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1. Introduetion 

Tl-SPACES 
강 

By W i1liam Dunham 

Levine [4] defines a subset of a topological space to be generaIized closed 

(g-closed) if its closure is contained in each of its neighborhoods. and he shows 

that g-closed sets possess many of the fam iIiar and important properties of closed 

sets. Of some interest. then. are the T1.-spaces the spaces in which the closed 
f 

sets and the g-closed sets coincide. This paper examines such spaces. furnishing 

characterizations independent of the notion of g-closed sets; investigating their 

behavior with respect to subspaces, transformations. and products; and provid­

ing structure theorems for minimal and maximal T 1. topologies on a given set. 
τ 

2. Definitions and eharaderizations 

DEFINITION 2. 1. (Levine, [4]) In a topological space X.ACX is g-closed if 

c(A)CO when ACO and 0 is open. where ‘ c" denotes the closure operator. 

DEFINITION 2. 2. (Levine, [4]) X is a T.! -space iff every g-closed subset of X 
흥 

is closed. 

DEFINITION 2.3. . (Thron, [5]) X is a T D-space iff the derived set of each 

singleton is closed. 

DEFINITION 2.4. X is a door space iff each subset of X is either open or 

closed. (See Kelley, [3] ) 

THEOREM 2. 5. X z.s T 1 짜f for each xεX. eitlzer {x} z.s oþen or {x} is closed. 
E 

PROOF. Necessity: Suppose X is T.! and for some xεX. {x} is not closed. 
2" 

Since X is the only neighborhood of 강 {x} (“강" denotes the complement opera-

tor). 강{x} is g-closed and thus closed. Hence {x} is open. 

Sufficiency: Let AcX be g-closed with xεc(A). If {x} is open. rþ~ {x} nA. 

Otherwise {x} is closed and rþ~c(x)nA= {x} nA by Levine [4], Theorem 2.2. In 

either case x드A and so A is closed. 
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COROLLARY 2.6. X z's T.!. z!1 every subset 01 X Z"S the z"ntersecHon 01 all opeJf. 
2 

sets and all closed sets contaz"nz'ng zï. 

PROOF. Necessity: Let X be T}_ with BCX arbitrary. Then B= n {강 {x} : 

X풍B} ， an intersection of open and closed sets by Theorem 2.5. The result follows~ 

Sufficiency: For each xEX, 강 {x} is the intersection of all open sets and all 

closed sets containing it. Thus 강 {x} is either open or closed and X is T융· 

COROLLARY 2.7. .(a) [4" Theorem 5.3]: A T(space Z"S T응 
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PROOF. Both results follow form Theorem 2.5. 

EXAMPLE 2.8. Neither implication in the previous corollary is reversible~ 

For if X = {a , b, c, d} and ‘:T = {rþ, {a }, {b}, {a , b}, {a , b, c}, {a , b, d }, X }, then 

(X，.!Jη is a T융-space by Theorem 2.5. But (X, ‘:T) is not T 1 since {a} is no t. 

closed, nor is it a door space, since {a, c} is neither open nor closed. 

THEOREM 2.9. 11 X z's T융， then X is T D (and thμs To)' 

PROOF. For xEX, {x} is either open or closed. If {x} is open, {x} ’ =c(x)\ {:X }~ 

is closed, while if {x} is closed, {x}' =rþ. 

EXAMPLE 2.10. A T n-space need not be T.!.. For, if X = {a , b, c} and ..r = {rþ •. 
ι 강 

{a} , {a, b} , X} , then (X’ ‘:T) is not T융 since {b} is neither open nor closed. But 

(X, ‘:T) is T D since {a} f = {b, c}, {b} f = {c}, and {c}' =rþ, all of which are closed .. 

3. Subspaces and transformations 

THEOREM 3. 1. lf X z's T}. wz'th YCX, then Y is T 1. 
깅 "2 

PROOF. For yεY， {y} is either X-open or X-closed, and thus {y} is either 

Y'open or Y.closed. 

EXAMPLE 3.2. Before considering conditions under which the image of a' 

T융- space is T융， we introduce the following example: Let X= {1, 2, 3, ... } be the: 

natural numbers with top이ogy ‘:T= {rþ, {1}} U {U: 1εU and 강U is finite} , anà 

let Y = {a, b, c} with topology γ= {rþ, {a}, Y}. Define I:X• Y by 

l(l)=a 

f(2n) =b for n= 1, 2, ... 
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Then 1 is continuous, open, and onto. But by Theorem 2. 5, (X’ ‘'T) is T승 

w hile (y, r) is not. 

THEOREM 3.3. 11 X is T l. and I:X• Y is continuoμs， closed, and onto, then 
"2 

Y is T ,. 
"2 

PROOF. Let BCY be g-cIosed. By Levine [4] , Theorem 6.3, r 1 
[B] is g-cIosed 

and thus closed in X. Hence B=f[/-l [B]] is cIosed in y , and Y is T울· 

THEOREM 3.4. Let (X, ‘!T) be T 1. and let /: X • Y be an oþen, onto maþ (not 
호 

necessarz"ly conHnμoμs) such that /or each yEY, 1-1 
[{y}] z's a /inzïe set. Then 

(Y，~) is T ,. 
강 

PROOF. We shaIl use Theorem 2.5. Let yεY. By hypothesis, f-1 [ {y} ] = {Xl’ 

X2, "', 쐐 . If, for some i , {잔} ε:r then {y} = {f(깐)} ε~ since f is open. Othe­

rwise, 강 {Xi} E..'T for aIl i=l, 2, … n and thus 강 {y} =I[강 {X1 } n ... n~{xη} ] ε~. 

It fo l1ows that (Y，~) is T승· 
COROLLARY 3.5. The homeomorþhz"c image 0/ a T 1. -sþace z's T ,_. 

2 2 

4. Products 

THEOREM 4. 1. Let X= X {Xa : αEL1}. Then zf X z's T융’ Xα is T융 lor a!l 

αεL1. 

PROOF. X contains a subspace homeomorphic to Xa' Use Theorem 3.1 and 

CoroIIary 3. 5. 

REMARK 4.2. In contrast to the T o' T l' and T
2 

separation axioms, the con­

verse of Theorem 4.1 is false. See Levine [4] , Example 7.4. In order to derive 

necessary and sufficient conditions under which a product space is T￡’ we dist­

inguish two cases when the product is infinite (that is, when there are an 

infinite number of non-singleton factors) and when the product is finite. We 

begin with a simple lemma: 

LEMMA 4.3 Let X=X{Xa : αEL1} 

is T 1• 

where L1 z's inlinite. Then X is T융 zf/ X 
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PROOF. The sufficiency is Corollary 2.7 (a). To prove necessity, let x은X 

and note that {x} is not open in the product topology since there are infinitely 

many non-singleton factors in X. By Theorem 2.5, {x} is closed and X is T 1 

THEOREM 4.4. Let X= x {Xa : αEJ} where J z's z'nfimïe. Then X 

X a is T 1 for all αεJ. 

z's T J zfl 

PROOF. Apply the previous lemma and the fact that a product space is T j 

iff each factor is T 1• 

REMARK 4.5. Theorem 4.4 shows that the distinction between T_J_ and T 1 va­

nishes in infinite product spaces. A different situation exists in the case of 

finite products, where we can relax the T 1 condition on one of the factors if 

we put severe restrictions upon the others: 

THEOREM 4.6. Let (X, ‘ 'T)= X {(Xi' 캉): i=1, 2, …, n}. Then (X, 

.zjf one of the folloUJz'ng condtïions holds: 

‘!T) z's T)• 

(a) (Xi' ..5[.") is T 1 for all i. 

예1r 

(b) For some k , (X k' 좋) z·s T￡ bztt %Ot Tl, tUhzμ (Xi' 칸) z's discrete for all 

.i~k. 

PROOF. Necessity: Suppose (X, ‘7) is Tl and (a) does not hoId. Then for 
"l'-

:some k, (Xk' %) is not T1, although (Xk, %) is T융 by Theorem 4. 1. Fix 

i~k. We assert (Xi' ..5[.") is discrete. For otherwise, there is an xi E X i such 

that {깐} 풍적-. Moreover, for some xkEXk, {xk} is not 윷「-c1osed. Define x*ε 

X by 

x*(k)=xk 
X율(i)=xi 
x*(j)EXj arbitrary for j양， z·. 

1f {였} ε.9'"'， then Pi [{셨} 1 = {xi } ε적-’ a contradiction; and if {셨} is ‘;T-closed, 

then {x k} is .5，중-closed， again a contradiction. By Theorem 2.5 we conclude 

(Xz, 칸) is discrete. 

Sufficiency: If (a) holds, (X,.!T) is T , and thus T 1.' If (b) holds, then for 
‘ 걷 

some k, CX k' %) is T울 but not T l' while (Xi' ..5[.") is discrete for i~k. Let 

xεX. If {x(k)}ε윷-， then {x} = {x {x(}끼‘ 1드j드n}}ε.9'"'. Otherwise {x(k)} is 



‘5쫓-closed and thus {x} 

T ， -Sp깃ces 
2 

is ‘.9'"'-closed. Hence (X ’ ‘r) is T윷· 

5. The T￡ property and the Iattice of topoIogies 

THEOREM 5. 1. If (X, ..r) z"s T.!. and ‘7Ig, then (X, g) is T l­-.-

PROOF. . For xεX， either {x} εf←ζZf .or 강 {x} εrc1/. 
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EXAMPLE 5. 2. The T-; property is not transferred to coarser topo1ogies nor 

even to infima. For, if X = {a, b} with ‘.9'"'= {rþ, {a }, X} and 1/= {rþ, {b}, X }, 

then (X’ ‘r) and (X, Zf) are T J. while (X, ..rnZ!) is not. However, we can 

prove: 

THEOREM 5.3. If (Xa , ,%") z.s T융 for all aε41， and zf {‘캉 :aε41} z.s a 

totally ordered famzty wz"th respect to z.nclusz"on, then (X , n {,%": αεJ}) is Tí. 

PROOF. Let xεX and 8uppose {x}풍n{종「: αE41}. Then {x}종 용- for some 

βε41 and so 강 {x} ε.3[. We assert that 강 {x} ε경:- for all αεJ. For if αE41 and 

j캉c，%"， then 강 {x} ε경:-. Otherwise, by total ordering, ,%"c .3[ and if 

강 {x} gE3「， then {x} ε킹~C.3ß기 a contradiction. Thus 강 {x}En {-%: αεJ} and 

80 (X, n {,%": αεA }) is T￡· 

COROLLARY 5.4. For ‘.9'"' any topology on X , there f,.s a topology 1/ on X sμch 

tha!: 

(a) ‘7ζ1/ 

(b) (X, Z/) z·s T￡· 

and 

(c) If (X. r) z.s T융 for ..rCγC1/， then r=1/. 

PROOF. Let α = {,%": αε4} be the indexed family of aI1 T￡ topologies on X 

finer than ..r. We note that α=/=rþ since the discrete topology is 깐. Moreover, 

if {~깡: αε강} is a subset of α totally ordered with respect to inclusion. then 

‘r*=n {~캉: αε양} is T , with ‘7ζ:T*. Thus ‘:T*εα and by 20m’ s Lemma. -.-
α contains a minimal element 1/ which sati8fies properties (a)-(c) above. 

6. Minimal T울 topologies 

REMARK 6. 1. Letting ..r be the indiscrete topology in Corollary 5. 4, we see 

that on any set X there is at least one topology minimal with respect to the 



166 Wil/iam Dunham 

property of being T융· 

We shall determine the structure of such topologies, although the cases where X 

is infinite and X is finite must be treated separately. Some Iemmas are necessary: 

LEMMA 6.2. Sα:ppose X conta쩌s more than one point and ‘r is the dz.screte 

topology on X. Then ‘r z.s not a mz.nz.η1al T움 topology on X. 

PROOF. Fix x#y in X and define the T￡ topology g= {U: U=￠ or xeU} 도 

.r. 

LEMMA 6. 3. Let X be /z"쩌te. wz"th (X, Zf) Tl. Sμippose there is a cεXsμch 
강 

thαt {c} is closed and {xEX: {x} εZf} ζ {c}. Then ~ is discrete. 

PROOF. {c} is cIosed, and for x~c， {x} E;fZf and thus {x} is cIosed by The­

orem 2.5. It follows that (X, Zf) is T1 and thus discrete: 

LEMMA 6.4. Let X ~rþ wzïh ACX and de/z"ne zf = {U: UCA, or ACU and εu 

z.s finzïe}. Then zf is a T -,_ to.ψology 01Z X. 

PROOF. Apply Theorem 2.5. 

LEMMA 6.5. S때þose (X ’ ‘r) is a m짧fmal 

than one point. Defiχe 

T승-space where X contaz"ns morε 

A= {x: {x} εr and 강 {x} E;f.r} 

B={x: {x} E;f.r and 강 {x} E .r} 

C= (x: {x} EY and 강 {x} ε3가 

Then: 

(a) X=AUBUC 

(b) B7얘 

and 

(c) C=rþ 

PROOF. 

(a) This is a restatement of Theorem 2.5. 

(b) If B=rþ • .r is discrete. contradicting Lemma 6.2. 

(c) Suppose cEC and Iet A*=(AUC)\ {c} • 

Defining zf = {U: UCA*, or A*CU and 강U is finite} , we concIude from Lemma 

6.4 that (X , Zf) is T 1 and assert that zfζr. For, if Uε~ and Uc향， then 
호 

U=U{{x}:xεA융nU}ε.r. Alternately. if UctA용， then A용cU with 강U= {Xi, ---, 
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.t). But for each i , 작졸A츄 and thus either Xi=C or {진}종‘:T. In either case, 

{잔} is Y-cIosed and so U= n {강 {Xi }: 1드션n} εY. Hence zfζ:T and, by 

minimaIity, zf = ‘:T. Since {c}ε:T=Zf， either. {c}C양 or 값C{c} with ε {c} 

finite. The first possibiIity is dismissed by the definition of A*. In the second 

case, we concIude X is finite and 향=rþ. Thus {x: {x} εZf} = {x: {x} ε:T} 

=AUCC{c}. By Lemma6.3, Zf=Ý• is discrete, contradicting Lemma 6.2. We 
thus reject the original hypothesis that c~rþ. 

THEOREM 6. 6. SμPihose X is a% %ji·%te set. Tke,z f- z-s Q 7%z·%j??tal T￡ topo-

logy on X iff there is an A도X sμch that ‘:T= {O: OCA, or ACO and 강o is 

fi쩌te}. 

PROOF. Necessity: Suppose ‘:T is minimal T 1 and define A and B as in Lem­
"2 

ma 6.5. Then X=AUB with A도X. Define ~= {O: OCA, or ACO and 강o is 

finite}. Then (X, ~) is T 1. by Lemma 6. 4and we need only show ‘:T=~. But, 
강 

if OE~， either OCA or ACO with 강o finite. In the first case, 0ε‘:T cIearIy. 

Otherwise, 강0= {x1, "', xn} with xiεB for alI i, proving 0= n {강 {xi}: 1드i드n}E 

‘:7. Hence ~ι:7， and by minimality it folIows that ~=Y. 

Sufficiency: If ‘:T= {O: 0ζA， or ACO and 강o is finite} for some A도X， then 

(X’ ‘:T) is T울 and we must show minimality. Suppose(X, Z/) is T￡ with gI3r. 

Define A*CX by A*= {x: {x}EZf}. We assert that A=A*. For, if xεA*， {x}ε 

gζ‘:T and thus either {x} ζA or Aζ {x} with 강 {x} finite. The latter possibility 

is dismissed since X is infinite. Thus xEA and A*ζA. Conver~ely， suppoæ xEA 

but x졸A*. Then {x} El~ and so 강{x}εgζY. Consequently. either ~ {x} ζA 

or AC강 {x}. Inthefirst case, X={x}U~{x}CA도X. while in the second case, 

xεACε {x} and both are contradictions. We concIude A=A*. But now, for OE 

‘:7. if 0ζA， then 0ζ값 implies 0εZf. Otherwise, Aζo with 강0= {xl' x2' ••.• 

X n}. Then for each i , {x;} 훌 A=A* and so 강 {x」 ε~， implying 0ε~. Thus ‘7 

ζ~ and it fo lIows that ‘7 is a mlnimal T￡ topology. 

REMARK 6.7. The previous result shows that the minimal Tι topologies are 

composed of some “ very smalI" open sets (the subsets of A) and some “ very 

large" ones (supersets of A with finite complements). A similar result for finite 

X requires only a minor modification: 

THEOREM 6. 8. Sμrþþose X is a fi쩌te set containing ηzore than one þoiχt. Tlzelz 
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‘r z"s a minz'mal T융 topo!ogy on X zJf there Z"S an rþ낯A도X such that ‘r={o: 
OCA or ACO}. 

PROOF. Necessity: Again define A and B as in Lemma 6.5 and note that if 

A=rþ. Y is cofinite and thus discrete, a contradiction. The remainder of the 

necessary condition follows exactly as in Theorem 6.6. 

Sufficiency: Suppose that for some rþ낯A도X’ ‘r= {O:OCA or ACO}. As in the 

previous theorem, let (X, ~) be T .1. with ~ζr and define A휴= {x: {x} ε~}. 
2" 

We assert A용CA. For if xεA융• {x} E~CY and thus either {x} CA or rþ낯AC 

{x}. ln either case, xεA and so A*CA. We now prove ACA* and the minima1ity 
of .3• exactly as in Theorem 6.6. 

COROLLARY 6. 9. If ‘r z"s a ηzz'nZ"mal T융 topology on X , then (X’ ‘r) z's com-

pa::t and connected. 

PROOF. The result follows directly from the two previous theorems. 

7. Maximal T울 topologies 

REMARK. 7. 1. Frδhlich (1) defines an ultratopology to be a maximal, non­

discrete topology and derives a structure theorem for ultratopologies which is 

used by Girhinny (2) to prove that each ultratopology is a door space (see 

Definition 2.4). We can thus prove: 

THEOREM 7.2. Y is a maxiηzal T융 topology on X 修 ‘r z"s an μltratφology. 

PROOF. Necessity: If ‘r is maximal T 1 and ‘7도~， then ~ is 깐 by Th­
"2 

eorem 5. 1, and thus ~ is discrete. 

Sufficiency: If ‘ris an ultratop이ogy， then (X’ ‘r) is a door space and is T응 

by Corollary 2.7. Hence ‘r is a maximal T융 topology on X. 

Hanover College 
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