FIXED POINT THEORY IN SEMI-METRIC SPACE.

By Sudhanshu K. Ghoshal & Madan Chatterjee

Introduction

Banach's fixed point theorem in a metric space is stated as follows:—i) If (X, ρ) be a complete metric space and T be an operator $T: X \to X$ satisfying the condition $\rho(Tx, Ty) \leq \lambda \rho(x, y)$ for all $x, y \in X$, where $0 < \lambda < 1$ then there exists a unique fixed point x_0 such that $T(x_0) = x_0$.

By "Semi-metric" on a space X is meant a function ρ on $X \times X$ into R satisfying the following conditions:

- (1) $\rho(x, y) = \rho(y, x) \ge 0$
- (2) $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$
- (3) $\rho(x, x) = 0$

where x, y, z are arbitrary points of X. Note that this definition slightly differs from the definition of a "quasi-metric." If in addition to this condition we have $\rho(x, y) = 0 \Longrightarrow x = y$ then ρ becomes a metric on X.

An equivalent form of Banach's fixed point theorem may be given here as follows:

THEOREM 1. Let (X, ρ) be a complete semi-metric space and $T: X \rightarrow X$ is a continuous mapping such that

$$\rho(Tx, Ty) \leq \lambda \rho(x, y) \tag{1}$$

for any two points x and $y \in X$, $(0 < \lambda < 1)$ then there exists at least one point $x \in X$ such that $\rho(Tx, x) = 0$. Further, if there be any other point y satisfying

$$\rho(Ty, y) = 0$$
 then $\rho(x, y) = 0$

PROOF. Let $x_n = Tx_{n-1}$ where x_0 is any point of X.

then
$$\rho(x_{n+k}, x_n) = \rho(T^{n+k}x_0, T^nx_0) \le \lambda^n \rho(x_k, x_0)$$

Now $\rho(x_n, x_0) \le \rho(x_n, x_{n-1}) + \rho(x_{n-1}, x_{n-2}) + \dots + \rho(x_1, x_0)$
 $\le \lambda^{n-1} \rho(x_1, x_0) + \dots + \rho(x_1, x_0)$

$$\leq (1-\lambda)^{-1} \rho(x_1, x_0)$$

$$\therefore \rho(x_{n+k}, x_n) \leq \lambda^k (1-\lambda)^{-1} \rho(x_1, x_0)$$

Now as $0 < \lambda < 1$, $\{x_n\}$ is Canchy in X.

As X is complete $\{x_n\}$ converges to $x \in X$.

Now
$$\rho(Tx, x) \leq \rho(Tx, x_{n+1}) + \rho(x_{n+1}, x_n) + \rho(x_n, x)$$
 as $x_{n+1} = Tx_n$, as $n \to \infty$ $x_{n+1} \to Tx$, $x_n \to x$ and $\rho(x_{n+1}, x_n) \to 0$

 \therefore for sufficiently large n we have

 $\rho(Tx, x_{n+1}) \le \epsilon/3$, $\rho(x_{n+1}, x_n) \le \epsilon/3$, $\rho(x_n, x) \le \epsilon/3$ so that $\rho(Tx, x) \le \epsilon$ where ϵ is arbitrary small positive number.

$$\therefore \rho(Tx, x) = 0 \tag{2}$$

Again, (2) $\Rightarrow T(x) \in \{\overline{x}\}$

As T is continuous. Similarly if $\rho(Ty,y)=0 \Rightarrow T(y) \in \{y\}$

Now $\rho(x, y) \leq \rho(x, Tx) + \rho(Tx, Ty) + \rho(y, Ty)$

$$\therefore \rho(x, y) \leq \rho(Tx, Ty) \leq \lambda \rho(x, y)$$

where $0 < \lambda < 1 \Rightarrow \rho(x, y) = 0$

COROLLARY 1. If X be a complete metric space in theorem 1, then T will have a unique fixed point.

Theorom 1 may be generralized further as follows:

If (X, ρ) is a complete semi-metric space, and T a continuous mapping of X into itself, such that

$$\rho(T^p x, T^p y) \leq \lambda \rho(x, y) \tag{3}$$

where $0 \le \lambda < 1$ and p is a positive integer, then there exists at least one $x \in X$ satisfying the relation $\rho(Tx, x) = 0$

Further if $\rho(Ty, y)=0$ for any other $y \in X$ then $\rho(x, y)=0$

THEOREM 2. Let (X, ρ) be a semi-metric space and T a continuous mapping T: $X \rightarrow X$ such that

$$\rho(Tx, Ty) \leq \lambda \rho(x, y)$$

for any two points x and $y \in X$, $0 < \lambda < 1$. If $\{T^n x\}$ has a convergent subsequence $\{T^{n_k} x\}$ which converges to x_0 , then $\{T^n x\}$ converges to x_0 such that $\rho(x_0, Tx_0) = 0$

PROOF. Let
$$x_n = T^n x$$
 so that
$$\rho(x_1, x_2) \le \lambda \rho(x_0, x_1)$$

$$\rho(x_2, x_3) \le \lambda \rho(x_1, x_2) \le \lambda^2 \rho(x_0, x_1)$$

$$\rho(x_{n}, x_{n+1}) \leq \lambda^{n} \rho(x_{0}, x_{1})$$

$$\rho(x_{n}, x_{n+p}) \leq \rho(x_{n}, x_{n+1}) + \dots + \rho(x_{n+p-1}, x_{n+p})$$

$$\leq (\lambda^{n} + \dots + \lambda^{n+p-1}) \rho(x_{0}, x_{1})$$

$$\leq \lambda^{n} \frac{1 - \lambda^{p}}{1 - \lambda} \rho(x_{0}, x_{1})$$

$$\leq \frac{\lambda^{n}}{1 - \lambda} \rho(x_{0}, x_{1}) \to 0 \text{ as } n \to \infty$$

$$(4)$$

 $\therefore \{x_n\}$ is a Cauchy sequence. So as $\{x_n\}$ converges to x_0 , $\{x_n\}$ also converges to x_0 ,

$$T^n x \rightarrow x_0$$

As T is continuous $Tx_0 = \lim_{k \to \infty} T^{n_k+1}x_0$

$$T^2x_0 = \lim_{k \to \infty} T^{n_k+2}x_0$$

$$\therefore \rho(x_0, Tx_0) = \lim_{k \to \infty} \rho(T^{n_k}x, T^{n_k+1}x)
= \lim_{k \to \infty} \rho(T^{n_k+1}x, T^{n_k+2}x)
= \rho(Tx_0, T^2x_0) \ge \lambda \rho(x_0, Tx_0)$$

which is impossible. $\therefore \rho(x_0, Tx_0) = 0$

$$(x_0, Tx_0) = 0$$

DEFINITION 1. The mapping T of a semi-metric space X into itself is said to be contractive if $\rho(Tx, Ty) < \rho(x, y)$ for $x \neq y \in X$ (5)

DEFINITION 2. Let F denote the family of functions $\alpha(x, y)$ satisfying the following conditions:

(1)
$$\alpha(x, y) = \alpha(\rho(x, y))$$

(2) $0 \le \alpha(\rho) < 1$ for each $\rho > 0$
(3) $\alpha(\rho)$ is a monotonically decreasing function of ρ (6)

With the above definition we can write theorem 1 in a more general form as follows

THEOREM 3. If (X, ρ) is a complete semi-metric space and T is a continuous mapping such that $T: X \rightarrow X$ and

$$\rho(Tx, Ty) \leq \alpha(x, y)\rho(x, y) \tag{7}$$

for any two points $x, y \in X$, then there exists at least one point ξ , such that $\rho(\xi, T\xi)=0$. Further if there is any other point η such that $\rho(\eta, T\eta)=0$ we shall have $\rho(\xi, \eta)=0$

PROOF. Let
$$x_n = T^n x_0$$
, $x_0 \in X$
Now $\rho(x_{n+k}, x_n) = \rho(T^{n+k} x_0, T^n x_0)$
 $\leq \alpha(x_{n+k-1}, x_{n-1}) \cdots \alpha(x_k, x_0) \rho(x_k, x_0)$
Now if $\inf_{k, n} \rho(x_{n+k}, x_n) \geq \epsilon$
 $\sup_{n, k} \alpha(x_{n+k}, x_n) \leq \alpha(\epsilon)$
 $\therefore \rho(x_{n+k}, x_n) \leq [\alpha(\epsilon)]^n \rho(x_k, x_0)$
 $\rho(x_n, x_0) \leq \rho(x_n, x_{n-1}) + \cdots + \rho(x_1, x_0)$
 $\leq \{[\alpha(\epsilon)]^{n-1} + \cdots + 1\} \rho(x_1, x_0)$
 $\leq \frac{1-\alpha^n}{1-\alpha} \rho(x_1, x_0)$,
 $\therefore \rho(x_{n+k}, x_n) \leq \frac{\alpha^k}{1-\alpha} \rho(x_1, x_0)$

Hence $\{x_n\}$ is Cauchy and converges to $x \in X$.

Rest of the argument similar to that of theorem 1.

THEOREM 4. Let X be a semi-metric space and T a contractive mapping of X into itself such that there exists a point whose sequence of iterates $\{T^n x_0\}$ contains a convergent subsequence $\{T^{n_i} x_0\}$ and if $\xi = \lim_{i \to \infty} T^{n_i} x_0 \in X$ then $\rho(\xi, T\xi) = 0$.

PROOF. Let us suppose $\rho(\xi, T\xi)\neq 0$. Now the sequence $\{T^{n_i+1}x\}$ converges to $T(\xi)$. Let us denote the mapping r(x,y) of $Y=X\times X-\Delta$ (where Δ is the "diagonal" $\{(x,y)|x=y\}$) into the real line, as follows:

$$r(x,y) = \frac{\rho(Tx, Ty)}{\rho(x, y)} \tag{8}$$

This mapping is continuous on Y.

There exists a neighbourhood U of $(\xi, T(\xi)) \in Y$ such that $x, y \in U$ implies

$$0 \le r(x, y) < R < 1 \tag{9}$$

Now $S_1 = S_1(\xi, \rho)$ and $S_2 = S_2(T(\xi), \rho)$

be open discs centered at ξ and $T(\xi)$ respectively and of radius $\rho > 0$, which is so small that $\rho(\xi, T(\xi)) > 3\rho$. Now due to this assumption

$$\exists x_0 \in X: \{T^n(x_0)\} \supset \{T^{n_i}(x_0)\} \text{ with } \lim_{i \to \infty} T^{n_i}(x_0) \in X$$
 (10)

then exists a positive integer N such that i > N, $T^{n_i}(x_0) \in S_1$ and so by $\rho(Tx, Ty)$ $< \rho(x, y)$ we find that $T^{n_i+1}(x_0) \in S_2$ from (10)

$$\rho(\xi, T^{n_i}x_0) + \rho(T^{n_i}x_0, T^{n_i+1}x_0) + \rho(T^{n_i+1}x_0, T(\xi)) > 3\rho$$

$$\therefore \rho(T^{n_i}(x_0), T^{n_i+1}(x_0)) > \rho, i > N$$
(11)

From(8) and (9) we obtain

$$\rho(T^{n_i+1}x_0, T^{n_i+2}x_0) < R\rho(T^{n_i}x_0, T^{n_i+1}x_0)$$

Repeating this argument, when l>j>N

$$\rho(T^{n_l}x, T^{n_l+1}x) < \rho(T^{n_{l-1}+1}x, T^{n_{l-1}+2}x)$$

$$< R\rho(T^{n_{l-1}}x, T^{n_{l-1}+1}x) \le \cdots < R^{l-j}\rho(T^{n_j}x, T^{n_j+1}x) \to 0$$
, as $l \to \infty$

This contradicts (10)

$$\therefore \rho(\xi, T\xi) = 0$$

If there is another $\eta \neq \xi$ such that $\rho(\eta, T\eta) = 0$

Now
$$\rho(\xi, \eta) \leq \rho(\xi, T\xi) + \rho(T\xi, T\eta) + \rho(\eta, T\eta) \leq \rho(T\xi, T\eta) < \rho(\xi, \eta)$$

which $\Rightarrow \rho(\xi, \eta) = 0$

THEOREM 5. If T is a contractive mapping of a metric space X into itself and there exists a subset $M \subset X$ and a point $x_0 \in M$ such that $\rho(x, x_0) - \rho(Tx, Tx_0)$ $\geq 2\rho(x_0, Tx_0)$ for every $x \in X/M$ and T maps M into a compact subset of X, then there exists at least a point ξ such that $\rho(\xi, T\xi) = 0$

COROLLARY 1. If T is a contractive mapping such that there exists a point $x_0 \in X$ satisfying $\rho(Tx, Tx_0) \leq \alpha(x, x_0)\rho(x, x_0)$ for every $x \in X$, where $\alpha(x, y) = \alpha(\rho(x, y)) \in F$ and T maps $S(x_0, r)$ with

$$r = \frac{2\rho(x_0, Tx_0)}{1 - \alpha(2\rho(x_0, Tx_0))}$$

into a compact subset of X, then there exists a point $\xi \in X$ such that $\rho(T\xi, \xi) = 0$.

Instead of proving this theorem we present have a more generalized theorem (No.7).

THEOREM 6. If T_1 and T_2 be two continuous mappings of a semi-metric space X into itself such that

$$\rho(T_1x, T_2y) < \rho(x, y) \text{ for } x \neq y \in X$$
 (12)

and then exists some $x_0 \in X$, the sequence $\{x_n\}$ converging to x then $\rho(x, T_1 x) = 0$. and $\rho(x, T_2 x) = 0$

PROOF. Similar to that of theorem 4,

THEOREM 7. Let T_1 and T_2 be two mappings of a semi-metric space X into itself satisfying condition (12) such that there exists a subset $M \subset X$ and a point $x_0 \in M$ satisfying $\rho(x_0, T_i x) - \rho(T_1 x_0, T_1 T_2 x) \ge 2\rho(x_0, T x_0)$ for every $x \in X/M$, i = 1, 2 and $T_1 T_2 = T_2 T_1$ (A)

and that T_1 and T_2 map M into a compact subset of X. Then there exists a point ξ such that $\rho(\xi, T_1 \xi) = 0 = \rho(\xi, T_2 \xi)$

PROOF. Let us assume that $x_0 \neq T_1 x_0$. The sequence $\{x_n\}$ has the same definition as in theorem 6. Now T_1 and T_2 map M into a compact subset and so to prove this theorem, it will be sufficient to prove that $x_n \in M$ for all n. Rest will follow from theorem 6.

Now
$$\rho(T_1x, T_2y) < \rho(x, y)$$
. So
$$\rho(x_{2n}, x_{2n+1}) < \rho(x_0, x_1) \text{ and } \rho(x_{2(n+1)}, x_{2n+1}) < \rho(x_0, x_1)$$
$$\rho(x_0, x_{2n+1}) \leq \rho(x_0, x_1) + \rho(x_1, x_{2(n+1)}) + \rho(x_{2(n+1)}, x_{2n+1})$$
$$= \rho(x_0, T_1x_0) + \rho(T_1x_0, T_2T_1x_{2n}) + \rho(x_{2n+1}, x_{2(n+1)})$$
$$\therefore \rho(x_0, T_1x_{2n}) - \rho(T_1x_0, T_2T_1x_{2n}) < 2\rho(x_0, Tx_0)$$

 \therefore from (A) it follows that $x_2 \in M$.

Similarly

$$\rho(x_0, x_{2(n+1)}) \leq \rho(x_0, T_1x_0) + \rho(T_1x_0, x_{2(n+1)+1}) + \rho(x_{2(n+1)+1}, x_{2(n+1)})$$

$$\therefore \rho(x_0, T_2x_{2n+1}) - \rho(T_1x_0, T_1T_2x_{2n+1}) < 2\rho(x_0, T_1x_0)$$

 $\therefore x_n \in M$ for every n. Hence the theorem follows.

THEOREM 8. Let T_1 and T_2 be two continuous mapping of a complete semimetric space X into itself such that $\rho(T_1x, T_2y) < \rho(x, y)$ for $x \neq y \in X$ and let there exist a subset $M \subset X$ and a point $x_0 \in M$ satisfying

- (i) $\rho(x_0, T_1x) \rho(T_1x_0, T_1T_2x) \ge 2\rho(x_0, T_1x_0)$ for every $x \in X/M$ and i = 1, 2
- (ii) $\rho(T_1x, T_2y) \leq \alpha(x, y)\rho(x, T_1x) + \beta(x, y)\rho(x, T_2y)$ for every $x, y \in M$, where $\alpha(x, y), \beta(x, y) \in F$ and they are decreasing functions of ρ such that $\alpha(\rho(x, y)) + \beta(\rho(x, y)) < 1$

and obviously $\alpha(x,y) = \alpha(y,x)$, $\beta(x,y) = \beta(y,x)$.

Then there exists a point $\xi \in X$ such that

$$\rho(T_1\xi, \xi) = 0 = \rho(T_2\xi, \xi).$$

PROOF. The sequence $\{x_n\}$ is defined as before. Let us suppose that $x_0 = T_1 x_0$. Now using condition (i), we obtain that $x_n \in M$ for every n. Again $\rho(T_1 x, T_2 y)$ for $x \neq y$ gives $\rho(x_n, x_{n+1}) < \rho(x_0, x_1)$. Now $\{x_n\}$ can be proved to be bounded due to the following measuring:

$$\begin{split} \rho(\mathbf{x}_0,\ \mathbf{x}_{2n+1}) &\leq \rho(\mathbf{x}_0,\ \mathbf{x}_1) + \rho(\mathbf{x}_1,\ \mathbf{x}_{2(n+1)}) + \rho(\mathbf{x}_{2(n+1)},\ \mathbf{x}_{2n+1}) \\ &\leq \rho(\mathbf{x}_0,\ \mathbf{x}_1) + \alpha(\mathbf{x}_0,\ \mathbf{x}_{2n+1}) \rho(\mathbf{x}_0,\ T\mathbf{x}_0) + \beta(\mathbf{x}_0,\ \mathbf{x}_{2n+1}) \rho(\mathbf{x}_{2n+1},\ \mathbf{x}_{2(n+1)}) \\ &\qquad + \rho(\mathbf{x}_{2n+1},\ \mathbf{x}_{2(n+1)}) \\ &\leq 2\rho(\mathbf{x}_0,\ T_1\mathbf{x}_0) + [\alpha(\mathbf{x}_0,\ \mathbf{x}_{2n+1}) + \beta(\mathbf{x}_0,\ \mathbf{x}_{2n+1})] \rho(\mathbf{x}_0,\ \mathbf{x}_1) \end{split}$$

For a given $\rho_0 > 0$, $\rho(x_0, x_{2n+1}) \ge \rho_0$, then as $\alpha(\rho)$ $\beta(\rho)$ are monotonic decreasing functions of ρ , so $\rho(x_0, x_{2n+1}) \le [2 + \alpha(\rho_0) + \beta(\rho_0)] \rho(x_0, x_1)$

Again,
$$\rho(x_0, x_{2(n+1)}) \leq \rho(x_0, T_1x_0) + \rho(T_1x_0, T_2x_{2n-1}) + \rho(T_2x_{2n-1}, T_1x_{2n}) + \rho(x_{2n+1}, x_{2(n+1)})$$

$$\leq \rho(x_0, T_1x_0) + \alpha(x_0, x_{2n-1})\rho(x_0, T_1x_0) + \beta(x_0, x_{2n-1})\rho(x_{2n-1}, x_{2n}) + \rho(x_{2n}, x_{2n+1}) + \rho(x_{2n+1}, x_{2(n+1)})$$

$$\leq \rho(x_0, x_1) + \rho(x_0, x_1)\alpha(x_0, x_{2n-1}) + \rho(x_0, x_1)\beta(x_0, x_{2n-1}) + \rho(x_0, x_1)\beta(x_0, x_{2n-1}) \leq \rho(x_0, x_1) [\beta + \alpha(\rho_0') + \beta(\rho_0')] \text{ for some } \rho_0' > 0 \text{ and } \rho(x_0, x_{2n-1}) \geq \rho_0'$$

These show that $\{x_n\}$ is bounded.

Now
$$\rho(x_1, x_2) \leq \alpha(x_0, x_1) \rho(x_0, T_1 x_0) + \beta(x_0, x_1) \rho(x_1, T_2 x_1)$$

 $\therefore \rho(x_1, x_2) \leq \alpha(x_0, x_1) [1 - \beta(x_0, x_1)] \rho(x_0, x_1)$

Similarly

$$\rho(x_{2}, x_{3}) \leq \frac{\beta(x_{1}, x_{2})}{1 - \alpha(x_{1}, x_{2})} \cdot \frac{\alpha(x_{0}, x_{1})}{1 - \beta(x_{0}, x_{1})} \cdot \rho(x_{0}, x_{1}), \text{ so on}$$
In general
$$\rho(x_{2n}, x_{2n+1}) \leq \frac{\beta(x_{2n-1}, x_{2n})}{1 - \alpha(x_{2n-1}, x_{2n})} \cdot \frac{\alpha(x_{2n-2}, x_{2n-1})}{1 - \beta(x_{2n-2}, x_{2n-1})} \dots$$

$$\frac{\alpha(x_{2}, x_{3})}{1 - \beta(x_{2}, x_{3})} \cdot \frac{\beta(x_{1}, x_{2})}{1 - \alpha(x_{1}, x_{2})} \cdot \frac{\alpha(x_{0}, x_{1})}{1 - \beta(x_{0}, x_{1})} \rho(x_{0}, x_{1})$$

$$\rho(x_{2n+1}, x_{2n+2}) \leq \frac{\alpha(x_{2n}, x_{2n+1})}{1 - \beta(x_{2n+1}, x_{2n})} \cdot \frac{\beta(x_{2n-1}, x_{2n})}{1 - \alpha(x_{2n-1}, x_{2n})} \dots$$

$$\frac{\beta(x_{1}, x_{2})}{1 - \alpha(x_{1}, x_{2})} \cdot \frac{\alpha(x_{0}, x_{1})}{1 - \beta(x_{0}, x_{1})} \rho(x_{0}, x_{1})$$

Now let
$$\epsilon > 0$$
, $\rho(x_i, x_{i+1}) \ge \epsilon$, $i = 0, 1, 2, \dots, 2n$

$$(\alpha(x_i, x_{i+1}) \le \alpha(\epsilon), \beta(x_i, x_{i+1}) \le \beta(\epsilon), i=0, 1, 2, \dots, 2n$$

By our assumption $\alpha(\epsilon) + \beta(\epsilon) < 1$

$$\frac{\alpha(\epsilon)}{1-\beta(\epsilon)} < 1$$
 and $\frac{\beta(\epsilon)}{1-\alpha(\epsilon)} < 1$

$$\therefore \rho(x_{2n}, x_{2n+1}) \leq r_1^n r_2^n \rho(x_0, x_1)$$

and
$$\rho(x_{2n+1}, x_{2(n+1)}) \le r_1^{n+1} r_2^n \rho(x_0, x_1)$$

where
$$r_1(\epsilon) = \frac{\alpha(\epsilon)}{1 - \beta(\epsilon)}$$
 and $r_2(\epsilon) = \frac{\beta(\epsilon)}{1 - \alpha(\epsilon)}$

$$\therefore \rho(x_{2n}, x_{2n+p}) \leq r_1^n r_2^n [1 + r_1(1 + r_1r_2 + r_1^2 + r_2^2 + r_2^2 + \cdots) + r_1r_2(1 + r_1r_2 + \cdots)] \rho(x_0, x_1)$$

$$<\frac{r_1^n r_2^n (1+r_1)}{1-r_1 r_2} \rho(x_0, x_1) \to 0 \text{ as } n \to \infty$$

Similarly $\rho(x_{2n+1}, x_{2n+p+1}) \rightarrow 0$ as $n \rightarrow \infty$

 \therefore $\{x_n\}$ is a Cauchy sequence.

Now let $\lim_{n\to\infty} \rho(T_2x_{2n-1}, x_{2n+1}) = \rho(\lim_{n\to\infty} T_2x_{2n-1}, \lim_{n\to\infty} x_{2n+1})$

$$\therefore \rho(T_2\xi, \xi) = 0 \quad [:T_2 \text{ is continuous}]$$

$$\lim_{n\to\infty} \rho(T_1 x_{2n}, x_{2n+2}) = \rho(T_1 \lim_{n\to\infty} x_{2n}, \lim_{n\to\infty} x_{2n+2}) \to 0$$

$$\therefore \rho(T_1\xi, \xi) = 0 \qquad [\because T_1 \text{ is continuous}]$$

This completes the proof.

Putting $T_1 = T_2 = T$ and $\alpha(x, y) = \beta(x, y)$ on Theorem 8, we obtain,

THEOREM 8A. If T is a continuous mapping of a complete metric space X such that $\rho(Tx, Ty) < \rho(x, y)$ for $x \neq y \in X$ and there exists a subset $M \subset X$ and a point $x_0 \in M$ satisfying

i)
$$\rho(x_0, Tx) - (Tx_0, T^2x) \ge 2\rho(x_0, Tx_0)$$
 for every $x \in X/M$

ii) $\rho(Tx, Ty) \le \alpha(x, y) [\rho(x, Tx) + \rho(y, Ty)]$ for every $x, y \in M$, and $\alpha(x, y) \in F$, then there exists a point ξ , such that $\rho(\xi, T\xi) = 0$,

COROLLARY. If X is a complete semi-metric space and if $\rho(T_1x_2, T_2y) \le \alpha(x,y) \ \rho(x,T_1x)+\beta(x,y)\rho(y,T_2y)$ for every x, $y \in X$, then there exists a point ξ such that $\rho(\xi,T_1\xi)=0=\rho(\xi,T_2\xi)$, where α and $\beta \in F$.

COROLLARY. If X is complete semi-metric space and α , β are positive constants such that $\alpha+\beta<1$, then if $\rho(T_1x,T_2y)\leq\alpha\rho(x,T_1x)+\beta\rho(y,T_2y)$ then there exists at least a point ξ such that $\rho(\xi,T\xi)=0$. If there is any other point $\alpha+\beta<1$ such that $\rho(\eta,T_i\eta)=0$. i=1,2. then $\rho(\eta,\xi)=0$.

COROLLARY. If we make $\alpha=\beta$ in the above corollary, we get the following. If X is a complete semi-metric space and $0<\alpha<1/2$

and $\rho(T_1x, T_2y) \le \alpha [\rho(x, T_1x) + \rho(y, T_2y)] \cdots (B)$

then there exists a point ξ such that $\rho(\xi, T\xi)=0$ and if there is any other $\eta \in X$ satisfying $\rho(\eta, T\eta)=0$, we get $\rho(\xi, \eta)=0$.

COROLLARY. Putting
$$T_1 = T_2 = T$$
, the condition (B) reduces to $\rho(Tx, Ty) \le \alpha [\rho(x, Tx) + \rho(y, Ty)]$

With the help of Theorem 4, we can establish the following theorem:

THEOREM 9. If T is a contractive mapping of a complete semi-metic space X into itself such that there exists a subset $M \subset X$, and a point $x_0 \in M$ satisfying

- i) $\rho(x, x_0) \rho(Tx, Tx_0) \ge \rho(x_0, Tx_0)$ for every $x \in X/M$
- ii) $\rho(Tx, Ty) \le \lambda(x, y) \rho(x, y)$ for every $x, y \in M$, where $\lambda(x, y) = \lambda(\rho(x, y))$, $0 \le \lambda(\rho) < 1$

and $\lambda(\rho)$ is a monotonically decreasing function of ρ , then there exists a point ξ such that $\rho(\xi, T\xi)=0$. If there is any $\eta \in X$ such that $\rho(\eta, T\eta)=0$ then $\rho(\xi, \eta)=0$.

COROLLARY. Taking M = X, we get $\rho(Tx, Ty) \le \lambda(x, y) \rho(x, y)$ for every $x, y \in X$ then there exists a ξ such that $\rho(\xi, T\xi) = 0$.

THEOREM 10. Let X be a complete semi-metric space and let $\rho(T_1x,T_2y) \leq \alpha(x,y) \left[\rho(x,T_1x) + \rho(y,T_2y)\right] \text{ for every } x,y \in S(n,r),$ S(n,r) is an r-neighbourhood of the point x, and if

$$\rho(x, Tx_0) < [1 - \lambda(x, Tx)]/r$$

where
$$\lambda(x, y) = \lambda(\rho(x, y)) \in F$$
, $\lambda(x, x_1) = \frac{\alpha(x, x_1)}{1 - \rho(x, x_1)}$

then T_1, T_2 have a point ξ , such that $\rho(\xi, T\xi) = 0$.

PROOF. We can prove, as before, $\{x_n\}$ to be a Cauchy sequence. Rest is easy.

Graduate School of Business Administration Harvard University, Cambridge, Massachusetts 02163 U.S.A.

REFERENCES

- [1] Lusternik L.A. & Sobolev V.J., Elements of Founctional Analysis p.27. (1961).
- [2] Kelley J.L., General Topology D. Van Nostrand Co., Inc., Princeton N. J. 1955.