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ABSOLUTE RIESZ SUMMABILITY OF A FACTORED FOURIER SERIES
By G.D. Dikshit

In this paper we discuss the absolute R1esz summablhty factors for the Fourier
series of a function of bounded variation and establlsh a genera] theorem.
As corollaries to our theorem we get results which are of mterest In dlfferent
directions. While Corollary 1 furnishes a result ‘due to Bosanquet [3] and
Corollary 2 extends and improves upon a result: of Mohanty and Misra [8],
Corollary 3 induces some interesting observations in the theory of absolute Rijesz
summability. | I o

Let A=A(w) be a monotone inci‘easing';r and differentiable function in (&, oo)
Where k is some finite p051tlve number and let 1t tend to 1nf1n1ty as w—oo. Given
a series’ X u, et

R, (w)= {Z(cu)}‘“k”@ S {A(w) — 2(%)} 0 £>0.

R, (m)EBV(k o), .the series 2u, is said to be absolutel vy summable by the

Riesz method of ‘order’ k and z‘ype ‘A and we write Ju &|R, Z(w) kl. It is
known [6] that the method ]R w, Ie] is equwalent to the Cesaro method 1C, |,

2>0. B
Let f&€L(—n, ) and be a perlodlc ‘functon -with plerlod 2r and let the

Fourler serles of f be glven by | -
. f(x)w a:o+ 21 (a, cos mc+b sinnx)=2%4 (:c)
We shall use the following notations: ' "
o)== {Fx+D+f(x—1)},
d (t)=- r,(la) f;(t—u)““lqa(u) du, a>0,
D (H)=op(t),
0, =T(a+1Dt™ "D (1), a0,

e(w)=exp(log cu)l +ﬁ, 520, -
E(w, t, 5)= %’ le(w)—e(n)} ™ le(n) 7 (log -n)_aﬁcos nt,
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£, t)=¢(w, ¢, 0),
{(w, £, s)= %’ {e(w)—e(n)}r_le(n)ns(bg n)_a‘ﬁsin nt,

g(w, t)=F(11—a) ﬁﬂ(”—f);af(@: u)du, 0<a<1.

1 t 3
G(w, D=y fou“ =~ —g(w, w)du,

Qlw, )= {e(w)—e(m)} " e(m)m*(logm) ™,
where m is an integer such that 0 {w—m<l.
% stands for a suitable constant chosen for convenience in analysis. K, K;, Ky

denote absolute constants, possibly different at different occurrences.

We prove the following theorem:

THEOREM. Let 0<a<1 and $>0. Then ¢, (t)EBV (0, 7)>

o A (x)
2o — -5 IR, exp(log ), 7l
2 (logm) |

To give a neater appearance to the proof of the theorem we work out certain
order estimates in the form of a lemma.

LEMMA 1. Let 0<a<y<1. Then
(M) &w, t, s)__{ws“e’(w)(log @) PV 1Qe, 9, s>-1,
2@ b S Tt T () log )P D 1 Q(w, 9, 5> —1;
(i £ o:{w"’é"wlog )™ 1Qw, a-1)
t 7w 7 () (log )PP+ Q(w, ax—1).
These estimates are given elsewhere (see{4], Lemma 1) for the case y=a. For
the sake of completeness we reproduce the modified version of the proof for the

present case. We give a proof for the estimates for £ only, the proof for [ is
similar.

PROOF. {(. £, )< 3 (e(w) —e(m)} " e(m)n' Clog m) ~**

= 23 + 25 =8§;+S5, say,
n<Ju v uwlnalw

'Sl < {e(cu) — 3(4/"(5)} 7 16(4/_03)(,\/70)5'{'1 (IOgME) —af
= {(w—v/@)e IV el (/@) (ogv@) ™, (var<a, <w),

SKQT(O)) w($+1)/2(10g w)ﬁ(?’—a—l);
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Sy Sfjg{e(w)-e(u)}"_le(u)us(log ) ~*Pdu+Q(w, 5)

<Kot (log /@) —Ala+) {e(w) —e(«/c?)} "+Q(w, $)
<K' (log @) 75 Ve (1) +Q(aw, $).

This furnishes the first set of estimates.

Let w;= [cu— —I:~], and

&(w, ¢, s)=[ >+ Z]'"] {eCw) —e(m)} T~ Le(m)n’(log n) ™ Pcos nt

n<a, w+1
=5,+35,, say.
As {e(cu)—e(n)}"_le(n)ns(log n)_aﬁ } is ultimately monotone increasing in 2 for
n <w,

S3=0[ {6(0)) —e(cul)} ?’—le(ml)mi (IOg a_)l) _“52gT2§{gw1| Eg cOos n! I]

_—_O[t—rer(w)wﬁl_r (log cu)ﬁ(rﬂlﬁa)].
and

Si< f . & {e(w) — e} " le(w)u*(log %)~ *Pdu+Q(w, )

=0(e** {e(w) ~e(w— )} Clog @) A**+D)1Q(a, 5)

=0[ws+1{( f ) 3(50*)(14'52(105 w*)ﬁ-}r(log cu)_ﬁ(““)]-l-Q(m, s), @) <w*<w,

=0[a*+1 71 ~7e" () (log )*7~*~ V] +QCa, 5).

(i) I'l-a)g(w, t)
= I feCw)—e(m) " e(m)log w7 [* e fr RCORCEE

4

= {e(w) —e(m)} ™ e(n)(log 7)™ {cos nd L o )t

-{—n“f; 1 /ncosnu du} where <O0<t+41/n<0'<m,

= % le(w)—e(m)} " Le(n)n” " (log n) _aﬁ{ cf S70_+sinnb’ —sin(nt + 1)}

—0 {w“er(w) (log w)_ﬁ(“+1)+Q(w, a-—-1),
0™ Te () (log @)%V 10(w, a—1),
byv(i).
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PROOF of the theorem .
>24,xog W)~ E|R e(w), 71, iff

gl |
o8 ) [ = {et@)—em) " e(m)(log n)~*p(t) cos nt dt | dw
0

we' (W) nlw

0O 3 14 |
=[x &F_| fo0pe(w, nat| de
0

we’ (w)

i convergent -

f o(DE(w, 1)dt= r(1 = [ ECw, w) f (u—1)"%dD_($)du

]"(1 ) [f(“ f)_af(co, u)dP,, (u)

= [ 'gcw. D0 (1)
0

4

_ -1 ' a 0g
=y 0] RGO

= — G(w, 1), () + [ G(w, AP (D).

However, takmg p(f) to be-a constant functlon in the above, we notice that
G(w, 7)=0
and therefore

f@(t)é' (w, 1)dt= fGCw Ddp (2.

“As o, (t)EBV(O rr) to estabhsh the convergence of the integal I it is sufficient
to know that

o 8
Jr=[ 0D 160, lda=0(0)
T, . _

we (co)

uniformly in £, 0<t<x.
After Lemma 1 we notice that

r'(a+1|6(w, D] =1t%z(w, z)—af =140, w)du!

<K% () (log m)'"ﬁ(““)ﬂf Q0 —1);
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and also that

4

I'(a+1)|6(@, D] = I(a+1)|6(,m)~ [4*F—g(w,0)du

¢

. T
= % (w, {) +affu“"1g(cu, u)du|
¢

:\’_Klt“_rwa_rer(a}) (log a))ﬁ(rha_l)-l—ffg 7 Q(w, a—1).
Therefore

o0

T B
J(t)=[2f + [CBLL 160, dw, where r=—~(og-=-’,

>
> we (w)
T o0

<Kyt* [*~Yog w)~dw+ Kt*~7 [ 1B W do
2

<K 1i.":’l"r:'m(log T) =By }{zt“ T (log T)B(r—a)
-+ 1

k.S _ r—1e(m)(log w)'m _ ,
i Bmzz:z ﬂ-[ te(e) —e(m)} we' () (log m)™” N

SKlta_}j; (log'}%—yﬁ[log f -+ 5 log IOg—?—} —ab

ey b \(a—7r)8 R k 8(r—a)
+K “(log—T) [log- —+8 log IOgT}

o0

+ Ky 35 m" e (m)(log m) =P le(m+1) - e(m)}”

log IOg-—{;— ) %P { log logf% |7
<K {1+8 -y + K 1+8 »
k 2 /2
logT ) logT )

+K, % m* e (m)(log m)_aﬁ[e(m’) §,6+1)_%?g m’)é]r, m<m’ <m-+ 1,

00 B(r—a)
_(log m) 7
;’\_’K1+K2—I—K3)2:' ;7;1_!_?_&

<K.

Corollaries and Remarks

COROLLARY 1. (See Bosanquet[3]). Lef 0<a<l. gpa(t)EBV(O, ) o



200 | " G.D. Dikshit

4 (€]|C, i, r>a

COROLLARY 2. Let 0<a<1. ¢, ()EBV(0,n) =

© A
> ".(x)_E]R, exp(log CU)Hl/a, rl, r>a.
2 log =

This corollary is an improvement upon the result of Mohanty and Misra [8]
who have proved it for r=1.
Our theorem though not given for a=0, is known to be true when £=0

alongwith o (Bosanquet [2]). However, for the case a=0, we do obtain the
following result. |

COROLLARY 3. Let €e>0 and B>e. Then o(1)EBV(0,71) >
o A (%)

§—(10£n)5 EIR:I exP (log aj)l—l-ﬁ: ?’l: far ?’>

£
s
PROOF. Let a=-—%—-. Then a&(0,1) and the corollary follows _after the follow-

ing lemma :
LEMMA 2. <{Bosanquet [1]). Let ¢ >0 and b>a=0.
Then ¢ ()EBV (0, d), 2p,()EBV (0, 0d).

REMARKS 1. Fix 8>0 in Corollary 3. We note that smaller the e>0 we
choose, better the result we obtain regarding the ‘order’ y of the summation a
result some what not very common in the theory of summability factors.

2. Similarly, fixing €¢>0 in Corollary 3 we see that smaller the 7 we choose
better the result seems to be arrived at for the summability of the series regard-
ing both the ‘order’ and the ‘type’. In this respect one may note that for
intergral &, | R, exp(log cu)Hﬁf, E|CIR, exp(log cu)lJ”B, El, B >B> —1(Guhal5],
Pati[9]). However, whether this second theorem of consistency, for absoulte
Riesz methods also holds for non-intergral ‘order’ £ does not seem to be explicitly
known, as the results given to us in this direction are rather of involved nature

where it is not easy to verify the conclusioin in a specific case (see Guhal5],
Prasad & Pati [10] and also Kuttner[7]).

Finally we have

An(x) 1+8
COROLLARY 4. o(H)EBV(0,7n) o 3~ S| R, exp(log w)™ ", 7l, for evsry

(log 7)°
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e>0, y>0, > —1.
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