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Infroduction

Banach's fixed point theorem in a metric space is stated as follows :—1i) If
'(X , 0) be a complete metric space and T be an operater 7: X—X satisfying the
condition o(Tx, Ty)<<Ao(x,y) for all x, y&X, where 0<A<1 then there exists a
unique fixed point x, such that 7T'(x,)=x,.

By “Semi-metric” on a space X is meant a function p on XXX into R satisfying

the following conditions:

(1) o(x, y)=0(y, 2)=0

(2) o(x, 2)=<p(x, y)+p(y, 2)

(3) o(x, x)=0

where x, y, z are arbitrary points of X. Note that this definition slightly
differs from the definition of a “quasi-metric.” If in addition to this condition we
have o(x, y)=0—>x=y then ¢ becomes a metric on X.

An equivalent form of Banach’s fixed point theorem may be given here as

follows:

THEOREM 1. Let (X, p) be a complete semi-metric space and T: X—X is a
continuous mapping such that
o(Tx, Ty)<Ao(x, 3) (1)
for any two points x and y&EX, (0<AL1) then there exists at least one point
x&X such that o(Tx, x)=0. Further, if there be any other pornt y saiisfying

o(Ty, y)=0 then o(x, y)=0
PROOF. Let x =Tx,_, where x, is any point of X.
2+ K xn)zp(THkxO, T”xo)_élﬂp(xk, N,
Now o(x, x)<p(x,, x,_D+o(x__;, x,_ o)+ +o(x;, %))
n—1
A" o(xy, B+t o(x), %)

then p(x
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<=7 olxy, %)

Voo(x, 2 )<A= o(xy 1)
Now as 0<4<1, {«,} is Canchy in X.
As X is complete {x} converges to x&X.
Now o(Tx, 2)<o(Tx, %, )+0(x, 1, x,)+0(x, x) as x, =T%, as #—x0
%, 1—T%, %% and o(x,,, %,)—0

. for sufficiently large » we have
o(Tx, %, 1)=€/3, o(x, T x,)<€/3, o(x,, x)<e¢/3 so that p(Tx, x)<¢ where ¢ is
arbitrary small positive number.
| . 0(Tx, x)=0 (2)
Again, (2) > T(x)E{x} ' , '
As T is continuous. Similarly if o(Ty,y)=0> T( N {y}
Now o(x, y)<p(x, Tx)+o(Tx, Ty)+o(y, Ty)

S0(x, =<p(Tx, Ty)<Ao(x, y)

where 0<A<1 2 p(x, y)=0

COROLLARY 1. If X be a complete melric space in theorem 1, then T will have
a unique fixed point.

Theorom 1 may be generralized further as follows:
If (X,p) is a complete semi-metlric space, and T a continuous mapping of X into
itself, such that

o(T?x, TPy)<Ao(x, ») (3
where 0<A<1 and p is a positive integer, then there exisis at least one x&=X
satisfying the relation o(Tx, x)=0

Further if o(Ty, vy)=0 for any other y&X
then o(x, y)=0

THEOREM 2. Let (X,p) be a semi-melric space and T a continuous mapping T :
X—X such that

o(Tx, Ty)<Ao(x, y)
for any two points x and yEX, 0<A<1. If {T"x} has a convergent subsequence
{T™x} which converges to X, then {T"x} converges to xy such that o(x, Tx,) =0

PROOF. Let x =T"x so that
p(xlr xg)_‘gzﬁ(xos x]_)
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0Cry £)<A0(x;, 2)<A0(xg %)

llllllllllllllllllllllllllllllll

o(x, x, +1)S2"p(x0, %)

p(xn’ xn+p)£p(xn' xn+1) """ p(xn-{—p—l’ xn+ﬁ)
<A eeeee 4 "R _l)p(x , %)
n1—2t
<A =0y ) _ 0
2#

<73 p(xo, x,)—0 as n—oo

" {x,} 1sa Cauchy sequence. So as {xm} converges to x5 {x,} also convefges

to x,,
* n

. T X%,

. . . 1
As T 1s continuous Tx0= Iim T”‘+ X,

R—00O

S 0(xg, Txy) = }?im o(T™x, T”‘“x)

= lim o(T™ %1y, T™T %)

k— o0

= (T, T 5)=>20(xy T,
which is impossible. S p(xg Tx)=0
DEFINITION 1. The mapping T of a semi-metric space X into itself is said
to be contractive if p(Tx, Ty) <o(x, y) for sxyEX (5)

DEFINITION 2. Let F denote the family of functions a(x, y) satisfying the
following conditions:

(D) a(x, y)=alex, y)) "‘
(2) 0<a(p)<1 for each p>0 P- (6)
(3) a(p) is a monotonically decreasing function of o .

With the above definition we can write theorem 1 in a more general form
as follows

THEOREM 3. . If (X, p) is a complete semi-meiric space and T is a continuous
mapping such that T: X—X and

o(Tx, Ty)<a(x, y)o(x,y) (7)
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for any two points x,y=X, then there exists at least one point &, such that
o(€, TE)=0. Further if there is any other point 7 such that o(n, T1)=0 we shall

have 0(€, 7)=0
PROOF. Let xn=T".r0, x,EX
k
Now o(x, . xn)=p(Tn+ Xo» Tnxo)
<Sa(x,, 515 X,_1) (X, %0)0(%, %p)
Now if ig.;fp(xn L p X,)€
» 7

sup (%, x,)<o(€)
n,

r ﬁ(xu—}-k’ xn)g [a'((-')]np(xk, I‘,)

(%, x)<0(x, x,_ 1)+ +0(x;, %)
<{la(@)) " oo+ 1} 0(xy, %)
S ]iiﬂé p(x]_: xO):

R
. a
.o ﬂ(xﬂ_]_k: xn)g l_a p(xll xO)

Hence {x } is Cauchy and converges to x&X.
Rest of the argument similar to that of theorem 1.

THEOREM 4. Let X be a semi-melric space end T a contractive mapping of X
into itself such that there exisis a point whose sequence of tterates {T”xo} contains

a convergent subsequence {T”‘xo} end if &= lim T”’IOEX then o(&, TE)=0.

1—00

PROOF. Let us suppose o(&, T$)#0. Now the sequence {T””le} converges to
T(€). Let us denote the mapping r(x, y) of Y =X X X — 4 (where 4 is the “diagonal”
{(x, v)|x=»}) into the real line, as follows :

o(Tx, Ty) '
o(x, ) (&)

This mapping is continuous on Y.
There exists a neighbourhood U of (¢, T(§))EY such that x, yEU implies

0<7(x, ) <R<I (9
Now S;=5,(&0) and S,=S,T(&), 0)

be cpen discs centered at ¢ and T(§) respectively and of radius 00, which is
so small that (¢, T(£))>30. Now due to this assumption

r(x,y)=
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Ix e X: (T (a3} DT (x)} with lim T"(x)) €X 10

11— 00

then exists a positive integer N such that 7> N, T"l"r(x(})ES1 and so by o(Tx,Ty)
<p(x, y) we find that 7" " (x)ES, from (10)

o, T"x)+0(T 5y T" 5 )+0(T" 25 T(€))>30

soo(T ), TV x))>p, >N _ (11) .
From(8) and (9) we obtain

0 (Tn;+1x0, Tn;-l-zx 0) < R‘O(Tﬂfxo, Tn;-!—lxo)
Repeating this argument, when />;>N

9

p(T"'x, Tn;+1x) <p(Tu;-1+1x’ Tn,_1+...x)

1

<Rp(T"‘"‘x, Tuf-l—l_lx)i """ <R —J‘OCT#“.’L', TuH-lx)—rO, a8 [-co

T his contradicts (10)
x p(’fr T"::):O
If there is another 77§ such that p(n, Tn)=0

Now (&, D<o, TE)+o(TE, Tn)+o(n, T<p(TE, Tn) <o, 7)
which = (€, 7)=0

THEOREM 5. If T is a contractive mapping of a meiric space X into iiself
and there exists a subset MCX and a point x;&M such that o(x, x,)—o(Tx, Txy)

=>20(x, Txy) for every x&X/M and T maps M into a compact subset of X, then
there exists at least a point & such that o(&, T&E)=0

COROLLARY 1. If T is a contractive mapping such that there exists a point x,
€X satisfying o(Tx, Txy)) <a(x, x,)0(x, x,) for every xEX, where a(x, y)=
a(o(x, 3))EF and T maps S(x, r) with
- 20(xg Txp)

1—a(20(xy Txy))
into a compact subset of X, then there exists a point E&X such that o(TE, &) =0.

7

Instead of proving this theorem we present have a more generalized theorem
(No. 7).

THEOREM 6. If T, and T, be two continuous mappings of a semi-melric space
X into ilself such that
o(Tx, Toy)<o(x,y) for x#yEX (12)
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and then exists some x,&X, the sequence{x,} converging to x then o(x, T x)=0.
and o(x, Tyx)=0

PROOF. Similar to that of theorem 4, -

THEOREM 7. Let T, and T, be two mappings of a semi-melric space X info
ttself satisfying condition (12) such that there extsts a subset MC X and a point
x&EM satisfying o(x,, T x)—po(T %, T'WTox)=20(xy Tx,) for every x=X/M, i=
1,2 and T \Ty=T, T, +eeeeeeeee -(4)

and that T, and T, map M into a compact subset of X. Then there exists @ point
& such that o(§,T,£)=0=p(§, T,5)

PROOF. Let us assume that x,7T 1, The sequence{r } has the same definition
as in theorem 6. Now T, and T, map M into a compact subset and so to prove
this theorem, it will be sufficient to prove that x &M for all #. Rest will
follow from theorem 6.

Now o(Tx, T,y)<p(x, y). So
0%, %9410 <0(xp %) and 0(Zy, 1y %ppy 1) <O(%p %)
O(Xgy Zopy 1 )=0(x 2)+0(x), 290, 13) 050011y Tope 1)
I =0(xg Tyx)+0(T x5 ToT1%5,)+0(Xgp 10 %0001
S 0(xy Tix, ) —0(T % ToT' %,,) <20(x5 Txy)
S from(A) it follows that x,,EM.
Similarly
0(%, x2(n+1))£p(xo, Ty %) +0o(T % x2(n+1)+l)+‘0(x2(n+1)+1’ x2(#+1))
o 0 Tooy 1) =0T 120 T Ty, 1) <20(xg T'1%)

. x,&M for every n. Hence the theorem follows.

THEOREM 8. Let T and T, be two continuous mapping of a complete semi-

metric space X into itself such that o(Tx, T,y)<o(x, y) for x#ZyeEX and let
there exist a subset MCX and a point x,&M satisfying

(1) p(x,, T x)—o(T,x,, Tszx)22p(x0, Tlxo) for every x&X/M and 1=1,2

(ii) (T x, Toy)<a(x, y)o(x, T,x)+B(x, y) o(x, T,y) for every x, yEM, where

oa(x, ), B(x,y)EF and they are decreasing functions of o such that o(o(x, y))-+
BCo(x, ¥))<1

and obviously a(x, v)=a(y,x), B(x,y)=8(y,x).
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Then there exists a point EEX such that
p(TIE, E')'-_—-O'zﬂ(Tzf, &

PROOF. The sequence {x} is defined as before. Let us suppose that x,=T %,
Now using condition (i), we obtain that x,&EM for every n. Again o(T x, Toy)
for x7y gives o(x,, %, +1) <p(xy ). Now {x,} can be proved to be bounded

due to the following measuring :

< 0(xg x)+o(xy x5, , D0(xG Txy) +B(xp %y, 1)0(%,, . 15 j“2(ﬂ=+1))

+0(%y, 1 Xorpi1))
<20(xy, T %)+ [a(xy %5, ) +BE, %, D]0(x, %)

For a given p,>0, o(x, %,,. {)=0, then as a(p) B(p) are monotonic decreasing

functions of o, so p(x, %,, , D= [2+a(po)+5(p0)]p(x0; )

Again, p(xo. x2(n+1))_‘€p(xo. Tlxo)_'_p(Tlel T2x2n—1)
+0(To%y,_1» Ty%9,) +0(%y, s Xotnt1))

<o(xy Ty5p)+a(xy, %y, 1050 T1%0)+B(xy %, _1)0(%g, 1, %5,)
0% %9y ) TO0F g, 10 Fo(niry)

<3p(x0, xl)-l-p(xo- xl)a(xos xzn‘_l)+p(xgr xl)ﬁ(xO’ xz,,_]_)

<o(x xp) [B+aloy)+B8(py)] tor some 0y’>0 and p(xy, %,, )=>0,

These show that {x,} is bounded.
Now p(x;, x,)<a(xy x)0(x; T %)+L(xe 2 )0(x, Tox)

. p(xl, xz)Sa’(xo, xl) [I_B(x(]: xl)] p(x ’ x]_)

Similarly
B(x, %) a(xy, %)
< - - * = - ¢ y ’
ﬁ(l’g 1» *o ) acxz or X )
neral %o X < ”— n ] 7?— 2n—1 _
In gENCr :0( Dy 2,,_;.1-) 1"‘5‘-’(-"2:1—1! x2n) 1_';8(552,,__21 xZu-—l) ......
(%, X3) B(x; %5) a(xy %) (xo £
""" 1—B(%y %) 1—a(x, x5  1=B(zy, xp O30 %1
(x £ )< A(Xgp %9y41) _ B(Fop—1r %op)
OFon+1 Yon+2/ = 1_‘8(x2n+1’ x2n) l—a(xzn—-l' x2n)
B(xy, %) (%o, %9)

1—a(x;, x,) ' 1—-5(xg %) o(xg %)
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Now let €0, o(x; %; 1 )=€ 1=0, 1, 2, «-en . 2n

oalx, %, )=ale), B(x, %, )<BE). =0, 1, 2, «++v, 2n
By our assumption a(e)+B8(c) <1
E(G)) <1

1

1

where  7,(e)=—= B(e) and 7,(€)=- 1—a(e)

2. 2
o p(xzns x2n+p)£"’1="; [1+7‘1(1+7’172+7’1+?‘2+ """ )
+r7, (177t )] 0(x,, %)

riry(l+7;)

<

Similarly — 0(%5,,1, %o,. p41)—0 as #—o

o(%, %,)—0 as n—oo

. {x } is a Cauchy sequence.

Now let lim o(Toxy, s %o, 1) =0(1lim Tpx, ;. limx,, . 1)
n—00 n-—o0

n— o

s o(T6, £)=0 [T, is continuous]

lim o(T %y, %oy 2)=0(T} iimm"zn* ﬂliTG %oy 4200

5i— 00

co 0(T6, §)=0 [ Ty is continuous]
This completes the proof.

Putting T'\=T,=T and a(x, y)=5(x, ¥) on Theorem 8, we obtain,

THEOREM 8A. If T :is a continuous mapping of a complete melric space X
such that o(Tx, Ty)<p(x, y) for x#ZAy&EX and there exists a subset MCX and «a
point x, =M satisfying

1) o(x,, Tx)—(Tx, Tz:c)22p(x0, Txy) for every x&X/M

i) o(Tx, Ty)<a(x, y) oz, Tx)+po(y,Ty)] for every x,yEM, and a(x, y)EF,
then there exists a point &, such that o(E, T6)=0,

COROLLARY. If X s a complete semi-meiric space and if o(T %, T,y)<

a(x,y) o(x, Tix)+B(x, y)o(y, T,y) for every x, y=X, then there exists a point &
such that o(§, T,£)=0=p(€, T.£), where o and BEF.
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COROLLARY. If X is complete semi-metric space and o, are posttive constants
such that o+pB<1, then if o(Tix, Toy)<ap(x, T x)+ Bo(y, T,y) then there exists

at least a point & such that p(§&, TE)=0. If there is any other poz'}zt a+B<1 such
that o(n, Tm)=0. =1, 2. then p(yn, &)=0.

COROLLARY. If we make =08 in the above corollary, we get the following.
If X is a complete semi-melric space and 0<a<1/2
and o(Tx, Toy)<ealo(x, Tx)+0(y, Toy)]:-- (B)
then there exists a point & such that o(&, TE)=0 and if there is any other n&EX
satisfying o(n, Tn)=0, we get o(§,n)=0.
COROLLARY. Putting T'\=T,=T, the condition (B) reduces to
Tz, Ty)<a(p(x, Tx)+p(y, Ty)]

With the help of Theorem 4, we can establish the following theorem :

THEOREM 9. If T is a contractive mapping of a complete semi-metic space X
into itself such that there exists a subset MC X, and a point x,&M salisfying
1) o(x, ) —0(Tx, Txg)=0(xy Tx,) for every x&X/M
i) o(Tx, Ty)<A(x, y)o(x, y) for every x, y&M, where A(x,y)=A0(x, ¥)),
0<4(p)<1
and A(0) is a monotonically decreasing function of o, then there exisis a point &
such that p(&, TE)=0. If there is any n=X such that o(n, Tn)=0 then (&, n)=0.

COROLLARY. Taking M=X, we get o(Tx, Ty)<<A(x, y)o(x,y) for every x,y&EX
then there exists a & such that o(&, TE)=0.

THEOREM 10. Let X be a complete semi-melric space and let
(T2, Toy)<a(x, y)[o(x, Tx)+0(y, Tyy)] for every x, yES(n, 7),
S(n,r) is an r-neighbourhood of the point x, and if

o(x, Txp) <[1—A(x, Tx))/7
o(x, xl)

1—0(x, %)

then T, T, have a point £, such that p(&, TE)=0.

where 2(x, y)=A(p(x, Y)IEF, A(x, x,)=.

PROOF. We can prove, as before, {x,} to be a Cauchy sequence. Rest is easy.
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