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Abstract

We have applied the temperature dependent Thomas-Fermi theory to evaluate
'the equations of state, chemical potentials, entropies, % ionizations, total
-energies and kinetic energies of an atom, and seveal thermodynamic quantities
of one of metallic substance, Na, for a density range of (.1 p¢~10 00, where
Po is the normal density of Na at its melting point, and for a temperature
range of 60,83Ryd. ~(.0216 Ryd., where the system is expected to be in a
.gaseous or liquid state,

The main interest of present work lies in physical quantities at high tempe-
ratures and high densities, however, we have included those quantities of Na
at sufficiently low temperatures and low densities to show that the approximation
iis not so crude as one might expect,

Particularly, at high temperatures, the calculated equations of state, 'k‘irnetic
.energies of an atom, chemical potentials and entropies are compared with those
-of an ideal Fermi gas. The results show that, at high temperatyres, the
.agreement seems good for chemical potentials, However, the differences in
.entropy, kinetic enexgy of an ‘atom, and equatlon of state are not neghglble

«even at such high temperature as 27T = 60 88Ryd
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I. Introduction

Thomas? and Fermi? suggested the Thomas-
Fermi theory for calculations of the Self-
Consistent-Central-Field potentials and electron
density distribution functions of the ground state
isolated atoms. Since then, the theory has been
developed to include the exchange effect® and
to treat systems of non-ground state finite
atoms®,

Even though the precise structure of shells is
not present in the approximation, qualitative
behavior of the electron density distribution
function about a specific nucleus seems to be
acceptable, Especially, the theory yields excellent
S.C.F. potentials?®, The approximation is
expected to be improved as temperature and
density of a system increases®,

Due to its simple and fast numerical proce-
dures, the theory has a definite advantage over
the other theories when we are to evaluate
physical quantities at high temperatures and
high densities,

Throughout present work, we have developed
a computer program to solve the Thomas-Fermi
equation and to calculate physical quantities of a
given system, Effort has been made to minimize
the size of program so as to be adequate to
small computers,

. Thomas-Fermi Theory

a) Thomas-Fermi equation
If we let V(r) be the average electrostatic
potential felt by an electron at a distance r

from any specific nucleus, then Poisson’s equa-
tion gives

72V :{;—po). '6))

where € is the dielectric constant in vacuum,
e(r) is the
electron density distribution function about a
given nucleus, The Thomas-Fermi theory
approximates p(r) by

8 (~ P2
P(I‘) ::_3— 3 — dP‘
k j‘°e}{p{IS(%DﬂT——eV(r)—oz)}-l-l
, @
Where 4 is Planck constant, g8 is t™!=(T)},

e is the charge of an electron,

and Ba is the chemical potential of a system.
Since as r—0, V{r) —’ﬂeeo_r_’ and when ris at-
ion-sphere radius, R,, "V (r) is expected to be
constant, the boundary conditions may be written,
as

at r=0,

d_dgr_)zo
where Z is the atomic number of a given,
system, The ion-sphere radius is determined by
the average electron density p of %—nR,"‘p:Z,
since Z electrons are located inside the ion-
sphere.

at r=R; 3

Since it is more convenient to transform Egs.
(1), (2), and (3) into a dimensionless equations,
we will transform the above equations by letting

(r) = dr& (e;/?) ta) , @

and

r

= R: (5)
After the above substitutions, Egs. (1), (2)..
and (3) are written as

d(z) _ $(x)
a0 E) ©
$(0)=1 )

and

#(x) :—é%g@— at r=1, )

where
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I;i(y) “J‘ o exp(t—y) +1
‘When we employ the Bohr unit,

-a and & in the Eq. (6) is

dt )

the constants

_ 3¢l
" on%

Integrating Eq. (6) from z to 1, we get

) _ @)
EP =2 e cW—6@

‘where
G@={ ”zI%(bet—))dt. 12)
Again integrating Eq. (11) from 0 to z, and

replacing ¢' (1) by ¢(1
$(2)=¢(0) +# (D) z—a(zG(1)

~f “G()dD.

The last term in the above equation is integrated
by parts to yield

$(2)=4(0) +¢(1)x—axfit1%(bi§f)—)dt
2]

+af itzzg(bi‘(tﬁ—))dt. (13)
Tf we put z=1 into the above equation, we get
1
s =a [ 213(s£2 )a (14)

It seems worthwhile to dischss the significance

of the above relation, Since the electron

density distribution function is proportional to
I%(b $(t) ), one of the boundary conditions, ¢(0)

t
is identical with the normalization condition,

This point is particularly important when we
attempt to solve the Thomas-Fermi equation for
Unlike the
the ionic core size or the

a system of ions and electrons.
chemical potential,
percentage ionization can not be self-determined,
Once percentage ionization or ionic core size is
determined, then we may preceed to solve the
Thomas-Fermi equation for the system of ions

and electrons,
From Eqgs. (13) and (14) we get
$(2)=g¢(Dz+a f it(t—x)I%(bgt%%)—)dt
(15)
The above equation is the Thomas-Fermi equa-
tion expressed in an integral equation, Since
the average electrostatic potential varies rapidly
transform the above

near nuclei, we will

equation by letting

x = u?,
t =175
to write

$W)=p(De+2a [ 3 (w2 —12)
Ié(b—LS;) )av. (16)

The above integral equation is to be solved
numerically starting from z=1.

Detailed numerical procedures for the above
equation have been reported”, we will not

discuss here the numerical procedures,
b) Equations of state and thermodynamic
quantities of a system by the Thomas
Fermi approximation

Once the self consistent solution of the
Thomas-Fermi equation is obtained, the electron
density distribution function, p{z), is readily

calculated from the following equation,
_1 $(2)
p(x)—§aI%(b =) a7

When z — oo, or for the system ofiideal Fermi
gas, p(z) is expected to approach to the
average electron density p. Thus,

3 (6g(D) = —;’r}p (18)

The above
chemical potential, p=54(1), of the ideal Fermi

relation is used to determine the
gas and asymtotic behavior of the chemical
potential of actual system at high temperatures.

The kinetic energy and total energy of an
atom can be evaluated from the following

equations®,
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Bv= 2 ZacTy(bg (D) +LabZs [ w1

+¢(u))1£(b $) du—}5224(1)
(19

E,:Ek—aber ;u3 (1+¢@w)

1,(629 gy 4 Lszep() (20)

At a suﬂic1ently high temperature where the
electron density distribution is considered to be
uniform, $(u)zr is

$@rr=1+¢(Dur—Sut+1us. @)
On the other hand, ¢(u)r for the system of

ideal Fermi gas is
¢(u) r=g(1)u? (22)

Thus, as u—0, ¢(0)rr—1, while $(0)r—0.

Since |¢(1)| is very large at high tempera-
ture, for the most range of #, 0<u<1, ¢(u)rs
Z¢(u)r. However, as u—0, $@)rr—1+¢(u)r.
The value ‘1’ in the right hand side of Eq.
(21) accounts for the short range Coulomb
interaction which is missing in an ideal Fermi
gas. Therefore, at sufficiently high temperature,
Errr is given by

Enp——-Zaz'I%(bgé(l)) + bZz' (23)
while, the kinetic energy of an ideal Fermi gas,
Esr, is given by

EkF:%ZatIg(ng(l))-I-%bZt (24)

Thus, 4E:, the difference in the kinetic energy
of an atom between actual Coulomb system and
ideal Fermi system is

AEb:EkTF_EkF:%ObZT 25)
which is due to short range Coulomb interac-
tion, Since pV:%E;-i-%Ep, the expression for
the equation of state is obtained to write?

PV/k TZ%—ZaIg (34(1)) (26)

where V is the ion-sphere volume, Since 13 (5¢
D)3y (64(D), as 0P, PV/AT~Z as

700,

Finally, the entropy, S, is evaluated by the-
following equation?®,

Sik=-2-s—2ab7 [ w1, (624 )
@7
At sufficiently high temperature where the-
electron density distribution is considered to be-
uniform, 4S8, the difference in entropies bet-
ween actual Coulomb system and ideal Fermi:

system, is expected to be
AS/k=Srelk—Ss/k=—18Z  (28)

When the electron density distribution is uni-
form, the chemical potential and the equation

of state of the Thomas-Fermi theory will
approach to those of the ideal Fermi gas. The-
entropy and kinetic energy of an atom by the-
Thomas-Fermi theory, on the contrary, will’
not approach to those of the ideal Fermi gas.

However, the difference in the entropy will
euentually approach to 0 at infinite temperaure,

while the difference in the kinetic energy will.

persist to exist,

I. Equations of State and
Thermodynamic Quantities

The equations of state and several thermo-
dynamic quantities of Na at various temperatures
and densities are evaluated. Present calculation
covers the density range of 0. 1po ~ 10ps, where
oo is the normal density of Na at its melting
point, and temperature range of 60.88 Ryd. ~
0.0216 Ryd. Throughout those temperature and
density range, the system is expected to be in
a gaseous or liquid state,

Particularly, at high temperatures, the equations
of state and several thermodynamic quantities-
of Na by the Thomas-Fermi theory are com-
pared with those of an ideal Fermi system. All’
the units in this report are expressed by Bohr
unit,

Fig, 1. shows the chemical potentials which
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Fig. 1. Chemical potentials

Fermi equation at various temperatures

densities. The evaluated chemical pptent;als, arg
in good agreement with those by Latter” even .-
though his results are not for actual systems, .
When temperature of a system is sufficiently
high so that an electron density distribution is. -
considered to be uniform, the chemical potential- =

47%/2p

approaches to In (
— oo as —1.5In7,

The equations of state, PV/iT,
densities are shown in Fig. 2. The behavior-of
PV/ET at lower temperatures is quite different
from the one of ideal Fermi gas.
PV/ET increases as average
density of a system increases, While at hig}}éf
temperatures, it decreases as average density 91-'
a system increases. ‘

At £=60.88 19.57, and 6 288Ryd., the
equations of state, chemical potentials, entrop1es
and kinetic energies of an atom calculated by

At lower
temperatures,

B.W.ch
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those of 1dea1 Fermi gas, As we may rietice
from Table 1 and Fig. 3, at high temperatures,
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Table 1. b= log?{
Y 60. 88 19.57 6,288
PV/ET J7 PV/ET 7] PV/ET u
o’ actual | ideal | actual | ideal | actual | ideal | actual | ideal | actual | ideal | actual | ideal
—1.0 10.53 11.00 —8.638 —8.592 9.958 11.00 —6.989 —6.889 7.633 11.01 —b5.551 —5.184
—0.8 10.53 11.00 —8.176 —8.131 9,848 11.00 —6.539 —6.428 7.304 11.02 —5.122 —4.723
—0.6 10.53 11.00 —7.714 —7.670 9.723 11.01 —6.C91 —5. 967 7.152 11.03 —4.694 —4.260
—0.4 10.52 11.00 —7.254 —7.210 9.579 11.01 —5.€45 —5.506 6. 913 11.04 ~—4.267 —3.797
—0.2 10.50 11.00 —6.796 —6.749 9.414 11.01 —5.202 —5. 045 6.683 11.07 —3.8:9 —3.332
0.0 10.47 11.00 —6.338 —6.288 9.233 11.02 —4.760 —4. 583 6.470 11.11 —3.4C9 —2.¢864
0.2 10.42 11.01 —5.882 —5.828 9.036 11.03 —4.320 —4.120 6. 283 11.17 —2.574 —2.392
0.4 10.36 11.01 —5.428 —5.367 8.833 11.05 —3.881 —3.656 6.123 11. 27 ~—2.533 —1.913
0.6 10.28 11.01 —4.974 —4.905 8.632 11.08 —3.442 —3. 191 6.032 11.43 —2.082 —1.424
0.8 10.19 11.02 —4.520 —4.443 8.436 11.13 —2.999 —2.722 5.959 11.68 -—1.612 —0.9176
1.0 10.08 11.04 —4.071 —3.980 8.266 11.20 —2.556 —2.248 6.062 12.08 —1.124 —0.3851
— 14
Table 2. pr=log—~
i 60. 88 19.57 6.288
Ey Sik Ex Slk E, Stk
o actuaﬁ ideal | actual | ideal | actual | ideal | actual r ideal | actual | ideal | actual | ideal
—1.0 1120 1015 119.5 122,3 520.9 333.2 99.73 104.2 412.2 114.3 69.86 87.32
—0.8 1119 1017 114.8 117.3 525.8 335.0 93.61 99.24 416.2 116.1 €5.09 &2.72
—0.6 1120 1019 110.0 112.3 531.0 337.3 88.48 94.37 420.1 1182 60.43 7819
—0.4 1122 1021 105.1 107.3 536.5 339.6 83.34 89.49 423.9 120.6 55.89 73,73
—-0.2 1125 1024 100.2  102.3 5421 3424 7820 84.66 427.8 123.6 51.47 69.41
0.0 1128 1027 95.24 97.29 548.0 345.8 73.07 79.87 431.7 127.2 47.20 €5.22
0.2 1132 1032 90.24 92.34 554.1 349.9 67.96 75.13 436.0 131.5 43.06 61.16
0.4 1136 1036 85.21 87.27 560.7 354.8 62.90 70.44 440.4 136.8 39.07 ET.30
0.6 1141 1041 80.16 82.45 568.1 360.7 57.91 65.82 445.2 143.3 25,22 b3.64
0.8 1147 1056 75.04 77.55 576,0 368.7 52.98 61.35 450.4 151.6 31.51 50.27
1.0 1154 1066 69.99 72.70 585.0 386.7 48.19 57.67 456.8 162.2 27.95 44.42
the chemical potentials and the values of PV/2T However, as we may notice from Table 2,

by the Thomas-Fermi theory are quite close to
those of ideal Fermi gas.

As far as the electron density distribution is
uniform, the chemical potentials and the equa-
tions of state of actual system should be in
complete agreement with those of ideal Fermi
system,

the kinetic energies of an atom calculated by
the Thomas-Fermi significantly
different from those of ideal Fermi gas. Even

theory are

if we correct the kinetic energies of an atom
by the amount of 4E; given in Eq. (25),
disagreements between both theories are not
negligible, This fact may be explained as fol-
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Fig. 6. Electron density at r = R,

lows: If temperature of a system is sufficiently
high, the electron density distribution may be
considered uniform. As the temperature of a
system lowered, electrons will be built up near
a nucleus, Overall, the electron density distribu-
tion might be still considered to be uniform,
However, this electron build-up near nucleus
will increase the kinetic energy considerably,
since electrons near a nucleus have very large
kinetic energy,

At sufficiently high temperatures, we may
treat a real system as a system of ideal Fermi
gas, This give an excellent approximation to
the chemical potentials of a system, and a rather
good approximation to the equations of state and
entropies. However, this may results in a poor
approximation to the kinetic energies of an
atom,

The total energies and kinetic energies of an
atom at various temperatures and densities are
shown in Fig. 4. As temperature of a system
decreases, the magnitude of the total energy
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approaches to that of the kinetic energy. The
difference in the magnitudes of the total energy
and kinetic energy is due to the first term in
the right hand side of Eq. (19) which is
approximately proportional to (_p&)% when
the temperature of system is extrenfly lo’w. We
will see later that that is ionization ratio. 7.
Therefore, the difference in the magnitudes of
the total energy and the kinetic energy will be
proportional to »§. At very high densities,
where % ionization is not negligible even at
ground state, the differences in the magnitudes
of the total energies and kinetic energies are
expected to exist,

The relation between the entropy of a system,
S, and the relative density of a given system
is shown in Fig. 5. At high temperatures, S/k
is proportional to the logarithm of relative

density as expected by Eq. (27).
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The electron density distribution function at
r =R, is shown in Fig. 6. If we decompose
the electron density distribution function into
two parts; the electron density distiibution
function due to electrons in continuum states
and the one due to electrons in bound states,

The electron density distribution function due to

Fig. 7. % ionization

J. Korean Nuclear Society, Vol.10, No.8, September, 1978

electrons in continuum states is uniform throu—
ghout whole range of r. While, the -electron
density distribution function due to electrons in
bound states should vanish at »=R,, since the
bound state electrons should stay inside of an
atom, Thus, we may regard the electron density
distribution function at »r = R;, p(R;), be the:
uniform electron density distribution function of
Therefore, %
the percentile of electron in the:
continuum states, may be calculated by (%) =
&XIOO(%), where 7 is the % Ionization,

Peig. 7 shows % ionizations at various den-
sities,

the continuum states electrons,
ionization,

As the average density of electrons.
increases, dependence of % ionization on the:
temperature of a system becomes insignificant.
At low temperatures, % ionization increases as.
density of a system increases, However, at
high temperatures, the situation is reversed,
This seems because, at high temperatures where-
a large portion of electrons is ionized, the
decrease in ionsphere radius forces ionized
electrons into bound states,

The ion-core radius, which is shown in Fig,
8, is determined as follows: There is a distance

r from a given nucleus such that beyond this.

@0
no"‘:’_—1
" z.0208
. Ts0880
| z-2021
T=6.288
o— \
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ot 10° pral ©
I 7/

Fig. 8. Ion-core radius
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distance the electron density distribution due to
the bound states electrons can be neglected.
Beyond this distance, r2p(r) behave like constant
X 7%, We determined the ion-core radius as a
distance » from a nucleus from which »%p(r)
starts to behave like cons. Xr2.

The calculated ion-core radius may provide
helpful data, when we are interested in the size
of the ion-core or when we are to apply the
Thomas-Fermy theory to a system of ions and
electrons.

V. Conclusion

It has been shown that the Thomas-Fermi
equation can be derived by using the W.K.B.
wave functions. ® The method approximates the
electron density distribution function by using
the W, K. B.

provide a helpful guidance when we are intere-

wave functions, This fact may

sted in the validity of the Thomas-Fermi
approximation,
The W, K. B,
the potential changes so slowly that the mo-

approximation is useful when

mentum of a particle is considered to be cons-
Thus
the approximation breaks down near a nucleus

tant over many de Broglie wavelengths.

where the potential varies rapidly. The same is
true for case of the Thomas-Fermi approxima-
tion,

The most significant defect in the Thomas-
Fermi approximation lies in the electron density
the short
range defect of the Thomas-Fermi electron

distribution function. Especially,
density distribution function seems to be disas-
terous, However, we must not overlook that
the same approximation yields excellent S,C F,
potentials, The validity of the approximation
seems to depend on which quantities we are
interested in,

As the temperature and density of a system

increases, the approximation is expected to be

improved.

The errors in the Thomas-Fermi quantities at-
extremly low temperature and density, where-
the approximation 1is expected to be worst,
might provide criteria for maximum possible:
errors in the Thomas-Fermi quantities,

We have seen that the chemical potentials of
ideal Fermi gas are very close to those of actual
system, The density build-up near nucleus due
to the electrostatic interaction seems to affect
little on the chemical potentials of a system.
On the contrary, it seems to affect significantly
on the kinetic energies of an atom,

The S.C.F. potentials, chemical potentials,
equations of state, and entropies of a given
system seem to be rather insensitive to the:
electron density distribution function, However,
the kinetic energies and total energies of an
atom seem to be sentive to the electron density
distribution function,

We expect that the Thomas-Fermi approxima-
tion should give good approximations to the
quantiries which we have evaluated except for
the electron density distribution functions and
total energies and kinetic energies of an atom,

We have found that, at extremly low tem-
perature and low density, the error in the
Thomas-Fermi kinetic energy and total energy
of an atom is about 100% even the order of
the magitude is correct, That is not disappoin-
ting if we consider the machine time consumed
to evaluate those quatities, Qverall, the tem—
perature and density dependence of the energies
of an atom seems to be acceptable, If we are
to improve the physical quantities which depend
strongly on the short range behavior of the
electron density distribution function, we have

to modify the electron density distribution
function?,

The machine time consumed to evaluate all
the quantities presented here depends on the in-

put chemical potentia. When exact in-put
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chemical potentials are known, it consumed
about 2 minutes for calculating all the quantit-
des at given temperaure and density when
a FACOM 230-35 are used, When the exact
in-put chemical potentials are not given, it

consumed about 12 minutes,
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