Kyungpook Math. J. Volume 17. Number 2 December, 1977

ON MAXIMAL SUBGROUPS OF THE SEMIGROUP OF BINARY RELATIONS

By Chong-Yun Chao

1. Introduction

A binary relation on a finite set $X = \{x_1, x_2, \dots, x_n\}$ of *n* elements is a subset σ of $X \times X = \{(x_i, x_j) : x_i, x_j \in X\}$. Let B_X be the set of all binary relations on X. (When there is no confusion, an element in B_X is also called a relation on X). Then B_X is a semigroup with the multiplication defined as follows: for $\sigma, \tau \in B_X$, $(x_i, x_j) \in \sigma\tau$ if there is a $x_k \in X$ such that $(x_i, x_k) \in \sigma$ and $(x_k, x_j) \in \tau$. Let θ be the empty relation on X. then θ is the zero element of B_X . Let ω be the universal relation in B_X , *i.e.*, $\omega = X \times X$. In B_X , $\sigma \subset \tau$ means that σ is a subset of τ . Let M_n denote the set of all $n \times n$ matrices over the Boolean algebra of $\{0, 1\}$, then M_n is a semigroup under the ordinary matrix multiplication, and the map $\sigma \to A = (a_{ij})$,

where

$$a_{ij} = \begin{cases} 1 & \text{if } (x_i, x_j) \in \sigma, \\ 0 & \text{otherwise,} \end{cases}$$

is an isomorphism of B_X onto M_n . Let S_X^* (or S_n) be the symmetric group on X, and S_X (or S_n) be the corresponding symmetric group of permutation relations on X, then the map

 $\rho^* \rightarrow \rho$

is an isomorphism from S_X^* onto S_X where $(x_i, x_j) \in \rho$ if and only if $x_i \rho^* = x_j$. An automorphism of a partially ordered relation $\pi \in B_X$ is a permutation ρ^* on Xsuch that $(x, y) \in \pi$ if and only if $(x\rho^*, y\rho^*) \in \pi$ (if \leq is written for the relation, then this would read as $x \leq y$ if and only if $x\rho^* \leq y\rho^*$). The Montague-Plemmons-Schein theorem in [4] and [5] states that the group of automorphisms of a partially ordered relation $\pi \in B_Y$ where Y is an arbitrary set is isomorphic to the maximal subgroup H_{π} in B_Y containing π . The results in [2] can be stated as follows:

144 Chong-Yun Chao

THEOREM MPS. 1. The group of automorphisms of π denoted by G_{π} is $\{\rho \in S_Y; \pi \rho = \rho \pi\}$.

2. The maximal subgroup
$$H_{\pi}$$
 in B_{Y} containing π is $\{\rho\pi; \rho \in G_{\pi}\}$.
3. $G_{\pi} \simeq H_{\pi}$ under the map $\rho \rightarrow \rho\pi(=\pi\rho)$.

Here, we consider the following problem: Given a group G^* of permutations

on a finite set X regarded as a group of permutation binary relations G in B_X , can we find a partially ordered relation $\pi \in B_X$ such that $G\pi = \{\rho\pi : \rho \in G\}$ is the maximal subgroup H_{π} in B_X containing π ? In 2, we shall present a way to partition the universal relation ω in B_X , and to partition B_X . The former leads to an algorithm, in 3, for constructing all partially ordered relations π each whose maximal subgroup $H_{\pi} \supset G\pi$. The later determines the number of isomorphic relations in B_X for any given relation in B_X . In 4, an example is given to demonstrate the algorithm. If G is any given abstract group, then, by Birkhoff's theorem in [1], there exists a partially ordered set whose group of automorphisms is isomorphic to G. However, if G^* is a given group of permutations of X, there may not exist a partially ordered relation on X whose group of automorphisms is G. In general, it seems to be very difficult to determine which permutation group G^* on X can have a partially ordered relation π in B_X whose group of automorphisms is G^* , (or whose $H_{\pi} = G\pi$). In 5, we present a result concerning this problem.

2. Partitions

Let G^* be a permutation group on X, and G be the group of permutation relations in B_X corresponding to G^* . We shall consider two partitions:

(1) Partition ω with respect to G^* , and

(2) Partition B_X with respect to S_X^* . Let $\sigma_{ij} = \{(x_i, x_j)\} \in B_X$ for $i, j = 1, 2, \dots, n$.

Then $\omega = \bigcup_{i \in i} \sigma_{ij}$.

Clearly, every member in B_X is a union of some σ_{ij} 's. Two relations σ_{ij} and σ_{kl} are said to be similar with respect to G, denoted by $\sigma_{ij}R\sigma_{kl}$, if and only if there exists a $\rho \in G$ such that

Since G_X is a group, this similarity is an equivalence relation. Consequently,

On Maximal Subgroups of the Semigroup of Binary Relations 145

with respect to this similarity, ω is partitioned into disjoint subsets $\gamma^{(1)}$, $\gamma^{(2)}$, ..., $\gamma^{(m)}$. Also, $\sigma_{ij}R\sigma_{kl}$ if and only if there exists a $\rho^* \in G^*$ such that $x_i o^* = x_k$ and $x_j o^* = x_l$. Let $Z(G) = \{\mu \in B_X : \mu \rho = \rho \mu \text{ for all } \rho \in G\}$. Clearly, Z(G) is a subsemigroup of B_X .

THEOREM 1 (a)
$$\gamma^{(s)} = Z(C)$$
 for $s = 1 2 \dots m$

THEOREM 1. (a) $\gamma \subseteq \exists Z(G)$ for $s=1, 2, \dots, m$. (b) If $\mu \in Z(G)$ then μ is a union of some of $\gamma^{(1)}, \gamma^{(2)}, \dots, \gamma^{(m)}$.

PROOF. Since B_X and M_n are isomorphic, we write a relation $\tau \in B_X$ as a matrix $\tau = (\tau_{ij})$ or $\tau = (\tau)_{ij}$, $i, j = 1, 2, \dots, n, i.e., \tau_{ij} = 1$ if $(x_i, x_j) \in \tau$, and $\tau_{ij} = 0$ if $(x_i, x_j) \notin \tau$. Since each $\rho = (\rho_{ij}) \in G$ is a permutation relation in B_X , its group inverse is also its converse relation. Hence, for every $\rho \in G$, we have

$$(\rho\gamma^{(s)}\rho^{-1})_{ij} = \sum_{k=1}^{n} \sum_{t=1}^{n} \rho_{it}\gamma^{(s)}_{tk} \rho_{jk} = \rho_{ir}\gamma^{(s)}_{ru} \rho_{ju}.$$

If $\gamma_{ru}^{(s)}=1$, then $\sigma_{ru} \subset \gamma^{(s)}$. Since $\rho_{ir}=\rho_{ju}=1$, there exists $\rho^* \in G^*$ such that $x_i \rho^* = x_r$ and $x_j \rho^* = x_u$. This means that $\sigma_{ij} R \sigma_{ru}$, $\sigma_{ij} \subset \gamma^{(s)}$ and $\gamma_{ij}^{(s)}=1$. If $\gamma_{ru}^{(s)}=0$, then $\sigma_{ru} \not\subset \gamma^{(s)}$, $\sigma_{ij} \not\subset \gamma^{(s)}$ and $\gamma_{ij}^{(s)}=0$. Hence, $(\rho \gamma^{(s)} \rho^{-1})_{ij} = \gamma_{ij}^{(s)}$

for all *i*, j=1, 2, ..., n, *i.e.*, for every $\rho \in G$, $\rho \gamma^{(s)} = \gamma^{(s)} \rho$ and $\gamma^{(s)} \in Z(G)$ for s=1, 2, ..., m.

(b) Let $\mu = (\mu_{ij})$ be an arbitrary relation in Z(G). Since $\rho\mu\rho^{-1} = \mu$ for every $\rho \in G$, $\mu_{ij} = \mu_{(i\rho^*)(j\rho^*)}$ where ρ^* runs through G^* . For $\mu_{ij} = 1$, there is a $\gamma^{(s)}$ such that $\gamma_{ij}^{(s)} = 1$, $1 \le s \le m$, since $\omega = \bigcup_{\nu=1}^m \gamma^{(\nu)}$. By (a), we know each $\gamma^{(s)} \in Z(G)$ which implies $\gamma_{ij}^{(s)} = \gamma_{(i\rho^*)(j\rho^*)}^{(s)}$ for every $\rho^* \in G^*$, and $\gamma^{(s)} \subset \mu$. If $\gamma^{(s)} = \mu$, then our proof is completed. If $\gamma^{(s)} \subset \mu$, then for some k and q we have $\mu_{kl} = 1$ and $\gamma_{kq}^{(s)} \neq 1$. Again, by $\omega = \bigcup_{V=1}^m \gamma^{(V)}$, there is a $\gamma^{(u)}$ such that $\gamma_{kq}^{(u)} = 1$, $1 \le u \le m$, and we repeat the similar argument to obtain $\gamma^{(s)} \cup \gamma^{(u)} \subset \mu$. Repeating the similar procedure for at most m times, we obtain μ as a union of some of $\gamma^{(1)}$, $\gamma^{(2)}, \dots, \gamma^{(m)}$. For the second partition, we have the following: Let σ , $\tau \in B_X$. σ and τ are said to be isomorphic, denoted by $\sigma R'\tau$, if and only if there exists a permutation relation $\rho \in S_X \subset B_X$ such that

146 $\rho\sigma\rho^{-1} = \tau$ where S_X is the symmetric group of all permutation relatons in B_X . (Since it was shown in [3] that every automorphism of B is inner and the group of automorphisms of B_X is isomorphic to S_X , it is justified to say that σ and τ are

isomorphic). Again, since S_X is a group, the isomorphic relation on B_X is an equivalence relation, and B_X is partitioned into disjoint subsets. Let $\sigma \in B_X$, and $C_{\sigma} = \{\rho \in S_X; \rho \sigma = \sigma \rho\}$. Then C_{σ} is a group, Also, let $|C_{\sigma}|$ denote the cardinality of C_{σ} . (Our C_{σ} is G_{σ} in [2]).

THEOREM 2. Let $\alpha, \beta \in B_X$, $\alpha \subset \beta$ and $C_{\alpha} \subset C_{\beta}$. Then the number of γ in B_X , such that $\gamma R' \alpha$ and $\gamma \subset \beta$, is \geq the index of C_{α} in C_{β} .

PROOF. We claim that the elements in the left coset μC_{α} transform α alike in β , and the elements in the different left cosets transform α differently in β . Let $\mu \rho, \mu \tau \in \mu C_{\alpha}$, then

and $(\mu\rho)\alpha(\mu\rho)^{-1} = \mu(\rho\alpha\rho^{-1})\mu^{-1} = \mu\alpha\mu^{-1},$ $(\mu\tau)\alpha(\mu\tau)^{-1} = \mu(\tau\alpha\tau^{-1})\mu^{-1} = \mu\alpha\mu^{-1},$

i.e., they transform α alike. In fact, they transform α alike in β , since $\alpha \subset \beta$ and $\mu \in C_{\beta}$. Also, let μC_{α} and ηC_{α} be different cosets, and $\mu \rho \in \mu C_{\alpha}$ and $\eta \tau \in \eta C_{\alpha}$. Suppose $\mu \rho$ and $\eta \tau$ transforming α alike, then we would have

$$\mu\alpha\mu^{-1}=\eta\alpha\eta^{-1},$$

i.e., $\eta^{-1}\mu \in C_{\alpha}$, $\mu \in \eta C_{\alpha}$ and $\mu C_{\alpha} \subset \eta C_{\alpha}$. That is a contradiction. Hence, the number of γ , such that $\gamma R'\alpha$ and $\gamma \leq \beta$, is \geq the index of C_{α} in C_{β} .

COROLLARY 2.1. Let $\alpha \in B_X$. Then the number of γ in B_X , such that $\gamma R'\alpha$, is equal to $n!/|C_{\alpha}|$.

PROOF. Let $\alpha \subset \omega$. Since $C_{\omega} = S_X$ and $|S_X| = n!$, apply Theorem 2 to complete the proof.

3. An algorithm

Given a permutation group G^* on X, we shall find all partially ordered relations π on X such that the maximal subgroup H_{π} in B_X containing π must $\supset G_{\pi}$. Let Γ be this collection, *i.e.*, $\Gamma = \{\pi \in B_X; \pi \text{ is a partially ordered relation and <math>H_{\pi} \supset G_{\pi}\}$. The algorithm for obtaining Γ goes as follows:

On Maximal Subgroups of the Semigroup of Binary Relations 147

(1) From G^{*} we can obtain the collection $\{\gamma^{(1)}, \gamma^{(2)}, \dots, \gamma^{(m)}\}$ as in Theorem 1, and we denote this collection by Γ' .

(2) Let Γ'' be the subcollection of Γ' such that each member of Γ'' does not contain any cycle of length greater than 1. (e.g., σ_{ii} is a cycle of length 1, and $\sigma_{i} \cup \sigma_{i} \cup \sigma_{k}$, where *i*, *j* and *k* are pairwise different, is a cycle of length 3). Let $\delta = \bigcup_{i=1}^{n} \sigma_{ii}$. Say, $\Gamma'' = \{\delta, \gamma^{(i_1)}, \gamma^{(i_2)}, \dots, \gamma^{(i_i)}\}.$ (3) Let $\Gamma''' = \{\delta, \delta \cup \gamma^{(i_1)}, \delta \cup \gamma^{(i_2)}, \dots, \delta \cup \gamma^{(i_l)}\}$, and Γ be the set of all possible unions of members of Γ''' with the following conditions: (a) None of members of Γ contains a cycle of length greater than 1, and (b) If a member, π , of Γ contains σ_{ij} and σ_{jk} where i, j and k are pairwise different, then π must also contain σ_{ik} . Since the cardinality of Γ' is finite, it takes only a finite of steps to obtain Γ .

We claim that the algorithm gives us all partially ordered relations π on X each whose H_{π} in $B_X \supset G\pi$: Let π be a relation on X which is obtained by the algorithm, then, by (3), π is a union of members of Γ'' and π is a partially ordered relation on X. By Theorem 1, each $\gamma^{(i)} \varepsilon Z(G)$. Since π is a union of some of $\gamma^{(i)}$, $\pi \in Z(G)$. By Theorem MPS, we know $G\pi \subset H_{\pi}$. Conversely, let π be a partially ordered relation on X whose H_{π} in $B_X \supset G\pi$. Then, by Theorem

MPS, $\pi \in Z(G)$, and, by Theorem 1, π is a union of some $\gamma^{(i)}$'s in Γ' . Since π is a partially ordered relation on X, π contains δ and π satisfies the conditions (a) and (b) in (3). Hence, $\pi \in \Gamma$, *i.e.*, π must be one of the relations obtained by using the algorithm.

4. An example

For convenience, we let $X = \{1, 2, \dots, 6\}$ instead of $X = \{x_1, x_2, \dots, x_6\}$. Also, we let G^* be the permutation group on X generated by

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 2 & 5 & 6 & 4 \end{pmatrix}$$

Hence $|G^*|=6$. We shall construct all of the partially ordered relations π on X each whose maximal subgroup H_{π} in B_X containing $\pi \supset G\pi$:

Since $\sigma_{ij}R\sigma_{(i\rho^*)(j\rho^*)}$ for all $\rho^* \in G^*$, we have $\Gamma' = \{\gamma^{(1)}, \gamma^{(2)}, \dots, \gamma^{(12)}\}$ where

148

Chong-Yun Chao

$$\begin{split} \gamma^{(1)} &= \sigma_{11}, \ \gamma^{(2)} = \sigma_{22} \cup \sigma_{33}, \ \gamma^{(3)} = \sigma_{44} \cup \sigma_{55} \cup \sigma_{66}, \\ \gamma^{(4)} &= \sigma_{12} \cup \sigma_{13}, \ \gamma^{(5)} = \sigma_{14} \cup \sigma_{15} \cup \sigma_{16}, \\ \gamma^{(6)} &= \sigma_{21} \cup \sigma_{31}, \ \gamma^{(7)} = \sigma_{41} \cup \sigma_{51} \cup \sigma_{61}, \\ \gamma^{(8)} &= \sigma_{24} \cup \sigma_{25} \cup \sigma_{26} \cup \sigma_{34} \cup \sigma_{35} \cup \sigma_{36}, \\ \gamma^{(9)} &= \sigma_{42} \cup \sigma_{43} \cup \sigma_{52} \cup \sigma_{53} \cup \sigma_{62} \cup \sigma_{63}, \\ \gamma^{(10)} &= \sigma_{23} \cup \sigma_{32}, \ \gamma^{(11)} = \sigma_{45} \cup \sigma_{56} \cup \sigma_{64} \text{ and} \\ \gamma^{(12)} &= \sigma_{46} \cup \sigma_{54} \cup \sigma_{65}. \end{split}$$

In matrix notation, we have

$$Z(G) = -\begin{bmatrix} \left| \frac{a}{f} \right| \frac{d}{b} \frac{d}{j} \right| \frac{e}{h} \frac{e}{h} \frac{e}{h} \frac{e}{h} \\ \frac{f}{g} \left| \frac{j}{i} \frac{b}{i} \right| \frac{h}{c} \frac{h}{k} \frac{h}{l} \\ \frac{g|i}{i} \frac{i|l}{c} \frac{c}{k} \frac{k}{k} \frac{1}{l} \\ \frac{g|i}{i} \frac{i|k}{i|k} \frac{l}{c} \frac{c}{k} \end{bmatrix}; a, b, \dots, l \in \{0, 1\} \end{bmatrix}$$

Since each of $\gamma^{(10)}$, $\gamma^{(11)}$ and $\gamma^{(12)}$ contains a cycle of length greater than 1,

we delete them. Hence, $\Gamma'' = \{\gamma^{(1)}, \gamma^{(2)}, \gamma^{(3)}, \gamma^{(4)}, \gamma^{(5)}, \gamma^{(6)}, \gamma^{(7)}, \gamma^{(8)}, \gamma^{(9)}\}$ Let $\delta = \gamma^{(1)} \cup \gamma^{(2)} \cup \gamma^{(3)}$. Then $\Gamma''' = \{\delta, \delta \cup \gamma^{(4)}, \delta \cup \gamma^{(5)}, \delta \cup \gamma^{(6)}, \delta \cup \gamma^{(7)}, \ldots, \delta \cup \gamma^{(8)}, \delta \cup \gamma^{(9)}\}$. By using the conditions (a) and (b) in (3) of our algorithm, we can list the members of Γ with the help of the graphs: Let u, v and w be the vertices of a graph where $u = \{1\}, v = \{2, 3\}$ and $w = \{4, 5, 6\}$. If there is a directed edge from v to w, it means that every element in v is related to every element in w, and if there is no edge between v and w, it means that none of the elements in v is related to any element in w. We count graphs without drawing the loops, but with

On Maximal Subgroups of the Semigroup of Binary Relations [] 149

no edge:)

one edge:

two edges:

three edges:

Since more than three edges would create a cycle of length greater than 1, these are all possible cases. The corresponding partially ordered relations

constitute Γ (π_{13} corresponds the third graph with one edge):

$$\begin{aligned} \pi_{01} = \delta \\ \pi_{11} = \delta \cup (\sigma_{12} \cup \sigma_{13}) = \delta \cup \gamma^{(4)}, \\ \pi_{12} = \delta \cup (\sigma_{24} \cup \sigma_{25} \cup \sigma_{26} \cup \sigma_{34} \cup \sigma_{35} \cup \sigma_{36}) = \delta \cup \gamma^{(8)}, \\ \pi_{13} = \delta \cup (\sigma_{14} \cup \sigma_{15} \cup \sigma_{16}) = \delta \cup \gamma^{(5)}, \\ \pi_{14} = \delta \cup (\sigma_{21} \cup \sigma_{31}) = \delta \cup \gamma^{(6)}, \\ \pi_{15} = \delta \cup (\sigma_{42} \cup \sigma_{43} \cup \sigma_{52} \cup \sigma_{53} \cup \sigma_{62} \cup \sigma_{63}) = \delta \cup \gamma^{(9)}, \\ \pi_{16} = \delta \cup (\sigma_{41} \cup \sigma_{51} \cup \sigma_{61}) = \delta \cup \gamma^{(7)}, \\ \pi_{21} = \pi_{11} \cup \pi_{13} = \delta \cup \gamma^{(4)} \cup \gamma^{(5)}, \\ \pi_{22} = \pi_{12} \cup \pi_{14} = \delta \cup \gamma^{(8)} \cup \gamma^{(6)}, \end{aligned}$$

.

Chong-Yun Chao

$$\begin{aligned} \pi_{23} &= \pi_{15} \cup \pi_{16} = \delta \cup \gamma^{(9)} \cup \gamma^{(7)}, \\ \pi_{24} &= \pi_{14} \cup \pi_{16} = \delta \cup \gamma^{(6)} \cup \gamma^{(7)}, \\ \pi_{25} &= \pi_{15} \cup \pi_{11} = \delta \cup \gamma^{(9)} \cup \gamma^{(4)}, \\ \pi_{26} &= \pi_{13} \cup \pi_{12} = \delta \cup \gamma^{(5)} \cup \gamma^{(8)}, \end{aligned}$$

. . .

$$\pi_{31} = \pi_{11} \cup \pi_{12} \cup \pi_{13} = \delta \cup \gamma^{(4)} \cup \gamma^{(8)} \cup \gamma^{(5)},$$

$$\pi_{32} = \pi_{14} \cup \pi_{12} \cup \pi_{16} = \delta \cup \gamma^{(6)} \cup \gamma^{(3)} \cup \gamma^{(7)},$$

$$\pi_{33} = \pi_{14} \cup \pi_{15} \cup \pi_{16} = \delta \cup \gamma^{(6)} \cup \gamma^{(9)} \cup \gamma^{(7)},$$

$$\pi_{34} = \pi_{11} \cup \pi_{15} \cup \pi_{13} = \delta \cup \gamma^{(4)} \cup \gamma^{(9)} \cup \gamma^{(5)},$$

$$\pi_{35} = \pi_{14} \cup \pi_{12} \cup \pi_{16} = \delta \cup \gamma^{(6)} \cup \gamma^{(8)} \cup \gamma^{(7)}, \text{ and}$$

$$\pi_{36} = \pi_{11} \cup \pi_{15} \cup \pi_{16} = \delta \cup \gamma^{(4)} \cup \gamma^{(9)} \cup \gamma^{(7)}.$$
In matrix notation, *e.g.*, π_{11} and π_{36} , respectively, are:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Also, $H_{\pi_{01}} = S_6 \supset G_{\pi_{01}}$, and $H_{\pi_{ij}} = S_1 x S_2 x S_3 \supset G_{\pi_{ij}}$ for $i = 1, 2, 3$ and $j = 1, 2, \dots, 6$.

 \mathbf{O}

0

5. Automorphisms

We know that every partially ordered relation π in B_x has a group of automorphisms. Does the converse hold? That is, given a permutation group G^* on X, does there exist a $\pi \in B_X$ whose group of automorphisms is G^* (or $H_{\pi} =$ $(G\pi)$? From the previous example, we see that there does not exist any $\pi \in B_X$ whose group of automorphisms is the given group. To find a necessary and sufficient condition(s) seems to be very difficult. Here we have:

THEOREM 3. Let G^* be a permutation group on X, and $X^{(1)}$, $X^{(2)}$, ..., $X^{(q)}$ be its orbits, $1 \le q \le n$. If G restricted on $X^{(i)}$ is $S_{X^{(i)}}$ for $i=1, 2, \dots, 1, i.e., q, i.e.$, $G|_{X^{(i)}}=S_{X^{(i)}}$, and if G^* is isomorphic to the direct product of $S_{X^{(1)}}$, $S_{X^{(2)}}$, ...,

On Maximal Subgroups of the Semigroup of Binary Relations 151 $S_{Y'^{(q)}}$, then there exists a partially ordered relation π in B_X such that G^* is the group of automorphisms π and $H_{\pi} = G\pi$.

PROOF. We construct a partially ordered relation π in B_X as follows: For q = 1, we have $G = S_X$. Let $\pi = \{(x, x) : x \in X\}$. Then, clearly, π is a partially ordered relation in B_X , $\rho\pi = \pi\rho$ for every $\rho \in G = S_X$. By Theorem MPS, G^* is the group of automorphisms of π and $H_{\pi} = G\pi$.

For q > 1, let $\pi = \{(x, x) : x \in X\} \cup \{(x_i, x_j) : x_i \in X^{(i)}, x_j \in X^{(j)}, i < j, i = 1, 2, \cdots, q-1 \text{ and } j=2, 3, \cdots, q\}$. Then one can easily verify that π is a partially ordered relations in B_X , and ρ^* preserves the order relation for every $\rho^* \in G^*$, *i.e.*, $\rho \pi = \pi \rho$ for every $\rho \in G$, and G^* is contained in the group of automorphisms of π . Let $\tau \in S_X$ and $\tau \pi = \pi \tau$. We claim that $\tau \in G$. Since the number of relations of each $x_i \in X^{(i)}$ differs with the number of relations of each $x_j \in X^{(j)}$ for $i \neq j$, τ^* cannot map an element in $X^{(i)}$ to an element in $X^{(i)}$. Since G^* is isomorphic to the direct product of $S_{X^{(1)}}$, $S_{X^{(2)}}$, \cdots , $S_{X^{(q)}}$, $\tau \in G$. By Theorem MPS, G^* is the group of automorphisms of π , and $H_{\pi} = G\pi$,

THEOREM 4. Let π be a partially ordered relation in B_X and G^* be its group of automorphisms. If the lengths of orbits of G^* , $|X^{(i)}|$ for i=1, 2, ..., q and $1 \le q \le n$, are distinct primes (1 may be considered as a prime here), then $G|_{X^{(i)}} =$

 $S_{X^{(i)}}$, $i=1, 2, \cdots, q$, G^* is isomorphic to the direct product of $S_{X^{(1)}}$, $S_{X^{(2)}}$, \cdots , $S_{X^{(q)}}$, and $H_{\pi} = G\pi$.

PROOF. For q=1, a partially ordered relation π in B_X with a transitive group of automorphisms implies $\pi = \{(x, x) : x \in X\}$, and $G^* = S_X$. By Theorem 3. $H_{\pi} =$ $G\pi$. For q > 1, let $X^{(i)}$ and $X^{(j)}$ be any two distinct orbits of G^* . Say, $|X^{(i)}| = p_i$ and $|X^{(j)}| = p_j$. Since a transitive permutation group on a prime number p of points contains an element of order p, $G^*|_{X^{(j)}}$ and $G^*|_{X^{(j)}}$ contain, respectively, an element of order p_i and an element of order p_j . Also, $G^*|_{X^{(j)}} \cup X^{(j)}$ contains an element p^* of order $p_i p_j$. Let $x_i \in X^{(i)}$ and $x_j \in X^{(j)}$, then either $(x_i, x_j) \notin \pi$, or $(x_i, x_j) \in \pi$. If $(x_i, x_j) \in \pi$, then $(x_i(\rho^*)^k, x_j(\rho^*)^k) \in \pi$ for $k=1, 2, \dots, p_i p_j$, *i.e.*, $(x_i, x_j) \in \pi$ for every $x_i \in X^{(i)}$ and $x_j \in X^{(j)}$. Consequently, a transposition

152 Chong-Yun Chao

belongs to $G^*|_{X^{(i)}}$. Since G^* restricted on a prime number p_i points contains an element of order p_i and a transposition, $G^*|_{X^{(i)}} = S_{X^{(i)}}$. It follows that G^* is isomorphic to the direct product of $S_{X^{(i)}}$, $S_{X^{(i)}}$, \cdots , $S_{X^{(i)}}$. By Theorem 3, $H_{\pi} = G\pi$.

University of Pittsburgh

۰.

Pittsburgh, Pennsylvania 15260

REFERENCES

[1] Birkhoff, G., On groups of automorphisms(in Spanish), Revista Union Mat. Argentina, 11(1946), 155-157.

- [2] Clifford, A.H., A Proof of the Montague-Plemmons-Schein theorem on maximal subgroups of the semigroup of binary relations, Semigroup Forum Vol.1 (1970), 272-275.
- [3] Magill, K.D., Jr., Automorphisms of the semigroup of all relations on a set, Canad. Math. Bull., 9(1966), 73-77.
- [4] Montague, J.S. and Plemmons, R.J., Maximal subgroups of the semigroup of relations,
- J. Algebra, 13(1969), 575-587.
- [5] Plemmons, R. J. and Schein, B. M., Groups of binary relations, Semigroup Forum, Vol. 1 (1970), 267-271.

.