derivative—ai—gi(x, £) is differentiable in x for

each f¢ 7, and the second derivatives Tj‘%z‘gi("’ D)
o2

az‘iat

Q and ¢(+) be the same as in Section 2.1.
Consider the problem of finding an optimal control

and g'(x, t) are continuous on R*X/I,. Let

#(2)EQ on I such that the response of the system
2(@=f(x(@), x(t=h), u(t), 1)
with initial function x(#)=¢(f) on [f,~%, ] sati-
sfies the target condition
gi(x(), 1)=0, teli, i=1,2,-sk,
while minimizing the cost functional

Cue =1 7°a(t), 2=k, u(®, Hat.

Obviously, if the first 2 components of the final
function ¢ are specified and the rest are free, then
g(x, £) should be defined by

gix, D=x"—¢I(t), i=1,2y5 k.

Forleach (x,y) and tel., let @(x,y,?) denote the
set of all #cQ such that

() g=(ay S (2, 3524, 1)+ £: (%, £)=0

(i) g2y )1u(%y s tts D[ x(tys D fu(y 3,2, DTT I8

nonsingular,

GiD) {g=(x u(xs 34 %, DV 0ER", gu* ()0 <0

if g'()=0, i=1,---,7} =R*,
- Let #(¢) be the response of the system for an
admissible control #(¢#), and let #(¢) be an admi-
ssible control. For each #¢I;, let G(¢, #(¢)) denote

(156 )

the kx %k matrix
G, #(£))
=g=(2(0), DFu(E(E), 2Ut—=h), u(t), D[g(a(), O
Ju(E(D, ZU=h), u(t), DI
Define the £x £ matrix function é(t, #(t)) on I,
by GU, #()=G, w(D)if G, w(®)) is no-
nsingular at ¢ and (7(t. #(¢))=0 otherwise. In the
remainder of this section, the definition of a regular
control in Sec. 2.2 is replaced by the following de-
finition: An admissible control #(#) is called regular
with respect to 2.(2) if
(1) gx(x(@), OF XD XU, u(t), )+ g, (F(D).

£)=0 a.e. on J;.

(ii) For almost 21l 221, G, #(£)) is nonsingular

and each comueonent of the matrix function
G, u()Yy on Ly 18 in Lo(). .

(iii) For any z=L.*({)), there exists a function

Ouz in Ag(u(+3) such that z()=g.(x(£), )
Ju(E), xU—=h), 0u(t), Douz(t) .
a.e. on /.

Define kX » matrix functions G.{(x, ¢) and G:(x, ©),

i=1,2y++52, by

2

Gi(x, t)=[ an=—a—g"(x. t)] 7=12,5k

0x'0t
121;23"'; 7y

2
Gilx, z):( aﬂ=a—z?a-?gf(x, t)] F=1,2k

1=1,2,-, 2

respectively.

Theorem 2.3. NECESSARY CONDITION. Let
#*(t) with response x*(#) be an optimal control, and
let #*(t) be regular with respect to x*(¢). Then,
there exist a vector 5=(8°% &%, .-, B*)=R**!, functi-
ons »&L.A2(1), p=L."(51) and an absolutely conti-
nuous z-vector function »#(¢) on I such that

@ 15120, 5°<0 '

(D —n(@)=-+8L [:°(x*(), x*@—k), #*(D), O

T +HR), 2@, wr@HR), t+R)]

Fu(Of(x*({), x*@E—h), u*(), £

+rQE+RHGaXE+R), 2%, u*(E+h), t+h),
a.e. on [fo,f1—2k];

—n()=—+b"LF"(x*(@®), x*(t—h), u*(D), &

+Na* @+ R, ¥, wr@HR), tR)]
Fr( (™), x*E—=h), u*(D), D)
FrQ@+mfy(x*E+h), x*(@), u*(+h), t+k)
Fu(E+R) g (x* B, R (x> (E+h),
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x*(), u*(t+ R, (R,

R a.e. on [61—2h, ti—Fh];

— (D=L (), x*(t=0), u*(@), D
Fu(Of(x* (), x* =N, u*(t), £)

(D T LR, =B, 1. DG
it

(x™(),1)
—g=(&*(), OF (X, x* =R, u* (D, D+
G (x*(5), D], a.e, on [Hi—h, £,].
(i) »#(t)Y=bg{(x*(t)). 1), where b=(d!, b%, -,
hE):
Uva) BOF o=, x* =0, u*(®, O+a(Df(x*
0 x*UE—=R), w*), )

=max [87°(x*(t), x*(—h, u, )+u(Bf

#z Q)
(XD, XM=, 2, D]
for almost all tc1/1,,
Gvb) 8% S Ox*(8), x*E—h), u*(), D+ f(x*
(1), x*U—h), u™(t), t)
Lo Ux*(), x*(t—N), o, t)
wew{x*(), x*(t=h), B
+u(Of(x*(), x*t—h), u, )]
for almost all fe1,
LLLO(a* (), 2 —R), u*(), ©)
+r (D fu(x*(E), x*@E—h), w*(), £)
o) qu(u*(@), B
+u (D) g=(x* (), O fulx*(E), a* =0, u*(), 1)
=0, a.e. on I,
(vi) pi($)<0 a.e. on [, j=1,24+57
(vil) /(g (u*())=0 a.e. on I, j=1,2y 7.

= max

s
<t
(g

To prove the above necessary condition, again lev
2=(2° 2R §=(5°. yER™ and let
2 (x)=g'(x, 1), =12, k,
(D =1x°
PE5 =g (1, OfCx 3. 0 ) +g0 (2, 0),
i=1,2 -k
Then the problem can be reformulated as follows:
Find a bounded measurable control #(¢) on I with
response 2(!)=(x°(t), x(#)) such that
%(t)=f(3'(t), 2U-h), w(), 1) a.e. on I,
2()=(0, ¢, tel,
2 (AUD)=0, i=1,2, -, &
PHEW, 2¢=h), w(t), D=0 a.e. on I,
i=1,2,. k,
g (u($))<K0 a.e. on I, i=1,2,-, 7,
and x°(3(/:)) is minimum. Thus the probiem is

essentiallz of the same form as that in Section 2.2.
If appropriate restrictions are imposed on the pr-
oblem data, the above necessary condition (Theorem
2.3) for generalized targets is sufficient for optima
lity. To be specific, consider the linear system
(D =Ac(Dx()+ A (D xU—h)+Btull),
where the coefficient matrix functions are continuous
on [#o, 7,]. The convex control set ) is given by
Q={uluzR", ¢ ()0, 1=1,2,-,r)}
where ¢'(z) is convex and conrinuously differenti-
able in 2 for each . The cost functional Clu(s")
is given by
C(u(-)):fj: sy, x(e =R, o FeCu(t.
t)1dt
where s%Cx, v,#) ‘s continuously differentiable and
convex in x and y. Tor each #, and is continuous in
for each («x, ¥). Similarly, ¢%Cx, #) is continuously
differentiable and convex in #, for each #, and is
continuous in # for each #. The final function condi-
tion is given by
N@Ox(O)+d()=0, te],
where N(#) is a continuously differentiable (kx#)-
matrix function on I, and d(¢) is a k-vector conti-

nuously differentiable function on 7.

Let
flx, v, u, D=Ae(Dx+A(DDy+Bu
Fola, v, 0, )=5"Cx, 9, £)+c°(u, 1)
glx, =N x+d().
Theorem 2.4. SUFFICIENT CONDITION. Let

#*(¢) be an admissible control with response x*(/D.

Suppose x*()=¢() on Ir and g(x*(&), t)=0on 1,
Further, suppose there exist a vector 1?=(b"' be
RE*Y with °<0, functions v L.*(J,), p=L." (1)
and an absolutely continuous function #(¢) va I such
that the conditions (ii)-(vii) in

Section 35, except

(ivb), are satisfied. Then #*(¢) 1s an optimal control
Example 3. Consider a second-order delay svstem
with a scalar input
PO=-D+a), 0KI<2
(=0, 012
Inittally, #7(2)=x%(1)=0 on [=1, ¢]. The problem

is to find a measurable control «{(¢; on [Q, 2] such

that the first component of the system response 1s

driven to
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x(H=1. 1<1L£2
while minimizing the quadratic cost functional
Ca(n= [ Flu 1.

Let #*(#) with the response x*(¢)=(x*'(¢), x*?
()Y be an optimal control, and suppose it is regular
with respect to x*(#). By Theorem 2.3, there exist
a vector p=(4°, bHER? functions v(-)&L.[1, 2]
and z()=(xn'(), #n*(#)) on [0, 2] such that the
conditions (i) through (v) with ¢=0 are satisfied.
w*@@)y=—x*(¢t~1)
on [1, 2]. Setting 6°=—1, the condition (v) reduces
to

By the regularity assumption,

2@ +v(E)=u*(t) a.e. on [1, 2].
Therefore, solving the adjoint equations (ii)~(iii),

one can obtain

bt on [1, 2]

n'(t)= 1
{b1+ f: f x**(v)dr ds  on [0, 1]
0 l)
i l on [1, 2]
f: U D)dt on [0, 1]

The maximum condition (iva) implies
w*(O=n'(t)
Using the boundary conditions x'(0)=x2(0)=0 and
2'(1>=1, one can solve the system equation to ob-
tain the following solution.
x*l(t)zfAx€t+Aze_t+BlCOSf+BzSinf 0[1[0, 1]
11 on[1, 2]
x*z(t)___{Ale'—Aze“+B,sint—Bzcost on[0, 1]

=D +a*2(1D) on[1, 2]
u*(t)= { Aret~ Aze™t — Bisint+Bycost  on[0, 1]
—x*(¢~1) on[1, 2]

where
A=(sin 1)cosh 1+4(cos 1)sinh 1

A1=ﬁ{(5in 1=sinh 1)~(cos 1+cosh1)}

1

Az:y((sin 1—=sinh 1)~(cos 1+cosh 1)}

= =Lrain 1—aqi .
Bl-—i—z’—(sm 1=sinh 1)

_ 1
B;= 57 (cos 14cosh 1)

3. CONCLUDING REMARK

In this paper, the problem of optimally controlling
time-delay systems to function target was studied.
By applying the abstract mathematical programming
technique of Neustadt for a reformulated problem

The Journal of the Korean Institute of Electrical Engineers Vol.27 No.2

is function space, a maximum principle of Pontry--
agin-type was derived and further, it was also sh-
own that the necessary condition is almost sufficient
for optimality. To show the effectiveness of the
result, several example problems were solved.

The results in the paper can be easily extended
to the case when there are multiple delays in the
system state . and/or control variables. A certain
class of bounded state space problems may handled
in a similar manner as in [11], and will be discu-

ssed in a future work.
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