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ADDITIONAL GENERATING RELATIONS FOR CLASSICAL POLYNOMIALS
BY 1. K. Khanna

1. Introduetion

The object of the present paper is to derive four additional Generating relations
for the polynomial set B, (x,y) and its applications thereof. B, (x,y), the gener-

alization of as many as eighteen classical polynomials such as Laguerre
polynomials, Hermite polynomials, Legendre polynomials, Jacobi polynomials,
Bedient polynomials etc. has been defined by means of the generating relation
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valid under the conditions given in [2]. Several other results for the polynomial
set Bn(x, ) have also been given in [1] and [2].
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2. Additional Generating Relations

(1) We have
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(a) On taking p=¢=0=7r=s;v=2=m ; y=1 and y=—1, we get
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(b) Substituting p=0=r; g=1=s; [Bi=1+a; b=1+8; pu= ;.12 =p; y=1=m and

writing —; _[_i for x, we have
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These results are believed to be new. Results for other polynomials may be
written in a similar way.
(ii) From (1.1), we can write
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as it is easy to verify that By(x,y)=1.

Applications:
Similar te (2.1), we get the following results, which are believed to be new.
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3. Writing p=0=¢ in (1.1), we have
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Applications: On specializing the various parameters similar to (2.1) we arrive
at the following results:
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4. In an earlier paper (2] we have proved that
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where m, and m, are positive integers and m,<m.

Substituting »=0=s, we have
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Applications similar to the earlier results can be obtained in this case also.
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