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CHARACTERIZATIONS OF SPACES USING
T,-IDENTIFICATION SPACES

By Charles Dorsett

1. Introduction

In this paper T ,identification spaces are used to characterize spaces which are
RO, R,, regular, completely regular, normal R, or pscudometrizable, where the
T, axiom is not included in the definitions of regular, completely regular, and
normal. Regular T}, completely regular T, and normal T, will be denoted by
T, T3_%, and T, respectively. Listed below are definitions and theorems that

will be utilized in this paper.

DEFINITION 1.1. A topological space (X,T) i1s R, if and only if for each
closed set C and for each x&C, CN{x}=¢ [1].

THEOREM 1.1. The following are equivalent: (a) (X,T) is R, (b) if O€T
and xS0, then {x}CO, and (c) for x,yEX, either {x} =y} or ix) ﬂngﬁ (1].

DEFINITION 1.2. If ~ 1is an equivalence relation on (X, T), then the ~
identification space of (X, T) is (Y ~, &~), where &~ is the set of equivalence:
classes of ~ and &~ is the decomposition topology on &~ [3].

DEFINITION 1.3. Let ~° be the equivalence relation on (X, T) defined by x~°
y if and only if {x}={y}. The T, identification space of (X, T) is the ~°
identification of (X, T), which is T, Let X0=.@~°, let Sp=&~°, and let:
P: (X, T)—(X, S,) be the natural map [3].

DEFINITION 1.4. For a space (X,T) let ~” be the relation in XXX defined by
x~"y if and only if x&{y}. Then ~’ is not always an equivalence relationon X

and ~°C~",

DEFINITION 1.5. A space (X, T) is R, if and only if for x, y&X such that
{x} # {y} there exist disjoint open sets U and V such that {x} CU and {y}CV [1].

THEOREM 1.2. A space is T, if and only z'f it 1s Ry and Ty and a space is T,
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if and onlyifit is R, and T, [1].

THEOREM 1.3. A space (X, T) is R, if and onl yif (X, SO) is T, [4].

2. Characterizations

THEOREM 2.1. The following are equivalent: (a) (X, T) is Ry, (b) ~" is an
equivalence relation on X, (c¢) (I~', &~")=(X, Sy, X0={EleX}, (X

S,) ts T\, P is closed open, and P_l(P(O))=0 for all 0€T, (d) (X . Sy) s R,
and (e) (X, Sy) s T,.

PROOF. (a) implies (b): If (x,5) E~’, then x{y}] and {x}N{y}#¢, which
implies {x} = {3} and (x, y)&~°. Hence ~’=~"°, which is an equivalence relation.
(b) implies (c): If *&X and C, is the equivalence class of ~" containing =,
then C.= {x}. Thus {{x} |x&X} is a decomposition of X, which implies (X,
T) is R, By the argument above~’ = ~°, and thus (Z~', &~')=(X,, S,)

and X,= {{Ix} 1x=X)}. If OST, then P_ICP(O))z U(:?T:O’ which implies P(0O)
xe

<S5, and thus P is open. For C closed in X, P(C)=X\P(X\C), which is

closed, and thus P is closed. If {zxl€X, then {{x}} =P({x))=P({z})={{x]}.
which implies (X, S,) is T,.

(¢c) implies (d): Since every T, space is R, then (Xy Sp) is Ry,

(d) implies (e): Since (X, Sy) is Ry and T, then (X, Sy is T'.

(e) implies (a): Let x&X and let C_ be the equivalence class of~° containing

x. Then CIC'{x_}. Since {C.} is closed in X, then xECx::P_l( {Cx}), which

is closed, and thus {":ETCCI and CJ;:T}T. Hence X,= {{x} | *& X}, which implies
(X, T) is K,

The following corollary can be obtained by using Theorem 1.3 and Theorem
1. 2.

COROLLARY 2.1.. A space (X, T) is Rl if and only if (XO, SO) s R,
Note that if (X, T) is Ry, then {x} compact for all xEX.

THEOREM 2.2. The following are equivalent: (a) (X, T) is regular, (b) (X 0
So) is regular, and (c) '(XO; Sy) is Ta. | |

"PROOF. (a) implies (b): Since (X, T) is regular,_ then (X, T) is R, By
Theorem 2.1, (X, Sp) is an upper semi-continuous decomposition of X into
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compact sets and since (X, T) is regular, then (X, S,) is regular [2].
(b) implies (¢): Since (X, S,) is regular T, then (X, S,) is T,

(¢) implies (a): By Theorem 2.1, X,={{z} |2€X}, P is open, and P~ '(P(0))
=0 for all 0ET. Let OST and let ¥€0. Then{x}&P(0), which is open in X,

Thus there exists an open set Z° such that {x]&Z7 " CZ CP(0), which implies
xEP"l(V)CP—IW" YC0O. Hence (X,T) is regular.

THEOREM 2.3. The following are equivalent: (a) (X, T) ts completely regular,
(b) (X, Sy) is completely regular, and (c) (X Sy) s T3%-

PROOF (a) implies (b): Since (X, T) is completely regular, then (X, T) is
R,. By Theorem 2.1, Xy={{x}|x&X} and P is open. Let ¥ be closed in X,
and let {x}] &&%. Then P_l(%"’) is closed in X and :r%P_l(%”) and there exists
a continuous function f: (X,T)—[0,1] such that f(x)=0 and f(P_I(%"))zl. Let
g: (Xg Sy)—10,1] defined by g({y})=f(»). Then g({x})=0 and g(#¥)=1. If O
is open in [0, 1], then f_l(O) 1s open Iin X and g'l(O)zP(f_l(O)) IS open In
X, which implies g is continuous. Hence, (X, S,) is completely regular.

(b) implies (c): Since (X, Sp) is completely regular T, then (XO, Sy) 1s
Tgl.

(c) implies (a): By Theorem 2.1, on{mleX } and P is closed. Let C be
closed in X and let x€£C. Then P(C) is closed in X, and P(x)&P(C) and there
exists a continuous function f: (X, S,)— [0, 1] such that f(P(x))=0 and f(P(C))
—=1. Then fo P : (X, T)—[0,1] 1s continuous and ( fo P)(x)=0and (fo P)(C)=1.
Hence (X, T) 1s comletely regular.

THEOREM 2.4. The following are equivalent: (a) (X, T) is normal R,
(b) (X, Sy) 7s normal R, and (¢) (XO, SO) is Ty

PROOF. (a) implies (b): By Theorem 2.1, (X, S,) is an R, upper semi-con-
tinuous decomposition of X into compact sets and since (X, T) i1s normal, then
(X4 Sy) 1s normal.

(b) implies (c): Since (X . Sy is nomal, R, and T, then (X, S,) is T

(c) implies (a): By Theorem 2.1, (X, T) is R, on{m [x&X}, and P is
closed. Let C, and C, be disjoint closed sets in X. Then P(C,) and P(C,) are
disjoint closed sets in Xy and there exist disjoint open sets Z and 7° such that
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P(C)CZ and P(C,yC7". Then CICP_I(%)ET, and CzCP‘"l(V)ET, and P .
@)NP~ (¥ )=¢. Hence, (X,T) is normal.

THEOREM 2.5. A space (X,T) is pseudometrizable if and only if (X, Sg) is

melrizable.

PROOF. Suppose (X,T) is pseudometrizable. Let d be a pseudometric on X
compatible with 7. Since (X,T) is pseudometizable, then (X,T) is R, and X,
= {{x} |x&X}. Let d, be the metric on X, defined by do({x—}, {yD)=d(x, ).
Since P is continuous, open, and onto, then d; is compatible with S, which
implies (X 7 Sy) 1s metrizable.

Conversely, suppose (X, S,) is metrizable. Then (X, SO) is T, which implies
(X, T) is Ry and X,={{x} [x&X}. Let P, be a metric on X, compatible with
S, and let P be the pseudometric on X defined by P(x, y)=P( {x}, {y}). Since

P is continuous, open, and P‘I(P(O)):O for all OET, then P is compatible with
T, which implies (X, T) is pseudometrizable.

THEOREM 2.6, Let (X,T) be an R, space. Then (a) (X,T)is separable if and
only if (X Sy) is separable, and (b) (X,T) is second countable if and only if
(X 0 Sq) s second countable.

PROOF. By Theorem 2.1, (X, S,) is T, X,={{x}|x€X}, P is closed open,
and P—l(P (0))=0 for all O&T.

(a) Suppose (X, T) is separable. Thus (X, T) has a countable dense subset
{xi}?il. Then { {?J} : ; 1s a countable dense subset of (X Sy), which implies
(X SO) is separable. |

Conversely, suppose (X, S;) is separable. Thus (X, S,) has a countable dense

subset {@}ir Then {::ci.};f"c’=1 is a countable dense subset of X, which implies
(X, T) is separable.
(b) Suppose (X, T) is second countable. Then (X, S,) is an upper semi-

continuous decomposition of (X, T) into compact sets and (X, T) is second
countable, which implies (X, S,) is second countable [2].

Conversely, suppose (X, Sy) is second countable. Then (X, SO) has a countable

base {cfé}??___l. For each rEN, let O£=P_1(c¢z.). Then {Oz.}:’i1 is a countable base:
for (X, T), which implies (X, T) is second countable.
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The next corollary can be obtained by using Theorem 2.5, Theorem 2.2,
Theorem 2.6, and Urysohn’s Metrization Theorem.

COROLLARY 2.2, The following are equivalent: (a) (X,T) is regular second’
countable, (b) (X,, Sy) ¢s a separable metric space, and (c) (X,T) is a separable.
pseudometric space.
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