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Reliabilty of a System with Standbys_ and Spares
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Abstract

This paper investigates the reliability characteristics of a system consisting of a unit _operating
on-line and backed by n spares among which m units are kept *werm” as standbys resdy-to go on-line.
“The on-line unit has an arbitrary lifetime distribution, while the warm standbys have exponential
failure time distributions. "The failed units are repaired and brought back to service. The cold spates
do not. fail while in storage.

Solution of this extremely complicated queuing problem using a srenewal counting® epproach is pre-
sented and extended to the situation where the warming-up takes non-négligible time. Finally, an
approach to the economic system management is discussed, considering the long-run availability, -cost
of keeping spares and repair facility, and the associated cost of restarting the system after a system
failure, |

The model presented in this paper will have many applications including the determination of
the spares inventory and the number of field spares to be “carried.”

" Introduction

One way of increasing a system’s reliability is to provide sufficient spares as standys When the
on-line unit fails, it is replaced by one of the standbys. However, in order .tg: n:umnuze the delay
during a switchover (until the replacing unit is -properly “warmed up”), it may be necessary to
keep a specified number of spares “warm” ready to go on-line. :

There are at least two distinct §ituations where fhis concept of warm standbys is appropriate:

1) For example, an electronic gear may stand by with its vacuum ‘tubes llterally “warm.”

2) As a second example, a standby unit may “gocompany” the principal unit, In this casé, the
standby unit is not actually used on the job, but may fail due - to the environmental stress and
handling. The extra units at the base (or storage) may be regarded as the “cold” spares.

It may not be necessary to keep all the spares warm. However, the risk of keeping too few
warm standbys is that the system is unavilable during the switchover to a cold spare. Furthermore,
once the system shuts down, it may be necessary to restart the system at a great cost.

Natarajan, et al (1], have investigated the reliability characteristics of a single-unit system with
spares when all associated distributions are exponential. Subramanian, et al [2], have conmdered
the reliability of a repairable system with several standby redundant units where the failure
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distributions of the standby units are identical. In this paper, the results of Subramanian, et al, are
extended to two types of standbys and a method of handling the warming-up delay is presented.
The on-line unit is subject to specified loading conditions and is assumed to have a general
lifetime distribution. The warm standbys, however, are not actively loaded and are subject to
chance failures caused by external random infleences. Then the failure rate of a standby unit may be
assumed to be a constant (=2). Then due to the memoryless property of the negative exponential
distribution, the lifetime of an on-line unit is indepedent of the dutation it served as a standy unit.
When the on-line unit fails, it is immediately replaced by one of the warm standbys, if one is
available, If not, it is replaced by one of the cold spares and after a warm-up period the system
restarts. The repesir time is assumed to be exponential with parameter . The repairs ae are carried

out on a first-in, first-out basis.
In the following presentation, analysis begins with a simple case where the warm-up time is

negligible compared to the cumulative lifetime of all the warm standbys.
Reliability Analysis

When the system does not have the repair privilege, the reliahility of the system, R(t), is a
very important design criterion, which is defined as the probability that the system has been
operating over the interval 0 to time t.

Let {(t} be the general probability density function (pdf) of the failure time of an on-line unit.
Let Fi (¢) be the probability that the system is down at time t, given that at t=0 there were
operable units in the system including the on-line unit among which min (m,i-1) units were kept
warm ready to go on-line. Then, assuming that the warm-up time is negligible, the reliability of
the system is

R(B=1—Fan(t).
Since the system can fail only at a renewal point in time when the on-line unit fails and there

are no operable spares,
F.(y=1

F() =;Z::_[:¢.—-u(z) Fi(t—z)dz, im=l,-ntl. (Eq. 1)

where G () =p:; (- f(1),

s ] spares are | { spares were .
#(t) =Prob. {operable at t| operable at tzO}’ 2.

Taking Laplace transforms of Eq. 1 and writing
Fr)=L F@)= [ euFar

Fr=1

Ff*(s)=:E::45*:-1;(3)F*,-(s), i=1,, e , 141, (Eq. 2)

The F..1*(s) can be obtained by solving the Eq. 2 successively, and then inverted to ohtain
Fani ().

In order to obtain the expression for pi; (#), which are necessary for @*;;(s), consider the
following failure process associated with spares. The system starts working at time #=0 with i
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spares among which min(m,i} are warm standbys. Suppose the on-line unit fails at time t, Let the
probability that the system is in state i, p:(2), be defined as

Pi(2) =Prob. {i spares are operable at time t}.
The transition probebilities A: of the transition from state i to state i-1 are given by

J’:Z if 0<li<{m,
Ai=imi if m<i<n
0  otherwise.

The equations governing #:(2) are:
2 @) =2p (),
PO =—tpi@) + 1) Apias(2), 1Ki€<m—1,
2O =—mip:i @) Fmlpia (@), m<i<n—1, \ (Eq. 3)
P’ @) =—mipa(t) '
Taking Laplace Transforms of Eq. 3 and writing 2.2 (5) =L {0} =I: et () dt,

with the initial conditions, :(0), ¢=0,...,n, the following equations are obtained:
sp*{$) —Ap*1(s) =p. (D)
(s +iDpX* () — G+ D Aprar* (5) =£:(0); 1<i<m~—1
(s+mA)p* () —mApin* () =pi(0); m<i<n—1 (Eq. 4)
(s+mA) 2 (s) =pn (0) '
Solving the above system of equations by Cramer’s rule, we obtain
2@ =L"Hp* (N =L"1{D:«() /D),

where
5 -2 (Fremrsonrrnrarasnsrensiiarartismsnssininarraesnasnnsnrs 0
1] s+2 — 22 Deercrsrnerranvarrisiriisnanatiristrtissaarnis 0
DE=l e (Eq.’ 5)
(I TTTTTTT I { s+ (m_l)z —mi (hormmrrnmnaiiss 0] -
[reersnnnarrmrsnssneracnncssnnnes [¥] 3+m2 -—-mz [ 0
0 0 s-Fmier—md
0 ................................................................... 0 ......... 23 +m‘z

The D:(s) is the determinant obtained by replacing the i** column (counting from- the 'zéroth) in
D{s) by the initial vector.

Then p:; () =p,(t) with initial conditions :(0)=1, p;{0)=0, j=i. That is,

@)=L "p:*) =8 1D (5} /D(s)}; where Di;(5s) is obtained by replacmg the J"‘ colum
{counting from the zeroth) of D(s) in Eq. 5 by a unit vector i

System Availability

When the system has the repair privilege, the pointwise availability of the system, A{f),is =
pertinent design criterion, which is defined as the probability that the system is cperating at time t.
Let f(£) be the pdf of the failure time of an on-line unit as before. Let G:(£) be the probability
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that the system is down at t, given that at #=0 there were i operable units in the system includ-
ing the on-line unit among which min(m,i-1) units were kept warm.
When the warm-up time is negligible, the availability of the system is
A@) =1—Gai(t). :
Proceeding as earlier, noting that the number of 6perab1e spares may increase or decrease in time,

G, (z)=e-v=+j:pe-ﬂcl(z—z)dz,

GO=% [ Tiul® GiG—a)dz, i=1,...,n+1, ®a 6
where QT (8 =qu; () f)

qu(y=Prob. [} TR 20 | o)
Taking Laplace transfonns of Eq. 6,

G Gi) . (Ea. 7

Gg*(s)mE‘:D@";-u*(s)Gg*(s), i=1...,n+1.

In order to obtain the expression for g:;(¢), consider the fdllowi,ng birth-and-death process
associated with the spares. . '

The system starts working at time : ~0 with § spares among which mm(m,;) units are warm
standbys. Suppose the on-line unit fails at t. Let the probility that the system is in state 7,q:(¢),
be defined as

4:(£)=Prob. {i spares are operable at time z}.

The transition probabilities 2; and. g of the transition. from the states 7 to i—1 and i+1 are

given by

iR i 0<Zi<<im, o if 0<i<n,
A=imd  if m<i<ln, - and p_.-z( 5
0 otherwise, o : ' 0 otherwise.

“The equations governing ¢;{f) are:
¢' () =—pg. () +A9:(t) _ o
g () =pg:-1(2) — A0 (O -+ i+ D Agia (t), 1<i<m—1 (Eq. &
@' O =pq:0() — (mA+ 1) ¢:(8) +maAgin (), m<<i<n—1
@' (1) =pign-1(£) —mAga{(2).

‘I‘akmg Laplace transforms of Eq 8 and writing ¢;*() =L {g:(®)}, with the initial conditions,
gi(0), i=0,...,m, the following equations are obtained:
($+#)q-*(5) lth*(-f) =0} -
—pgs 1*(s)+(s+zl+p)qa*(a‘) (i+1)2gss* (s)- =¢:(0), 1<i<im—1 (Eq. 9)
— @i () (st mA+ ) () —mdg* (5) =g:(0), m<i<n—1,
—1ign-1* () + (s +md) ¢.* (s) =g.(0).

Solving above system of equations by Cramer’s rule, we obtain

() =L gD =L£1{D:(s}/D(s)},
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~where :
s+p —2 0 [rermeneonernrarntostasitsmsnritasssntnsaassnsnnensiansiss 0
—u 5+2+ﬂ —22 Durvessrrranes T R L L DL PR TR 4]
_D(S): 4] 0 —u 3+(m—1)2+# —mA Qevren R L PR 0 (Eq_]O)
90 0 —u stmitp —mid Onreveeneae0
0-....--n..-..-.-............-.‘ ........................... 0 .—p s+mp+p _mz

The D:(s) is the determinant obtained by replacing the #** column in D(s) by the initial vector.
Then gi; (1) =& ge* ()} =£71{D:s(s) /D(s)}, where Di;(s) is obtained by replacing the j*

column of D(s} in Eq. 10 by a unit vector i
The Ga:1*(s) con be obtained by solving the system of equations Eq. 7. Then the steady state

availability of the System, A, is
A=limA(2) =1—HmGr1 (&) =1—lim $G.*(0).
t- o toa o

Tlustrative Solation Procedure

Suppose the failure of an on-line unit is governed by the gamma distribution,
f@)=4e®,
whose Laplace transform is,

wry [ 2 ]2
-5 |
Assume that there are 2 spares 1 of which is a warm standby. Without loss of generality, the
failure rate of the warm standby is assumed+to be A=1, since the measurement of the time can be

made on an arbitrary scale,
Then without the privilege of repairs, the reliability analysis may proceed as following:

From Eq. 5,

s - 0
D(s)=s5|0s+1 —1 [zs(s—i—l)2
0.0 s+1]

“The p::*(s) are obtained by Du(s)/D(s), then inverted, multiplied by f{¢), and retransformed
into ¢:;*(s). Then from Egq. 2,

1252412854324
s+ (s+3)* -

Inverting Fs*(s) by partial fractions (3] or numericsily (4} and subtracting from 1.0,

Fs* (S) =

R(t)=(58:—163)e > + (-g-t"+28:2+1081 +164) e

A plot of this reliability curve is given in Figure 1 along with the reliability characteristics of the
<on-line unit only,

R.(t)=e2(1421),
and the reliability of the system with 2 cold spares only,
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R (2) =e‘3'én(2t) kfk!

If repairs are performed at the rate of u=3, the analysis of the steady state availability may

proceed as following:

From Eq. 10,
s+3 -1 0

D(sy=! =3 s+4 —1 |=s(s+4— ¥ 3T) (s +4+ ¥ 3).
[0 -3 s+l

The g:*{s) are obtained by D:;(s)/D(s), then inverted, mgltiplied by f{t), and retransformed
into ¥,;*(s). The matrix of ¥y (0) and ¥’ (0) for the given problem are,

24,289 .471) .15 .268 .582
T (0)=|.096 .3 .603] T/ (0)=—.089 .254 .656
.052 . 201 .747J .065 .219 .717)

A: Availability (with repairs)
R: Reliability (without repair)

1.0 - A2¢(8)
{2 cold spares)
N\ (I warn/1 co1d)
. B
A (t)

S .6 °
o {no spare)
ol
1=~
&
I 04 -

.2 —

)

time (unit: 1/3)

Fig. 1 Reliability/Availability of the System Given in the Example with Different Provisiens
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Specializing the .system of equations Eq. 7 for #-=2 and solving for Gy*(s)
Gs* () =Du(s) /D(s},

where
1 —_L 0 0
D(sy=| —Fp* (s) 1"‘@'01* (s) ~Foz*(s) 0
—Tw*(s) —TFu*(s) 1-F*(s) 0
=TFu*(s) —Fau*(s) —Te*(s) 1
Di(s) is obtained by replacing the last column in D(s) by a column vector [ paral 0, O 0]

—1_1; _ Di(s) - '
Then A@®)=1lim sGs* () =1—[ D)., = 8788,

It is interesting to compare this result with the steady state availability of the system with 2
cold spares only, As,=.9897, and the availability of the on-line unit without spares,
A(B)=.6+¢2%{ 4 cos 1.9365¢+.5164 sin 1. 93652}
as are plotted in Figure 1.

Warmup Time

When the warming up-of the spares takes considerable time, the availability of the cold spares
can not guarantee the system’s berfonnance. For examgle, an “acodmpanyi.ng” standby unit replaces
the failed principal {on-line) unit and another unit at the base {or storage)} is called in (warming
up) as a warm standby. But the current on-line unit wathout any warm standby may fail before
the requested unit arrives. _ :

Let w({t) be the general pdf of the warmup time of a cold spare, and W) be its curulative
distribution function. Then Eq.6 should be modlfned to take the warmup time into account as
following:

Go(t) :e‘l“-}-‘[:pe'“ 1-W(t—=2)} dz-l—fifjp.e""w (z—3)G (t—2)dydz

(Eq. 11)
Gi(t)= zj Ti 2 (t—2)dz, i=1,...,n+1,
The additional terms in G.(#) in the Eq. 11 reflect the fact that in order for the system to
fail at t (system was down at =0), one of the following should occur: (1) no units are repaired
by time t, or {2), at least one unit is repaired some time before t but not warmed up by timet,
or (8), at lesst one unit is repaired at y<(#, warms up at z(y<lz<2) to fail at t.
Taking Laplace transforms of Eq. 11,

G o= (P )2 (6 (9} (Ea. 12)

G+ {s) =§g‘_1j*(s) GH(s),  i=l,...,n+l

Note that if warmup time is ignored, that is if w(f) is assumed to be an impulse function §(0),
Eq. 12 reduces to Eq. 7.

Distribution of the Time to System Failure (wl_th Repair)

One of the design criteria frequently neglected in reliability analysis is the restart cost accompany-
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ing a system failure, DUnless the failed on-liné unit ‘is'-immediat.ely replaced by a - warm standby,
the system will be down until the cold spare warms up properly. Dependmg on the system, the
restart cost may be substantial even if the warmup time (and the unavailability during the warmup)
is of short duration.Generally, the penalty for restarting, in the Iong run, is inversely proportional
to the expected duration of time to system failure.

Let f(£) be the pdi of the failure time of an on-line unit. Let ﬁ(r.) be the pdf of the time to
system failure, given that there are i operable spares at t=0. Since the system can fail only at a
renewal point in time when the on-line unit fails and there are no operable warm standbys,

f.-(t):%,,(t)+§1J:ﬁss(z)f;_1(t—z)dz, i=0,1,....m. BB

where
Fo(t) = (t)f @®,

Fi;()= f;f(y)Qij(y)w(t—y)dy, if m=0,
Ts=f® [ aswi—ndy, if 1<m <n,

(Y — j spares are | i spares were
¢::(¢) =Prob, {operable at t ! operable at t}.

Since ail the spares are operable at =0, the function f,{#) is the desired one.
The expected value of the system lifetime, given that there are ¢ operable spares at t=0,
Exp (T7] is

Exp [T)=——2f*() with f*©O=L
Since from Eq. 13,

FAO =T )+ 2T i)

Exp (Td=—Fi¥ () = ST+ Ofrr*0) ~ T2 O 0
= _.ig;w“w (0) -—‘élﬂf“* (O)f,-_ & (0)
—Exp T:+nJ+Z§F‘,,*(0) Exp [ Ti1), (e, 10

where

Exp (Treed=— 50" (0)

:—535 {f:f(y)w(t—y)éyi],=,

=Exp [ T+)+Exp( Tw] when m=0.
=Mean lifetime of the on-line unit+mean warmup time

Exp (Trvs)=—— & 18- WD} 2o
—~ExpLX) where pdfs(1)Sf(t)- W) when m32L.
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The expected value of the system lifetime with repair privilege is Exp[ 71=Exp[ T\) ﬁhich can
be obtained by solving the system of equations Eq. 14.

System Management

In order to manage the system in an optimal fashion, the optimal number of warm standbys and
cold spares may be determined for a given level of repair capebility. Furthermore, if the cost of
repair efficiency can be gquantified, overall optimal policy may be obtained for the system design.

To quantify the cost of repair efficiency, consider the penalty of the system unavailability and
the cost of repair facilities. It is reasonable to assume that the penalty is proportional ($,) to the
fraction of time the system is unavilable, i.e., 1—A(n,m,p). The A(mm,z) is the longrun
availability of a system when there are »n spares, m of which are warm standbys, and serviced by a
repair facility at the rate of g The cost per unit time of keeping the repsir efficiency at the rate
of: g is denoted by $,(u). The cost per unit time of keeping » spares is denoted by §.(n).

H the restart cost is of such a magnitude that cannot be neglected, the long-run cost of restart-
ing/umt time; $.(n,m, ), is

' __ cost of restarting system
$ t(ﬂ,m,ﬂ) — EXPE T:I

Finally, we wish to minimize the total cost given by

$ () =$-()+$.(n) + S (t,mp) — $ AL, ).

Summary

A mathematical theory for the solution of reliability/availability characteristics of a system with
warm standbys and cold spares has been presented with an illustrative numerical example. No
simplifying assumption was made regarding the lifetime distribution of the on-line unit, The result
was further extended to the situation where slow warmingup of the cold spares causes the system
unavailable during the switch-over.

The computations involved are generally cumbersome if there are more than several spares. For
any realistic application of the theory, numerical analysis would be most destrable.
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