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T 1 -SPACES

By William Dunham

1. Introduction

Levine [4] defines a subset of a topological space to be generalized closed
(g-closed) if its closure is contained in each of its neighborhoods, and he shows

that g-closed sets possess many of the familiar and important properties of closed
sets. Of some interest, then, are the T%-spaces — the spaces in which the closed

sets and the g-closed sets coincide. This paper examines such spaces, furnishing
characterizations independent of the notion of g-closed sets; investigating their
behavior with respect to subspaces, transformations, and products; and provid-
ing structure theorems for minimal and maximal T L topologies on a given set.

2. Definitions and characterizations

DEFINITION 2.1. (Levine, [4]) In a topological space X, ACX is g-closed if
c(A)CO when ACO and O is open, where “c” denotes the closure operator.
DEFINITION 2.2. (Levine, [4]) X isa T L -space iff every g-closed subset of X

is closed.

DEFINITION 2.3. © (Thron, [5]) X is a T,-space iff the derived set of each
singleton is closed.

DEFINITION 2.4. X is a door space iff each subset of X is either open or
closed. (See Kelley, [3])

THEOREM 2.5. X is T% iff for each x&EX, eilher {x} is open or {x} is closed.

PROOF. Necessity: Suppose X is T% and for some x&X, {x} is not closed.

Since X is the only neighborhood of €{x} (“€” denotes the complement opera-
tor), @{x} is g-closed and thus closed. Hence {x} is open.

Sufficiency: Let ACX be g-closed with x&c(A4). If {x} is open, ¢#{x}NA.
Otherwise {x} is closed and ¢#c(x)NA={x} A by Levine [4], Theorem 2.2. In

elther case x=4 and so 4 is closed.
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COROLLARY 2.6, X s T L iff every subset of X is the inlersection of all oper

sets and all closed sels conmtaining it.

PROOF. Necessity: Let X be T_lf with BCX arbitrary. Then B=N{&{x}:

x&&B}, an intersection of open and closed sets by Theorem 2.5. The result follows.
Sufficiency: For each x&X, ©{x} is the intersection of all open sets and all
closed sets containing it. Thus € {x} is either open or closed and X is T.;_-

COROLLARY 2.7. (a) [4, Theorem 5.3]1: A T -space is T—;-
(b) A door space s T.;--
PROOF. " Both results follow Iforlm Theoreﬁ; 2.5,

EXAMPLE 2.8. Neither implication in. the previous corollary is reversible.
For if X=1{a,b,¢,d} and 9 ={¢, {a}, {8}, {a,b}, {a,b,c}, {a,b,d}, X}, then
(X, 9 ) is a T_é_-jspace by Theorem 2.5. But (X, .97) is not T, since {a} 1s not.

closed, nor is it a door space, since {a,c} is neither open nor closed.

THEOREM 2.9. If X is T%, then X is T, (and thus Ty-

PROOF. For x&X, {x} is either open or closed. If {x} is open, {x}’=c(x)\{x}
is closed, while if {x} is closed, {x}" =4¢.

EXAMPLE 2.10. A T,-space need not be T 1. For, if X={a,b,¢} and T = {0,
{e}, {a,b}, X}, then (X, 9) is not T_;_ since {b} is neither open nor closed. But
(X, 7 ) is Ty since {a}'={b,¢c}, {8})'={c}, and {c}’=¢, all of which are closed..

3. Subspaces and transformations

- THEOREM 3.1. If X is T%_ with YCX, then Y is T%_.

PROOF. For y&Y, {y} is either X-open or X-closed, and thus {y} is either
Y -open or Y -closed.

EXAMPLE 3.2. Before considering conditions under which the image of a
T 1~ space is T%, we introduce the following example: Let X={1,2,3,---} be the
natural numbers with topology 9 ={p, {1}}U{U: 1€U and €U is-finite}, and
let Y={a,d,c} with topology 7"={@, {a}, Y}. Define f: X—Y by

f(l)=a |
f(2n)=>b for n=1,2, -
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fn+1)=c for n=1,2, -
Then f is continuous, open, and onto. But by Theorem 2.5, (X,5) is T
while (Y',7") is not.

THEOREM 3.3, If X is Ty and f: XY s continuous, closed, and onto, then
Y 3.8 Tl!
2

PROOF, Let BCY be g-closed. By Levine [4], Theorem 6. 3, f“1 [B] is g-closed
and thus closed in X. Hence B=f] f_1 [B]]l isclosed in Y, and Y 1s T 1.

THEOREM 3.4. Let (X, 9 ) be T% and let f: X—Y be arn open, onto map (not

necessarily conitinuous) such that for each y&Y, fh1 [{y}] is a finite set. Thexn
G’, ? ) s T _‘%_ .

PROOF. We shall use Theorem 2.5. Let y&Y. By hypothesis, f_l[{y}] = {x,
Xg» **=5 %,}. If, for some 7, {x}E7 then {y}={{(x)}EZ since f is open. Othe-
rwise, €ix}&7 for all 7=1, 2, --n and thus E{y}=rf[C{x} N--NE{x }EZ.
It follows that (Y,Z') is T—,‘;'

COROLLARY 3.5. The homeomorphic image of a T}:_-sﬁczce 18 T.;.'

4., Products

THEOREM 4.1. Let X=X{X,: a€4}. Then if X is T,, X

o 1S T% for all
a A

PROOF. X contains a subspace homeomorphic to X ,. Use Theorem 3.1 and
Corollary 3. 5.

REMARK 4.2. In contrast to the To’ T,, and T, separation axioms, the con-
verse of Theorem 4.1 is false. See Levine [4], Example 7.4. In order to derive

necessary and sufficient conditions under which a product space 1is T%, we dist-

inguish two cases — when the product is infinite (that is, when there are an

infinite number of non-singleton factors) and when the product is finite. We
begin with a simple lemma.:

LEMMA 4.3 Let X=X{X o a4} where 4 is infinite. Then X is T% iff X
X Tl.
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PROOF. The sufficiency s Corollary 2.7 (a). To prove necessity, let x=X
and note that {x} is not open in the product topology since there are infinitely
many non-singleton factors in X. By Theorem 2.5, {x} is closed and X is T.

#

THEOREM 4.4. Let X=X{X_: a&d} where 4 is infinite. Then X 1is T—;. i ff
X, is T, for all acl

# 4
PROOF. Apply the previous lemma and the fact that a product space is T,
1ff each factor is T,.

REMARK 4.5. Theorem 4.4 shows that the distinction between T_zq_ and T, va-

mishes in infinite product spaces. A different situation exists in the case of

finite products, where we can relax the T, condition on one of the factors if
'we put severe restrictions upon the others:

THEOREM 4.6. Let (X, I )=X{(X,, F): i=12,+, n}. Then (X, 9 ) is T_;.
iff one of the following conditions holds:

(a) (X, F ) is T, for all i.
07

(b) For some k, (X . F ) IS T.;- but mot T,, while (X, F ) is discrete for all
iIFER.

PROOF. Necessity: Suppose (X, 7)) is T_;. and (a) does not hold. Then for
some k&, (X )3 % ) is not T, although (X,, %) is T.; by Theorem 4.1. Fix
i7=k. We assert (X, 5 ) is discrete. For otherwise, there is an x, & X, such
that {x}€&.% . Moreover, for some x,&X,, {x,} is not % -closed. Define x*c
X by

x*(}z):xk

x*()=x,

x*(]')EX ; arbitrary for j’;ék, 7.
If {#*}€.7", then P,[{x*}]={x}E.9, a contradiction; and if {x*} is .9 -closed,
then {x,} is % -closed, again a contradiction. By Theorem 2.5 we conclude
(X, ) is discrete.

Sufficiency: If (a) holds, (X, .7 ) is T, and thus T 1e If (b) holds, then for
some & (X, %) is Ty but not T;, while (X, ) is discrete for ik Let

2€X. It (x(A}EF, then {x} ={X{x(F): 1<j<n}}E€.9. Otherwise {x(%)} is
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% -closed and thus {x} is 9 -closed. Hence (X, .9) is T%.

5. The T% property and the lattice of topologies
THEOREM 5.1. If (X, 9) is T% and 9 CZ%, then (X, Z) is T%.

PROOF. . For =X, either {3} €95 CZ or Clxle s CZ.

EXAMPLE 5.2. The T_é property is not transferred to coarser topologies nor
even to infima. For, if X={e, b with 7 ={¢, {¢}, X} and Z={p, (b}, X},
then (X, % ) and (X, Z) are T-;- while (X, 9 NZ') is not. However, we can

Prove:

THEOREM 5.3. If (X, %) is T_% for all a€4, and if {% : a4} is a
totally ordered family with respect to inclusion, thern (X, N{% : ac=4}) is T-zl*‘

PROOF. Let x&X and suppose {x}&EN{% : acd}. Then {x}& % for some
BEd and so E{x}&=% . We assert that E{x}=.%Z for all a=4. For if =4 and

5 C %, then C{x}e% . Otherwise, Dby total ordering, % C.% and if
C{x}E L ~ then {x}e&%Z C.%, a contradiction. Thus E{x}ecN{Z% : =4} and
so (X, N{%: a€4}) isT,.

COROLLARY 5.4. For 9 any topology on X, there is a topology Z on X suckh

that -
(a) T C¥
(b) (X, Z') is T'zl*'

and

(c) IF (X, 7) is T% for T C7 C¥, then 7 =%.

PROOF. Let ox=1{% : =4} be the indexed family of all T 1 topologies on X
finer than % . We note that az#¢ since the discrete topology is T%. Moreover,

if {Z : a&4*} is a subset of oz totally ordered with respect to inclusion, then
T *=N{% : acL*} is T% with 9 C.2*. Thus .9 *€oz and by Zorn’s Lemma,

oz contains a minimal element Z which satisfies properties (a)-(c) above.
6. Minimal T_;L topologies -

REMARK 6.1. Letting .2 be the indiscrete topology in Corollary 5.4, we see
that on any set X there is at least one topology minimal with respect to the
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property of being T_%.

We shall determine the structure of such topologies, although the cases where X

is infinite and X 1s finite must be treated separately. Some lemmas are necessary:

LEMMA 6.2. Suppose X contains more than ome point and 9~ is the discrete
topology on X. Then I is not a minimal T_z._ topology on X.

PROOF. Fix x#y in X and define the T-_.;- topology Z={U: U=¢ or x€U} &
T .

LEMMA 6.3, Let X be finite with (X, Z') T.;.- Suppose there is a c&X such
that {c} s closed and {x&X; {x}EZ}C{c}. Then 7%’ is discrele.

PROOF. {c} is closed, and for x#¢, {x}&&Z and thus {x} is closed by The-
orem 2.5. It follows that (X, Z) is T, and thus discrete.

LEMMA 6.4. Let XF0Q with ACX and define Z ={U: UCA, or ACU and CU
s finite}. Then Z is a T-;. topology on X.

PROOF. Apply Theorem 2.5.

LEMMA 6.5. Suppose (X, 7 ) is a minimal T_é_-space where X comtains more

than one point. Define
A={x: {x}E€.9 and C{x}E T}
B={x: {x}€ 9 and C{x}&. 7}
C={x: {x]l€&5 and C{x}|&.5}
Then:
(a) X=AUBUC
(b) B#¢
and
(c) C=¢
PROOF.
(a) This is a restatement of Theorem 2.5.

(b) If B=¢, 7 is discrete, contradicting Lemma 6. 2.

(¢) Suppose ¢&=C and let A*=CAUC)\ {c}.
Defining Z ={U: UCA*, or A*CU and €U is finite}, we conclude from Lemma
6.4 that (X, Z') is T% and assert that ZC.9 . For, if UEZ and UCA¥*, then

U=U{{x}: x€4*NU}&.9 . Alternately, if UZA*, then A*CU with €U = {x, ---,
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.1:#}. But for each ¢, x,EA* and thus either x,=c¢ or {xﬁ%ﬁ' . In either case,
{x;} 1s I -closed and so U=N{E{x}: 1<i<n} €9 . Hence ZC.9~ and, by
minimality, Z'=.9". Since {c}&€.9 =7, either {c}CA* or A*C{c} with &{c}
finite. The first possibility is dismissed by the definition of A*. In the second
case, we conclude X is finite and A*¥=¢@. Thus {x: {x}E€Z}=1{x: {x} &5}
=AUCC{c}. By Lemma 6.3, Z=.7 is discrete, contradicting Lemma 6.2. We
thus reject the original hypothesis that C#¢.

THEOREM 6.6. Suppose X is an infinite set. Then 9 is a minimal T 1 10p0-
logy on X iff there is an ACX such that T ={0: OCA, or ACO and @O is
finite}.

PROOF. Necessity: Suppose .7~ is minimal T, and define A and B as in Lem-
ma 6.5. Then X=AUB with ACX. Define Z=1{0: OCA, or ACO and €0 is
finite}. Then (X, Z) is T% by Lemma 6.4 and we need only show 9 =%'. But,

if OZ, either OCA or ACO with @0 finite. In the first case, O& .9 clearly.

Otherwise, €0 = {x, =, x,} with x, =8 for all 7, proving O=N{E{x;}: 1<i<nl&

7 . Hence ZC.7", and by minimality it follows that Z=._9". |
Sufficiency: If 9 ={0: OCA, or ACO and €0 is finite} for some ACX, then

(X, 7)) 1sT ] and we must show minimality. Suppose(X, Z) is T L with ZC. 7.

Define A*CX by A*={x: {x}&Z’}. We assert that A=A*. For, if x€4*, [x}&
Z C.7 and thus either {x}CA or AC{x} with &{x} finite. The latter possibility
1s dismissed since X is infinite. Thus &4 and A*CA. Conversely, suppose xEA
but x&&£A*. Then {x}&Z and so E{x}EZ C7 . C(Consequently, either €{x}CA4
or ACZ{x}. In the first case, X={x} UE{x]CAEX, while in the second case,

rEACE {x} and both are contradictions. We conclude A=A*. But now, for O&
7, if OCA, then OCA* implies 0€Z'. Otherwise, ACO with €0={x, x,, -~
x,}. Then for each 7, {x;} EA=A"andso C {x}EZ, implying 0oc%Z'. Thus 9~

CZ%Z and it follows that .7 1s a minimal T 1 topology.

REMARK 6.7. The previous result shows that the minimal T, topologies are

composed of some “very small” open sets (the subsets of A) and some “very
large” ones (supersets of 4 with finite complements). A similar result for finite

X requires only a minor modification:

THEOREM 6.8. Suppose X is a finite set coniaining more than one point. Then
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T is a minimal T L topology on X iff there is an ¢0#ACX such that I ={0:
OCA or ACO}.
PROOF. Necessity: Again define A and B as in Lemma 6.5 and note that if

A=¢, 7 is cofinite and thus discrete, a contradiction. The remainder of the

necessary condition follows exactly as in Theorem 6.86.
Sufficiency: Suppose that for some 9ZASX, 7 ={0:0CA or ACO}. Asin the

previous theorem, let (X, Z) be T_% with ZC.9 and define A*={x: {x}EZ}.

We assert A*CA. For if x€A4*%, {x}&€ZC.7 and thus either {x}CA or ¢p#AC

{x}. In either case, x&A4 and so A*CA. We now prove ACA* and the minimality
of 9 exactly as in Theorem 6.6.

COROLLARY 6.9. If .9 is a minimal T_% topology on X, then (X, . ) is com-

pact and comnected.
PROOF. The result follows directly from the two previous theorems.

7. Maximal T_;_ topologies

REMARK. 7.1. Frohlich [1] defines an ultratopology to be a maximal, non-
discrete topology and derives a structure theorem for ultratopologies which is

used by Girhinny [2] to prove that each ultratopology is a door space (see
Definition 2.4). We can thus prove:

THEOREM 7.2. . is a maximal T_% topology on X iff F is an uliratopology.
PROOF. Necessity: If .9 is maximal T% and 9 &%, then Z is T% by Th-

eorem 5.1, and thus Z 1s discrete.
Sufficiency: If 7 is an ultratopology, then (X, .77) is a door space and is T}f
by Corollary 2.7. Hence .9 is a maximal T_é_ topology on X.

Hanover College
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