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INTEGRABILITY CONDITIONS OF STRUCTURES SATISFYING 

fk j: fr =0, (k르2r) 

By S. C. Rastogi and V. C. Gupta 

1. PreIiminaries 

Let M
n be an n-dimensional differentiable manifold of class C∞ equipped with 

a (1. 1) tensor field f(놓0) of class COO satisfying 

(1.1) jk j: jr =0, (2 rank f rank jk-r) =dimMn• 

Let 1 and m be the operators defined by 

(1. 2) 1= 후fk-r， m=I±fk-r, l+m=I, 
where 1 is the identity operator, then these operators applied to the tangent 

space at a point of the manifold are complementary projection operators. 
Let L and M be the complementary distributions corresponding to the projec­

tion operators 1 and m and the rank of j be p (a constant) then from (1. 1) we 
obtain dim L=(2p-n) and dim M=(2n-2p) , where n드2p드2n. Such structures 
have been cal1ed by the authors [4] j(k, :t r)-structures of rank p and the 

manifold Mη with these structures j(k, :t r)-manifolds. 
A tensor field j satisfying (1. 1) and (1. 2) also satisfies 

(1. 3) jr1=ljr=jr, jrm=mjr=O, 

and 

(1. 4) fk-rl=lfk- r = 후l， fk-rm=mfk- ’ =0. 

If F三/k-r)/2 then F(k, :tr)-structures of maximal rank are almost complex 

and almost product structures respectively and of minimal rank are almost 

tangent structures. 

2. Nijenhuis tensor of f(k, j: r)-structure 

Let j be an f(k, :tr)-structure of rank p, then the Nijenhuis tensor N(X, Y) 

of f is given by [5J as follows: 

(2.1) N(X, Y) = [jX, fYJ - f[fX , YJ - f[X , fYJ + j2 [X, YJ 
Using (1. 2) in (2.1) we obtain 
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k-r+l Tr ~ 1" k-r+lTT1 1"'~ ,.k-r+ (2.2) N(lX.lY)=[추F' T'X. + r_ , TTJ - f[주 f"-T -r- L X. lYJ 

-f[IX. 후 fk-r+lYJ +f2 [lX. lYJ; 

~ 1"k-r+l Tr 1"Tr , 1"k-r+l (2.3) N (lX. mY)= [+ 1"-' T'X. fY :1:f"-"TJ - f[추1"-' -r-. X. mYJ 

-f [lX. fY :1:l-
r
+1YJ +l[IX. mYJ; 

k-r+1" ~1"k-r~l (2.4) N(mX,lY) = [fX :1:r_ , T.X. +1"-' "YJ -f[fX :1:f"-"'X. lYJ 

-f[mX. 후fk-r+lYJ +/~[ηzX. IYJ; 

.and 
k-r+l Tr 1"TT , 1"k-r+l (2.5) N(mX. mY)= [fX :1:/"-' T.X,jY :1:/"-' -r- TJ -f[fX :1:/"-' -r- .X. mYJ 

-f[ηtX， fY±fk-r+1Y] +f2[mX, my]. 

Equations (2.2). (2.3). (2.4) and (2.5) in consequence of l+m=I. lm=ml=O 

and (2. 1) yield 

(2.6) N(X.Y)=N(lX. 1Y) +N(lX. mY) +N(mX. lY)+N(mX. mY). 

If the distribution L i섭s imrn따1αt않eg맑rab비le N(αIX’ IY) becomes the Ni서je많nhu띠lÏs tensor of 

F간닝i쁨말!.F/ιL. Sim빼rl떠lψy i표ft따he d버is떼tr얀떠r디'ib빠u따빼lt 

N‘i밴jenhu비뼈1j펴i엠s tensor 0아f FM얄LF/M. 
Let sf' y f be the Lie-derivative of the tensor field f with respect to a vector 

field Y. then we have [2J : 

(2.7) (,97 yf)X=f[X. YJ - [fX. YJ. 

where sf' y f is a tensor field of the same type as f. 

From (2. 1) and (2. 7) we obtain 

(2.8) N (lX. my) =f(Sf' my f) IX -(Sf'fmyf)IX 

and 

(2.9) N(mX.lY) = f(주y f)mX ~ (.ø' flY f)mX. 

3. Integrability conditions 

THEOREM 3. 1. For any two vector fields X and Y the follow쩌g hold: 

(i) the distribution L is integrable zf and only zf m.N(lX. IY)=O; 

(ii) the dist서bution M is integrable zf and only zf 1. N(mX. ’nY) =O; 

(iii) the distributions L and M are both integrable if and only zf 

N(X. Y)=I.N(lX. lY) +N(lX. mY)+N(mX. lY)+m.N(mX. mY). 

PROOF. We know that [2J for any two vector fields X and Y the distributions 

L and M are integrable if and only if m. [IX. lYJ =0 and l. [mX. mYJ =0 
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respectively. By virtrue of (1.2), (1. 4) and (2. 1) the first two parts are easily 

proved. 

Since it is possible to write equation (2.6) as 

N(X, Y)=I.N(lX , IY)+m.N(lX , 1Y) +N(lX , mY) 

+N(mX, IY)+I.N(mX , mY)+ηz'N(mX， mY), 
therefore using the first and second part of the theorem we easily get the third 

part. 

THEOREM 3.2. If the dz'stribμtion L is integrable, a necessary and suffz"dent 

condüion for the almost comPlex structure(almost product strμctμre) defined by F L 

on each z'ntegral ηzanzfold of L to be integrable z's that, for any two vector fields 

X and Y 

(3.1) N (lX , IY)=O. 

PROOF. Suppose that the distribution L is integrable then F induces on each 
integral manifold of L an almost complex structure(almost product structure). 

Since the induced structure is integrable if and only if its Nijenhuis tensor 

vanishes identically, therefore the result. 

THEOREM 3.3. If the dz'strz'bution M z's z'ntegrable, a necessary and sμ:ffident 

condüion for the almost tangent strμctμre defined by F M on each integral manzfold 

of M to be z'ntegrable is that, for any two vector fields X and Y 

(3.2) N(mX, mY)=O. 

PROOF. The proof follows from the pattern of the proof of theorem (3.2). 

DEFINITION 3. 1. We say that f(k , :t r).structure is l-partially integrable if 

the distribution L is integrable and the almost complex structure(almost product 

structure) F L induced from F on each integral manifold of L is also integrable. 

DEFINITION 3.2. We say that f(k , :t r)-structure is m-partially integrable if 

the distribution M is integrable and the almost tangent structure F M induced 

from F on each integral manifold of M is also integrable. 

DEFINITION 3.3. We say that f(k , :t r)-structure is partially integrable if 

and only if it is both l-partially integrable and m-partially integrable. 

THEOREM 3.4. For any two vector 거:'elds X and Y , a necessary and sμifficieJZt 

condztz"on f01’ f(k , :t r)-structμre to be 

(i) l , partz'a!ly z'ntegrable is that N (lX , IY) =O, 

(ii) m-partia!ly integrable z's that N(mX , mY) =0, 
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(iii) þartz"ally integrable is that 

N(X , Y)=N(lX , mY) +N(mX, IY). 

PROOF. (i) The proof follows from theorems (3. 1) (i) and (3.2). 

(ii) The proof follows from theorems (3.2) (ii) and (3.3). 
(iii) The proof follows from equations (2.6) , (3.1) and (3.2). 

THEOREM 3.5. For any two vector fields X and Y , 

(i) the tensor field 1 (2'myf)1 vanishes zaentically zf and only zf N (lX , mY)=O, 

(ii) the tensor fz'깅d m(2'/y f)m vanishes zaentz"cally if and only if N(mX, IY) =0. 

PROOF. In consequence of (2.8) , we have N (lX , mY) =0, if and on1y if 

f(2'myf)IX=(2'fmyf)IX. 

Therefore if N (lX , mY)=O, we obtain 

fk-7(.gmyf)IX=fk- (7+l)(-gfmY f)lX 

=fk-(r+2)(￡?f2mYf)lX 

••••••••••••••••••••••••••• 

== ........................ '" 
-(r+k-r) =r-" T~-'j(2'f'-'mY f) IX 

=0, in view of (1. 4). 

Thus by virtue of (1. 2) the tensor field 1(2'myf) 1 vanishes identicallγ， for 

any vector field Y. 
(ii) The proof of this part is simi1ar to that of (i). 

4. Adapted coordinate system 

When the distributions L and M are both integrable, we can choose a local 

coordinate system, such that all L are represented by putting (2n - 2P) 10ca1 

coordinates constant and a lI M are represented by putting the other (2p-n) 

coordinates constant. We calI such a coordinate system an adapted coordinate 
system. 

'vVe can suppose that in an adapted coordinate system the projection operators 

.! and m have the components of the form 

(I2P _ n 0\ /0 0 
(4.1) 1=1 <-P-" v 1, m=1 

\ 0 0)' ... \ 0 12n - 2p / ’ 

respectively, where 12p _ n is a unit matrix of order(2þ-n) and 12n - 2þ is of order 

{2n-2þ). 
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Since the distributions L and M are integrable, ILCL and IMCM. Therefore 
the tensor 1 has the components of the form 

I?h_" 。
(4.2) 1=1 . ~ “ 

o 12η-2pl 
in an adapted coordinate system. In (4.2) 12p - n and 12• 2p are square matrices 

of order (2p-n)X(2p-n) and (2n-2p)X(2n-2p) respectively. 

Thus for any vector field mY on M , the Lie-derivative .!? mY 1 has components 

of the form 

(4.3) 
L , 0 

.!?,"vl=( ^" 
r' \ 0 L 2 

THEOREM 4. 1. For any two vectoγ fz"elds X and Y , z"n case 01 d z"strz"bu tz"ons 

L and M being integrable, a necessary and sulfz"âent coηdition lor the local 

co때onents f 2p _ n oll(k, i:. r)-strctures to be lucUons z'nd째endent 01 the coordin­

αtes， which are constant along the z"ntegral ’nanzfolds 01 L z'n an adapted 

coordùzate system is that N (lX , ηzY)=O. 

PROOF. Let for any two vector fields X ;!'.fld Y , N (lX , mY) be zero, then from 

theorem (3.5) (i) , the tensor field 1ι? mY 1) 1 vanishes identicaIly, for any vector 
field Y. Hence Ll =0. This implies that the components 12p - n of I(k, i:. r)-structure 

are independent of the coordinates which are constant along the integral manifolds 

。f the distribution L in an adapted coordinate system. 

Conversely, if the components 12p-η of I(k, i:. r)-structure are independent of 

these coordinates, L 1 =0. Thus the tensor field 1(.2지:y f) l vanishes identically 

for any two vector field Y. Hence for any two vector fields X and Y , N (lX , 

mY) =0, which proves the theorem. 

THEOREM 4.2. Foγ any two vector lields X and Y , in case 01 distributions 

L αnd M being integγabl e, a necessary and sμfliâent condition lor the local 

coηzponents 12n - 2p oll(k, i:. r) structκres to be fiμnctions 낌dependent 01 the coordi­

nates, whz"ch are constant along the integral manzfolds 01 M in an adapted 

coordinate system z's that N(mX , IY) =0. 

PROOF. The proof of this theorem is similar to that of theorem (4.1). 

DEFINITION 4. 1. We say that I(k, i:. r )-structure is l-integrable if 

(i) I(k, i:. r)-structure is l-partially integrable, 

(ii) the components 12p - n of I(k, i:. r)-structures are independent of the 
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coordinates which are constant along the integral manifolds of L in an adaptect 

coordinatú"'-ystem; 

(iii) the components f 2n - 2p of f(k, :t r)-structures are independent of the 

coordinates which are constant along the integral manifolds of M in an adapted 

coordinate system. 

DEFINITION 4.2. We say that f(k , :t r)-structure is nz-integrable if 

(i) f(k , :t r )-structure is nz-partially integrable, 

(ii) the condition (ii) and (iii) of definition (4.1) are satisfied. 

DEFININION 4.3. We say that f(k,:t r )-structure is integrable if 

f(k , :t r) - structure is partially integrable anJ the conditions (ii) and (iii) of 

definition (4. 1) are satisfied. 

THEOREM 4.3. The necessary and sμ:fficieηt condUion for fCk, :t r)-structure, 

z'n case of tzνo vector fields X and Y to be 

(i) 1-잉tegrable is that N(X , Y)=N(mX, mY), 

(ii) m-쩌tegrable is that N(X, Y)=N(lX. lY). 

(iii) 샤tegrable is that N(X, Y)=O. 

PPOOF. The proof of this theorem follows by virtue of theorems (3.4), (4. 1) .. 

(4.2) and definitions (4. 1), (4.2) and (4.3). 

University of Nigeria. 
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Nigeria. 

REFERENCES 

Lucknow University, 
Lucknow, 
India. 

[1] Gadea, P. M. and Cordero, 1. A. , 0η integrability coηditions of a strμcture ø 
satisfying 없±￠2=0， Tensor (N. s. ), Vol- 23(1974), pp. 7a-S2. 

[2] Ishihara, S. and Yano, K. , On integrability conditions of a structure f satisfying 

f3 +f =0. Quart. Jour. Math. , Oxford, Vol. 15(1954), pp.217-222. 

[3] Kim, J. B., Notes on f-manzfolds , Tensor (N.S.), Vo1. 29(1975) , pp.299-302. 

[4] Rastogi , S. C. and Gupta, V. C. , 0η a teηsor field f of type (1,1) satisfying fk i:. f"" 

=0, (k르2r) ， Under publication. 

[5] Yano K. , Dlfferential Geoηzetry 0η complex and almost comPlex spaces, Pergamon, 



k Integrability Conditions o[ Structures Satisfying r -r.f =0, (k는2r) 233 

Press, New York, (1965). 

[6] Yano, K. , on a structure de[ined by a teηsor [ield [o[ type (1.1) satis[yiηg [3+[ 

=0, Tensor (N. S.), Vol.14, (1963), pp.99-109. 

[7] Yano, K. Houh, C. S. and Chen, B. Y. , Structμres de[ined by a tensor [ield o[ type 
4 , .2 (1.1) satis[ying ø~+rf/'=O， Tensor (N.S.), Vol.23 (1972), pp.81 87. 


