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Optimal Design of a Straight Fin by a Generalized
' Steepest Descent Method
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Introduction

The design of optimal cooling fins has been of con-
tinued interest for several decades (1, 2, 3). The
design problem as formulated in the literature however
does not allow enough flexibility for general type of
constraints, and also the methods of solution are not
general enough to handle slightly varied problems. In
Ref. 3, the shape of fin obtained is of wavy form
and the thickness to height ratio is too small to have
any meaning,

The problem as treated in this paper is to select
an optimum geometry of a cooling fin for the maxi-
mum amount of convective heat transfer. It is for-

mulated as a general optimal design problem, so that
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various physical constraints can be imposed.
Statement of the Problem

The basic problem is to dissipate the maximum a-
mount of heat, using a fin of given height, where the
base temperature T and surrounding temperature 7.
are both given and are assumed constant. The geome-
try of the fin to be designed is shown in Fig. 1.
Steady state one dimensional conduction is assumed.
Heat transfer properties are also assumed const(‘;nt.

The governing equations for the temperature distri-
bution in the fin can be obtained by considering heat
balance in a differential element and Fourier’s law of
heat conduction as follows:

i (—#4 flf

)+ zh_cp_ T y=4A, %))
cosp

where k is the thermal conductivity and & is heat
transfer coefficient. Since the fin usually does not ge-

nerate heat therefore ¢=0.



Fig. 1. Geometry of a Straight Fin

The boundary conditions are

r|,=m 4T o

if the fin has an insulated end, or
| _,dT | _ _
A A

if the fin has a convecting end.
The objective function chosen is to maximize the
heat transferred through the fin; which is the same

as to minimize the negative of heat transferred

- 4T
J—blzdz o 2)

Introducing the following dimensionless variables

_T=T. ,_z 40 = As

6= To T t= T bl—l and v= I 3
Eq. (1) becomes

d do 2hl

. ., 8Y 9=

dt( Y& )+ kcosp 0. @

with boundary conditions of either
_ dé PO
8(0)=1, -2;—(1)—0, (insulated end) (5)

or

(=1, % D=- -’%—0(1) ; (convecting end)
(6)
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and the function to be minimized is
J' =k Ty~ T.)-22.
bik(To—T-)-%| |

or in nondimensional form

J’ d9 l
0

I =Ty =0 g @

Constraints of practical interest will be imposed in

the numerical examples following.

Formulation of Optimal Design Problem and
Numerical Technique

The problem described above is a typical case of
the general optimal design problem and is formulated
as follows. Given a system, the behavior is described
by a set of equations called state equations. The be-
havior is denoted by a set of variables called state
variable vector, z. The parameters of the system
which the designer wants to choose are included in
a design parameter vector, b, If they are functions of
time or space variable, they will be called design
variables, u. A performance index function is a ma-
thematical representation of the criterion by which
the design variables are decided. The general optimal
design formulation then can be stated as: To minimize

the functional

J=Uo(u. b, 2); (8)
subject to the system equations

K(u. b, 2)=0; )

where K is a differential or algebraic operator; subject
to inequality and/or equality functional constraints,
<0

=0, i=1, e, P

¥i(u, b, z) { (10)

and subject to inequality or equality design variable
constraints,

0
0, j=1,q.

<

$iu, ) [— (an
A generalized steepest descent method(4, 5, 6) will
be employed. The basic philosophy of the method
may be summarized as follows. An initial estimate of

the design parameters are made. Corresponding to this
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design, gradients of the functionals and function, cons-
trained in the design space, are obtained. The pro-
cedure for obtaining the constrained gradient will be
shown for the objective functional, assuming that only
design variable z exists. The treatment with both «
and & is straightf(frward (4). A linearized form of

the functional is
8 =TTy, dup+<{Fo.T, 820,

where a subscript after comma denotes partial deri-
vatives, superscript T denotes transpose and an inner
product natation ¢,,.)> is used. The key step in eli-
minating the dependency on 8z, is the concept of

adjoint equation. The linearized state equation is
K.dz+ Kudu=0,

where K; and K, are now linear operators. By de-
fining formal adjoint operators Kx* and K.* to K. and
K., let 2° be the solution of

KA00=—y,T, (12)
with adjoint boundary conditions (4). Then,

.7, b:y=(~K:*, 82)=(—2°, Kidz>
=0, Kuduy=<{K.*10, du).

Therefore,
8J =T T+ Ku*2, bu),
and the constrained gradient will be
A =T, T+ K20 13

The same procedure applied on the other functionals
Eq. (10) which contain state variables allows a li-
nearized formulation of the original optimal design
problem in design space. Also, the amount of design
change is limited such that the linearization retains
its accuracy.’ The resulting problem is then solved to
obtain a desirable design change du. For details of
the method, refer to Ref. 4 and 5, where various
numerical examples are also given. A program has
been developed and described in Ref. (6), and is used

to solve the numerical examples in the following.
Optimal Trapezoidal Fins

As a first numerical example, a symmetric trape-

zoidal fin is designed for an insulated end. The base

width & and tip width ¢ become the design parameters.

From the fin geometry,

—p b=
A:=b I x

and

COS¢=2<(i;£ )2+4>—1 2

In terms of the dimensionless variables, Eq. (4) be-

comes

d [ o N d8 ), Zh

R RCRICE DI EEC R N ED
where

by=-L

To get a first order form of state equations, define
21:0

== (b= (b= b))% (15)

In this notation, Eq. (14) becomes

dn oz
dt b1—<b1—b2>l
dz, ___ 2hl
Tdt T heosp M (16)
with

z1(0) =1, 2(1)=0,
and Eq. (7) becomes
J=—2,(0). a7

The following design variable constants will be im-

posed:

Zp‘IEbl“‘ bmnxSOg
Vy=b— <0, (18)

where bmax is a maximum allowable thickness.
The formulations of the optimal design problem in
the previons section now applies directly. The adjoint

quation (12) becomes,

dh _ 2kl

dt kcosyp

dy 1
N v vy S TR

Since the inequality constraints in Eq. (i8) are ex-
plicit functions of only the design variables, no adjoint

equation with the constraint function need be com-
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puted. Solving for 2; from the second equation and
substituting it into the first equation, one has the
second order adjoint differential equation:

4 { (0 (b1-—bz)t)~‘22— ] —%zzzo, (20)

which is the same as Eq. (14).

To determine boundary conditions on A, consider
1
(21621 2282) °=—522(0), (21

which must hold for all 5, satisfying a linearized form
of the boundary conditions appearing in Eq. (16). In
order that Eq. (21) hold identically for all variations
3. (0) and 5,(1) satisfying the linearized boundary
conditions of Eq. (16), it is necessary that the follo-

wing conditions on 2 be satisfied.

(D=0
2:(0)=1.

(22)

From the second equation in (19), one may replace
the condition in Eq. (22) on 2,(1) by a condition on
the derivative of 2,(1).
the following beundary conditions on 2z

da

In this manner, one obtains

2 (1)=0
dt @ ] (23)
2:(0)=1.

Note that the adjoint differential equation (20) with
the boundary condition (23) is exactly the same as
the differential equation (14). Thus, the solution of
the adjoint differential equation is trivially construc-
ted, once the temperature equation is solved. One is
now ready to follow the algorithm in Ref. 5.

The constant(Biot number) for heat transfer pro-

perties are assumed as

hl _
»7;—0. 0061,

which approximately corresponds to an iron fin exposed
to air.

An analytical solution for the temperature distribu-
tion is easily obtained as shown in Appendix, but a
numerical differential equation solver was used to
solve the boundary value problem of Eq. (14). A

shooting technique described in (4) gave a solution

after 2 iterations, since the equations are linear.
Solutions corresponding to three constraint sets are

shown in Table 1.

of 5;=0.1 and 5;=0. 05 (J=—0.01159), the solutions

are obtained in less than 15 iterations. The optimal

From the initial design estimate

shapes obtained are shown in Fig. 2 with a schematic
contour map of the heat transfer function in the de-
sign space. The contour is obtained after plotting the
heat transfer functions calculated from the formula
given in Appendix. The solution obtained numerically
is consistent with those from the contour map. From
this figure, it is seen that the agsign variable cons-
traints are of utmost importance for the present pro-
blem. If the base width is less than about 25% of
the fin length (i.e., 5:;<C0.25), a rectangular fin (&
=by) is the solution and if 4,°>0.25, a triangular fin
(b2=0) is the solution. Around the 25% range, a

trapezoidal fin is the solution.

Table 1. Solution of Trapezoidal Fin Design

by<by
Constraints 3
h<0.2 | b<0.25 | bi<04
Solution b1=b;=0.2| £=0.25 [ 6;=0.4
b,=0. 026 b2=0.0
Heat Transfer, —0.01198 —0.01193 —0.01217
Shape of Fin | Rectangular Trapezoidall Triangular

OPTIMAL |
SHAPE L__.__.‘ [ L>>

— by
l 0.0

0.l 0.
b2 \\ // !
or b uso\}m é I
|

°' ,///Zy\ \
MmN

Fig. 2. Contour Heat Transfer (—Jx10%) for Tra-
pezoidal Fin

2 0.3 Q.4 Q.5
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Optimal Fin Profiles for the Maximum
Heat Dissipation

As a second numerical example, consider the case
in which the width, v(¢) of fin is chosen as a design
variable. Then,

L gy (24)
cosgp

Since the governing Eq. (4) upon substitution of
Eq. (24) contains the derivative of v, the problem
does not fit the standard optimal design formulation.

To circumvent this situation, let

v=23+by, (25)
Such that

23 =v'=u, (26)
where

2(0)=b; or z3(0)=0.

The governing equations become

d21 . Z3 Y

dt z3+ b1 I

des _ 2 [T

P 7S \/l+—4—21 (27)
dzs |

dt /

Boundary conditions corresponding to Egs. (5) and (6)
are: (1) Insulated end,

21(0)=1, 2:(1)=0, and 23(0)=0; (28)

or (2) convecting end,

1@=1, 20— A (1) +b)n1)=0,
and z3(0)=0. (29)
As before, the heat transfer function is
Y J=—2,(0) (300
The following constraints are imposed:
Vi==b1—bmax <0, (31
and
$r=u=0. (32)

Equation (32) states that the slope in negative, i.e.,

the width v(z) is a nonincreasing function of . One
may want to impose v>bmin. This can be expressed,

using Eq. (25) as
Wy=—23(1) —bi+buin<0, (33)

where bmin denotes a lower bound of the thickness.

The slope «(¢) and the width &, are chosen as design
variables. Notice that the system is nonlinear and by
a simple translation, the appearance of the design
parameter b; in the initial condition has been elimina-
ted.

Another constraint of practical importance is that
the volume of fin be restricted to be less than some

given quantity, V. That is,
1
[ o@a<v.
or using Eq. (25),
1
Te=b+ | zadi— V0. (34)

Thus, the problem formulated can be stated as selec-
ting the design parameter & and the design variable
u to minimize Eq. (30), subject to functional con-
straints Eqs. (31), (33) and (34), and pointwise con-
straint Eq. (32).

For the constraint ¥ of Eq. (34), it need not be
necessary to set up an associated adjoint system: Using

Eq. (27), and integrating by parts,
1 1
o= b+ | srsdi=obit [ (1-Doude.  (35)
Hence the desired gradient is
AB=1—¢, (36)

To obtain the constrained gradients of J and ¥,

the adjoint systems are formulated:

LTy T
dt k Th.
iz _ 1 l
=y, \\
dt z3+ b1 ! ( (37)
dls __ =z 2. 1
dt (z3+81)? )

For the objective functional, which contains a- state
variable, the adjoint boundary conditions are obtained

as: (1) for an insulated end,

—_—
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21(1)=0, 2;,(0)=1, and 3(1)=0; (38)

and (2) for a convecting end,

RO =1, WD+ (D) +60 2 2,01)=0,
and (39
ORI EORNOE

Notice that 1;=—2; and i,=g2, her_lce only the third
equation of the adjoint system needs to be solved.

For the minimum thickness constraint Eq. (33) the
adjoint boundary conditions are:

(D 4(=0, :(0)=0, B(1)=—1; (40)
and (2)
A+ AL (0 +b0=0, 2(0)=0,
and 3))
D+ 1) +1=0,
corresponding to the insulated and convecting end,

respectively. It is seen that solutions of the adjoint

differential equations for both boundary conditions

above, are
1(@®=0
2()=0 (42)
(e)=—1.

Thus, the steepest descent algorithm can now be ap-
plied in a routine manner.

Three sets of constraints are considered for each
end condition. The minimum thickness of fin was res-
tricted to be no less than bmia=0.01. This was ne-
cessary not only for manufacture but for the removel
of unstability due to a singularity in Eq. (27) when
the fin thickness approaches zero. For numerical solu-
tion of the differential equations, the interval was
divided into 100 sub-intervals, while only 50 intervals
were used for integration and specification of the de-
sign variable. The shooting technique gave good con-
vergence less than 5 itera'tions, for an error of 1077
in the boundary conditions. Convergence was obtained
after about 15 iterations for the insulated end case;
but for the convecting end case convergence was ra-
ther poor. The results obtained are summarized in
Tables 2 and 3.

shown in Fig. 3. The amount of heat transfered per

The shapes of optimum fins are

unit area, without a fin is l;‘l— =0.0061. Comparing

with this number, the amount of heat dissipation per
unit area of fin is shown in parenthesis in - Tables 2
and 3. The volume constraint of 0.3 was not tight
for the design constraint set 3, where the constraint,

5<0. 6_was dominant.

Table 2. Insulated End Case

Constraints 1: 5,<2.0, volume<(0.3, bmin<0.01
Solution: b;=1. 48

u; —4.88 —4.74 —4. 60 —4. 46 —4.31 —4.17 —4.02 —3.87 —3.72 —3.56
—3.40 —3.24 —3.08 —2.91 —2.74 —2.56 —2.38 —2.19 -2.00 —1.80
—1.59 —1.38 —1.15 —0.92 —0.68 —0.45 —-0.22 —0.06 ~0.05 —0.02
—0.05 —0. 04 —0.04 0. 0. 0. 0. 0. 0. 0.

(The rest are zero).
Objective function; J=—0.0166 (Heat dissipation per unit area=0.0112)
Remarks; Volume and minimum thickness constraints were tight.
Constraints 2: 5,<2.0, volume<0.3, bnin=0.1

Solution; &;=1.17

u, —3.63 —3.52 —3.41 —3.30 —3.19 —3.08 -—-2.97 —2.86 —2.74 —2.63
—2.51 -2.39 —2.27 —2.14 —2.02 —1.89 ~-1.76 —1.62 —1.49 —1.34
—1.20 —1.05 —0.90 —0.75 —0.59 ~0.43 ~0. 26 —0.09 0. 0.

(The rest are zero).

Objective function; J=—0.015 (Heat dissipation per unit area==0. 0128)
Remarks; Volume and minimum thickness constraints were tight,

——
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Constraints 3: £,<0.6, volume<0.3, bmin=0.01
Solution; 6;=0.6

u;, —2.46 —2.39 —2.30 —2.22 —2.12 —2.03 —1.93 —1.81 —1.69 —1.56
—1.43 —1.26 —1.11 —0.93 —0.74 —0.54 —-0.32 —0. 11 0. 0.
(The rest are zero).
Objective function; J=—0. 013 (Heat dissipation per unit area=0. 0216)
Remarks; £;<<0.6 was tight.
Table 3. Convecting End Case
Constraints 1: 5,<2.0, volume=<0.3, bmi»=0.01
Solution; &;=1. 39
u; —5.01 —4.84 —4. 66 —4.48 —4.30 —4.12 —3.9 —3.75 —3.56 —3.36
—3.19 -3.00 —2.80 —2.61 —2.40 —2.21 —2.00 —1.79 —1.57 —1.36
—1.13 —0.90 —0. 66 —0.42 —0. 17 0. 0. 0. 0. 0.
(The rest are zero).
Objective function; J=—0.0167 (Heat dissipation per unit area=0. 012)
Remarks; Volume constraint was tight.
Constraints 2: 5;<2.0, volume<0.3, bwin=0.1
Solution; 5=1.1
u; —4.69 —4.47 —4.24 —4. 00 -3.77 —3.52 —3.29 —3.04 —2.79 —2.53
—2.29 —2.00 —1.73 —1.44 —1.13 —0.79 —0.45 —0.09 0. 0.
(The rest are zero).
Objective function; J=—0.0155 (Heat dissipation per unit area=0.014)
Remarks; Minimum thickness constraint was tight.
Constraints 3: #<0.6, volume<0.3, bmin=0.01
Solution; 5=0.6
u;, —2.71 -—2.55 —2.38 —2.21 —2.03 —1.84 —1.65 —1.44 —1.21 —0.97
—0.71 —0.43 —0.14 0. 0. 0. 0. 0. 0. 0.

(The rest are zero).

Objective function; J=-—0.0141 (Heat dissipation per unit area=0. 024)

Remarks; 5;<0.6 was tight.

Summary and Conclusions

The optimal design of a cooling fin for a maximum
dissipation of heat has been formulated as a general
optimal design problem. A generalized steepest descent
method is used and shows its versatility to treat any
type of constraints and heat transfer objective func-
tion.

Several numerical solutions are presented. No com-
parison, however, was possible with existing litera-
ture, because of the generality of the problem form-
But the solutions obtained

ulation treated here. are

more realistic than those in the literature, due to the

practical physical contraints imposed. Although exam-
ple problems are limited to the maximum heat pro-
blems, a minimum weight problem can be solved as
well without difficulty.

It is concluded that the overall approach taken here
can be utilized effectively in the practical problems
of fin design under any possible constraints the de-

signer wants to impose.
Appendix

Solution of the Differential Equation (14)

The quation to be solved is Eq. (14) with boundary

7 —
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a. INSULATION BOUNDARY CONDITICN CASE

(3)

03

055

o7 b

L. CONVICTIGH SOUNDARY CONDITION CASE

Fig. 3. Optimal Fin Shapes for Maximum
Dissipation

conditions
_ df —
0(0)=1, -‘-{r(l) =0.

Let

by— (b1—by)t=u

d b —b)-2
'2;‘-‘— (bl b?.) du

where b1#bz is assumed

Then
e 1 do 6 _
7 Pl
- dap _
6(6)=1, 7 (b2) =0,
where
2ht

ﬁ:wk(br‘b;z)zcorsig;/.

The general solution of equation (A-2) is

Hear

(A-1)

(A-2)

(A-3)

8

6=AL(2 v fu) +BEKo(2 ¥ gu)s (A-4)
where I, and K, are modified Bessel functions.
From the first boundary condition,
AL2 Vb)) +BKo(2 Vb)) =1. (A-5)

Differentiating (A-4),
A (ane g BRI (e

Hence the second beundary condition gives,
AL(2 Vgb;) —BK(2 ¥ by) =0.
Solving for A 'and B from Egs., (A-5) and (A-7),

A-D

A=K VR4, )
B=L(2 5,/ 4 (A8
where
S= L2 VI K@ VB + L& VR Ko2 V.
(A-9)

Now the objective function (7) is given by
o py.d8
J= b:(bl 62)7; bl

= v/ gy (b1—b2) {AI(2 ¥ b)) ~ BKi(2 Vb))
(A-10)

where A and B are given in (A-8), and from (A-3)

B S o=b) 1
= bt (a-11)

In case when bi=é; Eq. (14) becomes

a6

2hl
==,

bik

(A-12)

The solution is given as

e
b=15em
Where
2hi.

A=V bk

Hence

= —biAtanha. (A-13)
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