ON MAXIMAL SUBGROUPS OF THE SEMIGROUP OF BINARY RELATIONS

By Chong-Yun Chao

1. Introduction

A binary relation on a finite set $X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ of n elements is a subset σ of $X \times X=\left\{\left(x_{i}, x_{j}\right) ; x_{i}, x_{j} \in X\right\}$. Let B_{X} be the set of all binary relations on X. (When there is no confusion, an element in B_{X} is also called a relation on X). Then B_{X} is a semigroup with the multiplication defined as follows: for $\sigma, \tau \in \mathrm{B}_{X}$, $\left(x_{i}, x_{j}\right) \in \sigma \tau$ if there is a $x_{k} \in X$ such that $\left(x_{i}, x_{k}\right) \in \sigma$ and $\left(x_{k}, x_{j}\right) \in \tau$. Let θ be the empty relation on X. then θ is the zero element of B_{X}. Let ω be the universal relation in B_{X}, i.e., $\omega=X \times X$. In $B_{X}, \sigma \subset \tau$ means that σ is a subset of τ. Let M_{n} denote the set of all $n \times n$ matrices over the Boolean algebra of $\{0,1\}$, then M_{n} is a semigroup under the ordinary matrix multiplication, and the map.
where

$$
\sigma \rightarrow A=\left(a_{i j}\right)
$$

$$
a_{i j}= \begin{cases}1 & \text { if }\left(x_{i}, x_{j}\right) \in \sigma, \\ 0 & \text { otherwise },\end{cases}
$$

is an isomorphism of B_{X} onto M_{n}. Let S_{X}^{*} (or S_{n}) be the symmetric group on X, and S_{X} (or S_{n}) be the corresponding symmetric group of permutation relations. on X, then the map

$$
\rho^{*} \rightarrow \rho
$$

is an isomorphism from S_{X}^{*} onto S_{X} where $\left(x_{i}, x_{j}\right) \in \rho$ if and only if $x_{i} \rho^{*}=x_{j}$. An automorphism of a partially ordered relation $\pi \in B_{X}$ is a permutation ρ^{*} on X such that $(x, y) \in \pi$ if and only if $\left(x \rho^{*}, y \rho^{*}\right) \in \pi$ (if \leq is written for the relation, then this would read as $x \leq y$ if and only if $x \rho^{*} \leq y \rho^{*}$). The Montague-PlemmonsSchein theorem in [4] and [5] states that the group of automorphisms of a partially ordered relation $\pi \in B_{Y}$ where Y is an arbitrary set is isomorphic to the maximal subgroup H_{π} in B_{Y} containing π. The results in [2] can be stated as. follows:

THEOREM MPS. 1. The group of automorphisms of π denoted by G_{π} is $\left\{\rho \in S_{Y}\right.$; $\pi \rho=\rho \pi\}$.
2. The maximal subgroup H_{π} in B_{Y} containing π is $\left\{\rho \pi ; \rho \in G_{\pi}\right\}$.
3. $G_{\pi} \simeq H_{\pi}$ under the map $\rho \rightarrow \rho \pi(=\pi \rho)$.

Here, we consider the following problem: Given a group G^{*} of permutations on a finite set X regarded as a group of permutation binary relations G in B_{X}, can we find a partially ordered relation $\pi \in B_{X}$ such that $G \pi=\{\rho \pi ; \rho \in G\}$ is the maximal subgroup H_{π} in B_{X} containing π ? In 2 , we shall present a way to partition the universal relation ω in B_{X}, and to partition B_{X}. The former leads to an algorithm, in 3, for constructing all partially ordered relations π each whose maximal subgroup $H_{\pi} \supset G \pi$. The later determines the number of isomorphic relations in B_{X} for any given relation in B_{X}. In 4 , an example is given to demonstrate the algorithm. If G is any given abstract group, then, by Birkhoff's theorem in [1], there exists a partially ordered set whose group of automorphisms is isomorphic to G. However, if G^{*} is a given group of permutations of X , there may not exist a partially ordered relation on X whose group of automorphisms is G. In general, it seems to be very difficult to determine which permutation group G^{*} on X can have a partially ordered relation π in B_{X} whose group of automorphisms is G^{*}, (or whose $H_{\pi}=G \pi$). In 5 , we present a result concerning this problem.

2. Partitions

Let G^{*} be a permutation group on X, and G be the group of permutation relations in B_{X} corresponding to G^{*}. We shall consider two partitions:
(1) Partition ω with respect to G^{*}, and
(2) Partition B_{X} with respect to S_{X}^{*}.

Let $\sigma_{i j}=\left\{\left(x_{i}, x_{j}\right)\right\} \in B_{X}$ for $i, j=1,2, \cdots, n$.
Then

$$
\omega=\bigcup_{i, j} \sigma_{i j^{\prime}}
$$

Clearly, every member in B_{X} is a union of some $\sigma_{i j}{ }^{\prime} \mathrm{s}$. Two relations $\sigma_{i j}$ and $\sigma_{k l}$ are said to be similar with respect to G, denoted by $\sigma_{i j} R \sigma_{k l}$, if and only if there exists a $\rho \in G$ such that

$$
\rho \sigma_{i j} \rho^{-1}=\sigma_{k l}
$$

Since G_{X} is a group, this similarity is an equivalence relation. Consequently,
with respect to this similarity, ω is partitioned into disjoint subsets $\gamma^{(1)}, \gamma^{(2)}$, $\cdots, \gamma^{(m)}$. Also, $\sigma_{i j} R \sigma_{k l}$ if and only if there exists a $\rho^{*} \in G^{*}$ such that $x_{i} \rho^{*}=x_{k}$ and $x_{j} \rho^{*}=x_{l}$. Let $Z(G)=\left\{\mu \in B_{X}: \mu \rho=\rho \mu\right.$ for all $\left.\rho \in G\right\}$. Clearly, $Z(G)$ is a subsemigroup of B_{X}.

THEOREM 1. (a) $\gamma^{(s)} \in Z(G)$ for $s=1,2, \cdots, m$.
(b) If $\mu \in Z(G)$ then μ is a union of some of $\gamma^{(1)}, \gamma^{(2)}, \cdots, \gamma^{(m)}$.

PROOF. Since B_{X} and M_{n} are isomorphic, we write a relation $\tau \in B_{X}$ as a matrix $\tau=\left(\tau_{i j}\right)$ or $\tau=(\tau)_{i j}, i, j=1,2, \cdots, n$, i.e., $\tau_{i j}=1$ if $\left(x_{i}, x_{j}\right) \in \tau$, and $\tau_{i j}=0$ if $\left(x_{i}, x_{j}\right) \notin \tau$. Since each $\rho=\left(\rho_{i j}\right) \in G$ is a permutation relation in B_{X}, its group inverse is also its converse relation. Hence, for every $\rho \in G$, we have

$$
\left(\rho \gamma^{(s)} \rho^{-1}\right)_{i j}=\sum_{k=1}^{n} \sum_{t=1}^{n} \rho_{i t} r_{t k}^{(s)} \rho_{j k}=\rho_{i r} r_{r u}^{(s)} \rho_{j u} .
$$

If $\gamma_{r u}^{(s)}=1$, then $\sigma_{r u} \subset \gamma^{(s)}$. Since $\rho_{i r}=\rho_{j u}=1$, there exists $\rho^{*} \in G^{*}$ such that $x_{i} o^{*}=$ x_{r} and $x_{j} \rho^{*}=x_{u}$. This means that $\sigma_{i j} R \sigma_{r u}, \sigma_{i j} \subset \gamma^{(s)}$ and $\gamma_{i j}^{(s)}=1$. If $\gamma_{r u}^{(s)}=0$, then $\sigma_{r u} \not \subset \gamma^{(s)}, \sigma_{i j} \not \subset \gamma^{(s)}$ and $\gamma_{i j}^{(s)}=0$. Hence,

$$
\left(\rho r^{(s)} \rho^{-1}\right)_{i j}=\gamma_{i j}^{(s)}
$$

for all $i, j=1,2, \cdots, n, i . e .$, for every $\rho \in G, \rho \gamma^{(s)}=\gamma^{(s)} \rho$ and $\gamma^{(s)} \in Z(G)$ for $s=1$, $2, \cdots, m$.
(b) Let $\mu=\left(\mu_{i j}\right)$ be an arbitrary relation in $Z(G)$. Since $\rho \mu \rho^{-1}=\mu$ for every $\rho \in G, \mu_{i j}=\mu_{\left(i \rho^{*}\right)\left(j \rho^{*}\right)}$ where ρ^{*} runs through G^{*}. For $\mu_{i j}=1$, there is a $\gamma^{(s)}$ such that $\gamma_{i j}^{(s)}=1,1 \leq s \leq m$, since $\omega=\bigcup_{v=1}^{m} \gamma^{(\nu)}$. By (a), we know each $\gamma^{(s)} \in Z(G)$ which implies $\gamma_{i j}^{(s)}=\gamma_{\left(i \rho^{*}\right)\left(j \rho^{*}\right)}^{(s)}$ for every $\rho^{*} \in G^{*}$, and $\gamma^{(s)} \subset \mu$. If $\gamma^{(s)}=\mu$, then our proof is completed. If $\gamma^{(s)} \subset \mu$, then for some k and q we have $\mu_{k l}=1$ and $\gamma_{k q}^{(s)} \neq 1$. Again, by $\omega=\bigcup_{V=1}^{m} \gamma^{(V)}$, there is a $\gamma^{(u)}$ such that $\gamma_{k q}^{(u)}=1,1 \leq u \leq m$, and we repeat the similar argument to obtain $\gamma^{(s)} \cup \gamma^{(u)} \subset \mu$. Repeating the similar procedure for at most m times, we obtain μ as a union of some of $\gamma^{(1)}, \gamma^{(2)}, \cdots, \gamma^{(m)}$.

For the second partition, we have the following: Let $\sigma, \tau \in B_{X} . \sigma$ and τ are said to be isomorphic, denoted by $\sigma R^{\prime} \tau$, if and only if there exists a permutation relation $\rho \in S_{X} \subset B_{X}$ such that

$$
\rho \sigma \rho^{-1}=\tau
$$

where S_{X} is the symmetric group of all permutation relatons in B_{X}. (Since it was shown in [3] that every automorphism of B is inner and the group of automorphisms of B_{X} is isomorphic to S_{X}, it is justified to say that σ and τ are isomorphic). Again, since S_{X} is a group, the isomorphic relation on B_{X} is an equivalence relation, and B_{X} is partitioned into disjoint subsets. Let $\sigma \in B_{X}$, and $C_{\sigma}=$ $\left\{\rho \in S_{X} ; \rho \sigma=\sigma \rho\right\}$. Then C_{σ} is a group, Also, let $\left|C_{\sigma}\right|$ denote the cardinality of C_{σ}. (Our C_{σ} is G_{σ} in [2]).

THEOREM 2. Let $\alpha, \beta \in B_{X}, \alpha \subset \beta$ and $C_{\alpha} \subset C_{\beta}$. Then the number of γ in $B_{X^{\prime}}$, such that $\gamma R^{\prime} \alpha$ and $\gamma \subset \beta$, is \geq the index of C_{α} in C_{β}.

PROOF. We claim that the elements in the left coset μC_{α} transform α alike in β, and the elements in the different left cosets transform α differently in β. Let $\mu \rho, \mu \tau \in \mu C_{\alpha}$, then
and

$$
(\mu \rho) \alpha(\mu \rho)^{-1}=\mu\left(\rho \alpha \rho^{-1}\right) \mu^{-1}=\mu \alpha \mu^{-1}
$$

i.e., they transform α alike. In fact, they transform α alike in β, since $\alpha \subset \beta$ and $\mu \in C_{\beta}$. Also, let μC_{α} and ηC_{α} be different cosets, and $\mu \rho \in \mu C_{\alpha}$ and $\eta \tau \in \eta C_{\alpha}$ Suppose $\mu \rho$ and $\eta \tau$ transfoming α alike, then we would have

$$
\mu \alpha \mu^{-1}=\eta \alpha \eta^{-1}
$$

i.e., $\eta^{-1} \mu \in C_{\alpha}, \mu \in \eta C_{\alpha}$ and $\mu C_{\alpha} \subset \eta C_{\alpha}$. That is a contradiction. Hence, the number of γ, such that $\gamma R^{\prime} \alpha$ and $\gamma \leq \beta$, is \geq the index of C_{α} in C_{β}.

COROLLARY 2.1. Let $\alpha \in B_{X}$. Then the number of γ in B_{X}, such that $\gamma R^{\prime} \alpha$, is equal to $n!/\left|C_{\alpha}\right|$.

Proof. Let $\alpha \subset \omega$. Since $C_{\omega}=S_{X}$ and $\left|S_{X}\right|=n!$, apply Theorem 2 to complete the proof.

3. An algorithm

Given a permutation group G^{*} on X, we shall find all partially ordered relations π on X such that the maximal subgroup H_{π} in B_{X} containing π must $\supset G_{\pi^{*}}$ Let Γ be this collection, i.e., $\Gamma=\left\{\pi \in B_{X} ; \pi\right.$ is a partially ordered relation and $\left.H_{\pi} \supset G_{\pi}\right\}$. The algorithm for obtaining Γ goes as follows:
(1) From G^{*} we can obtain the collection $\left\{\gamma^{(1)}, \gamma^{(2)}, \cdots, \gamma^{(m)}\right\}$ as in Theorem 1 , and we denote this collection by Γ^{\prime}.
(2) Let $\Gamma^{\prime \prime}$ be the subcollection of Γ^{\prime} such that each member of $\Gamma^{\prime \prime}$ does not contain any cycle of length greater than 1. (e.g., $\sigma_{i i}$ is a cycle of length 1 , and $\sigma_{i j} \cup \sigma_{j k} \cup \sigma_{k i}$, where i, j and k are pairwise different, is a cycle of length3). Let $\delta=\bigcup_{i=1}^{n} \sigma_{i i^{*}}$ Say, $\Gamma^{\prime \prime}=\left\{\delta, \gamma^{\left(i_{1}\right)}, \gamma^{\left(i_{2}\right)}, \cdots, \gamma^{\left(i_{1}\right)}\right\}$.
(3) Let $\Gamma^{\prime \prime \prime}=\left\{\delta, \delta \cup \gamma^{\left(i_{1}\right)}, \delta \cup \gamma^{\left(i_{2}\right)}, \cdots, \delta \cup \gamma^{\left(i_{i}\right)}\right\}$, and Γ be the set of all possible unions of members of $\Gamma^{\prime \prime \prime}$ with the following conditions: (a) None of members of Γ contains a cycle of length greater than 1 , and (b) If a member, π, of Γ contains $\sigma_{i j}$ and $\sigma_{j k}$ where i, j and k are pairwise different, then π must also contain $\sigma_{i k^{*}}$ Since the cardinality of Γ^{\prime} is finite, it takes only a finite of steps to obtain Γ.
We claim that the algorithm gives us all partially ordered relations π on X each whose H_{π} in $B_{X} \supset G \pi$: Let π be a relation on X which is obtained by the algorithm, then, by (3), π is a union of members of $\Gamma^{\prime \prime \prime}$ and π is a partially ordered relation on X. By Theorem 1, each $\gamma^{(i)} \varepsilon Z(G)$. Since π is a union of some of $\gamma^{(i)} s, \pi \in Z(G)$. By . Theorem MPS, we know $G \pi \subset H_{:}$. Conversely, let π be a partially ordered relation on X whose H_{π} in $B_{X} \supset G \pi$. Then, by Theorem MPS, $\pi \in Z(G)$, and, by Theorem $1, \pi$ is a union of some $\gamma^{(i) \prime}$ s in Γ^{\prime}. Since π is a partially ordered relation on X, π contains δ and π satisfies the conditions (a) and (b) in (3). Hence, $\pi \in \Gamma$, i.e., π must be one of the relations obtained by using the algorithm.

4. An example

For convenience, we let $X=\{1,2, \cdots, 6\}$ instead of $X=\left\{x_{1}, x_{2}, \cdots, x_{6}\right\}$. Also, we let G^{*} be the permutation group on X generated by

$$
\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 3 & 2 & 5 & 6 & 4
\end{array}\right) .
$$

Hence $\left|G^{*}\right|=6$. We shall construct all of the partially ordered relations π on X each whose maximal subgroup H_{π} in B_{X} containing $\pi \supset G \pi$:

Since $\sigma_{i j} R \sigma_{\left(i \rho^{*}\right)\left(j \rho^{*}\right)}$ for all $\rho^{*} \in G^{*}$, we have $\Gamma^{\prime}=\left\{\gamma^{(1)}, \gamma^{(L)}, \cdots, \gamma^{(12)}\right\}$ where

$$
\begin{aligned}
& \gamma^{(1)}=\sigma_{11}, \gamma^{(2)}=\sigma_{22} \cup \sigma_{33}, \gamma^{(3)}=\sigma_{44} \cup \sigma_{55} \cup \sigma_{66} \\
& \gamma^{(4)}=\sigma_{12} \cup \sigma_{13}, \gamma^{(5)}=\sigma_{14} \cup \sigma_{15} \cup \sigma_{16} \\
& \gamma^{(6)}=\sigma_{21} \cup \sigma_{31^{\prime}}, \gamma^{(7)}=\sigma_{41} \cup \sigma_{51} \cup \sigma_{61^{\prime}} \\
& \gamma^{(8)}=\sigma_{24} \cup \sigma_{25} \cup \sigma_{26} \cup \sigma_{34} \cup \sigma_{35} \cup \sigma_{36^{\prime}} \\
& \gamma^{(9)}=\sigma_{42} \cup \sigma_{43} \cup \sigma_{52} \cup \sigma_{53} \cup \sigma_{62} \cup \sigma_{63}, \\
& \gamma^{(10)}=\sigma_{23} \cup \sigma_{32}, \gamma^{(11)}=\sigma_{45} \cup \sigma_{56} \cup \sigma_{64} \text { and } \\
& \gamma^{(12)}=\sigma_{46} \cup \sigma_{54} \cup \sigma_{65^{\prime}}
\end{aligned}
$$

In matrix notation, we have

$$
Z(G)=-\left[\begin{array}{c}
\left(\begin{array}{cccc}
\left.\frac{a}{f} \right\rvert\, \frac{d}{b} & \left.\frac{d}{j} \right\rvert\, \frac{e}{h} & \frac{e}{h} & \frac{e}{h} \\
\left.\frac{f}{g} \right\rvert\, \frac{j}{i} & \left.\frac{b}{i} \right\rvert\, \frac{h}{c} & \frac{h}{k} & \frac{h}{l} \\
g \mid i & i \mid l & c & k \\
g \mid i & i \mid k & l & c
\end{array}\right) ; a, b, \cdots, l \in\{0,1\}
\end{array}\right]-
$$

Since each of $\gamma^{(10)}, \gamma^{(11)}$ and $\gamma^{(12)}$ contains a cycle of length greater thran 1 , we delete them. Hence, $\Gamma^{\prime \prime}=\left\{\gamma^{(1)}, \gamma^{(2)}, \gamma^{(3)}, \gamma^{(4)}, \gamma^{(5)}, \gamma^{(6)}, \gamma^{(7)}, \gamma^{(8)}, \gamma^{(9)}\right\}$

Let $\delta=\gamma^{(1)} \cup \gamma^{(2)} \cup \gamma^{(3)}$. Then $\Gamma^{\prime \prime \prime}=\left\{\delta, \delta \cup \gamma^{(4)}, \delta \cup \gamma^{(5)}, \delta \cup \gamma^{(6)}, \delta \cup \gamma^{(7)}\right.$, $\left.\delta \cup \gamma^{(8)}, \delta \cup r^{(9)}\right\}$. By using the conditions (a) and (b) in (3) of our algorithm, we can list the members of Γ with the help of the graphs: Let u, v and w be the vertices of a graph where $u=\{1\}, v=\{2,3\}$ and $w=\{4,5,6\}$. If there is a directed edge from v to w, it means that every element in v is related to every element in w, and if there is no edge between v and w, it means that none of the elements in v is related to any element in w, We count graphs without drawing the loops, but with
[no ed̆ge:

$$
\because \quad \underset{\sim}{\dot{u}}
$$

one èdge:

two edges:

three edges:

Since more than three edges would create a cycle of length greater than 1 . these are all possible cases. The corresponding partially ordered relations constitute Γ (π_{13} corresponds the third graph with one edge):

$$
\begin{aligned}
& \pi_{01}=\delta \\
& \pi_{11}=\delta \cup\left(\sigma_{12} \cup \sigma_{13}\right)=\delta \cup \gamma^{(4)}, \\
& \pi_{12}=\delta \cup\left(\sigma_{24} \cup \sigma_{25} \cup \sigma_{26} \cup \sigma_{34} \cup \sigma_{35} \cup \sigma_{36}\right)=\delta \cup \gamma^{(8)}, \\
& \pi_{13}=\delta \cup\left(\sigma_{14} \cup \sigma_{15} \cup \sigma_{16}\right)=\delta \cup r^{(5)}, \\
& \pi_{14}=\delta \cup\left(\sigma_{21} \cup \sigma_{31}\right)=\delta \cup \gamma^{(6)}, \\
& \pi_{15}=\delta \cup\left(\sigma_{42} \cup \sigma_{43} \cup \sigma_{52} \cup \sigma_{53} \cup \sigma_{62} \cup \sigma_{63}\right)=\delta \cup \gamma^{(9)}, \\
& \pi_{16}=\delta \cup\left(\sigma_{41} \cup \sigma_{51} \cup \sigma_{61}\right)=\delta \cup r^{(7)}, \\
& \pi_{21}=\pi_{11} \cup \pi_{13}=\delta \cup \gamma^{(4)} \cup \gamma^{(5)}, \\
& \pi_{22}=\pi_{12} \cup \pi_{14}=\delta \cup \gamma^{(8)} \cup \gamma^{(6)},
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{23}=\pi_{15} \cup \pi_{16}=\delta \cup r^{(9)} \cup r^{(7)}, \\
& \pi_{24}=\pi_{14} \cup \pi_{16}=\delta \cup r^{(6)} \cup r^{(7)}, \\
& \pi_{25}=\pi_{15} \cup \pi_{11}=\delta \cup r^{(9)} \cup r^{(4)}, \\
& \pi_{26}=\pi_{13} \cup \pi_{12}=\delta \cup r^{(5)} \cup r^{(8)}, \\
& \pi_{31}=\pi_{11} \cup \pi_{12} \cup \pi_{13}=\delta \cup r^{(4)} \cup r^{(8)} \cup r^{(5)}, \\
& \pi_{32}=\pi_{14} \cup \pi_{12} \cup \pi_{16}=\delta \cup r^{(6)} \cup r^{(8)} \cup r^{(7)}, \\
& \pi_{33}=\pi_{14} \cup \pi_{15} \cup \pi_{16}=\delta \cup r^{(6)} \cup r^{(9)} \cup r^{(7)}, \\
& \pi_{34}=\pi_{11} \cup \pi_{15} \cup \pi_{13}=\delta \cup r^{(4)} \cup r^{(9)} \cup r^{(5)}, \\
& \pi_{35}=\pi_{14} \cup \pi_{12} \cup \pi_{16}=\delta \cup \gamma^{(6)} \cup r^{(8)} \cup r^{(7)}, \text { and } \\
& \pi_{36}=\pi_{11} \cup \pi_{15} \cup \pi_{16}=\delta \cup r^{(4)} \cup r^{(9)} \cup r^{(7)},
\end{aligned}
$$

In matrix notation, e.g., π_{11} and π_{36}, respectively, arë:

$$
\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \text { and }\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Also, $\mathrm{H}_{\pi_{01}}=S_{6} \supset G_{\pi_{01}}$, and $H_{\pi_{i j}}=S_{1} x S_{2} x S_{3} \supset G_{\pi_{i j}}$ for $i=1,2,3$ and $j=1,2, \cdots, 6$.

5. Automorphisms

We know that every partially ordered relation π in B_{X} has a group of automorphisms. Does the converse hold? That is, given a permutation group G^{*} on X, does there exist a $\pi \in B_{X}$ whose group of automorphisms is G^{*} (or $H_{\pi}=$ $G \pi)$? From the previous example, we see that there does not exist any $\pi \in B_{X}$ whose group of automorphisms is the given group. To find a necessary and sufficient condition(s) seems to be very difficult. Here we have:
THEOREM 3. Let G^{*} be a permutation group on X, and $X^{(1)}, X^{(2)}, \cdots, X^{(q)}$ be its orbits, $1 \leq q \leq n$. If G restricted on $X^{(i)}$ is $S_{X^{(i)}}$ for $i=1,2, \cdots, 1$, i.e., q, i.e., $\left.G\right|_{X^{(i)}}=S_{X^{(i)}}$, and if G^{*} is isomorphic to the direct product of $S_{X^{(1)}}, S_{X^{(2)}}, \cdots$,
$S_{Y^{(8)},}$, then there exists a partially ordered relation π in B_{X} such that G^{*} is the group of automorphisms. π and $H_{\pi}=G \pi$.

PROOF. We construct a partially ordered relation π in B_{X} as follows: For $q=$ 1, we have $G=S_{X}$. Let $\pi=\{(x, x): x \in X\}$. Then, clearly, π is a partially ordered relation in $B_{X}, \rho \pi=\pi \rho$ for every $\rho \in G=S_{X}$. By Theorem MPS, G^{*} is the group of automorphisms of π and $H_{\pi}=G \pi$.
For $q>1$, Iet $\pi=\{(x, x) ; x \in X\} \cup\left\{\left(x_{i}, x_{j}\right) ; x_{i} \in X^{(i)}, x_{j} \in X^{(j)}, i<j, i=1,2, \cdots\right.$, $q-1$ and $j=2,3, \cdots, q\}$. Then one can easily verify that π is a partially ordered relations in B_{X}, and ρ^{*} preserves the order relation for every $\rho^{*} \in G^{*}$, i.e., $\rho \pi=\pi \rho$ for every $\rho \in G$, and G^{*} is contained in the group of automorphisms of π. Let $\tau \in S_{X}$ and $\tau \pi=\pi \tau$. We claim that $\tau \cong G$. Since the number of relations of each $x_{i} \in X^{(i)}$ differs with the number of relations of each $x_{j} \in X^{(j)}$ for $i \neq j, \tau^{*}$ cannot map an element in $X^{(i)}$ to an element in $X^{(j)}$ for $i \neq j$, but τ^{*} can map an element in $X^{(i)}$ to any other element in $X^{(i)}$. Since G^{*} is isomorphic to the direct product of $S_{X^{(1)}}, S_{X^{(2)}}, \cdots, S_{X^{(6)}}, \tau \in G$. By Theorem MPS, G^{*} is the group of automorphisms of π, and $H_{\pi}=G \pi$,

THEOREM 4. Let π be a partially ordered relation in B_{X} and G^{*} be its group of automorphisms. If the lengths of orbits of $G^{*},\left|X^{(i)}\right|$ for $i=1,2, \cdots, q$ and $1 \leq$ $q \leq n$, are distinct primes (1 may be considered as a prime here), then $\left.G\right|_{X^{(i 1}}=$ $S_{X^{(1)}}, i=1,2, \cdots, q, G^{*}$ is isomorphic to the direct product of $S_{X^{(1)}}, S_{X^{(2)}}, \cdots$, $S_{X^{(0)}}$, and $H_{\pi}=G \pi$.

PROOF. For $q=1$, a partially ordered relation π in B_{X} with a transitive group of automorphisms implies $\pi=\{(x, x) ; x \in X\}$, and $G^{*}=S_{X}$. By Theorem 3. $H_{\pi}=$ $G \pi$. For $q>1$, Iet $X^{(i)}$ and $X^{(j)}$ be any two distinct orbits of G^{*}. Say, $\left|X^{(i)}\right|$ $=p_{i}$ and $\left|X^{(j)}\right|=p_{j}$. Since a transitive permutation group on a prime number p of points contains an element of order $p,\left.G^{*}\right|_{X^{(i)}}$ and $\left.G^{*}\right|_{X^{(j)}}$ contain, respectively, an element of order p_{i} and an element of order p_{j}. Also, $G^{*} \mid X^{\prime \prime} \cup X^{\prime \prime}$ contains an element p^{*} of order $p_{i} p_{j}$. Let $x_{i} \in X^{(i)}$ and $x_{j} \in X^{(j)}$, then either $\left(x_{i}, x_{j}\right) \notin \pi$, or $\left(x_{i}, x_{j}\right) \in \pi$. If $\left(x_{i}, x_{j}\right) \in \pi$, then $\left(x_{i}\left(\rho^{*}\right)^{k}, x_{j}\left(\rho^{*}\right)^{k}\right) \in \pi$ for $k=1,2, \cdots, p_{i} p_{j}$, i.e., $\left(x_{i}, x_{j}\right) \in \pi$ for every $x_{i} \in X^{(i)}$ and $x_{j} \in X^{(j)}$. Consequently, a transposition
belongs to $\left.G^{*}\right|_{X^{(\prime)}}$. Since G^{*} restricted on a prime number p_{i} points contains an element of order p_{i} and a transposition, $\left.G^{*}\right|_{X^{(1)}}=S_{X^{(i)}}$. It follows that G^{*} is isomorphic to the direct product of $S_{X^{(1)}}, S_{\left.X^{(3)}\right)} \cdots, S_{X^{(0)}}$. By Theorem 3, $H_{\pi}=$ $G \pi$.

University of Pittsburgh
Pittsburgh, Pennsylvania 15260

REFERENCES

[1] Birkhoff, G., On groups of automorphisms(in Spanish), Revista Union Mat. Argentina, 11(1946), 155-157.
[2] Clifford, A.H., A Proof of the Montague-Plemmons-Schein theorem on maximal subgroups of the semigroup of binary relations, Semigroup Forum Vol. 1 (1970), 272275.
[3] Magill, K.D., Jr., Automorphisms of the semigroup of all relations on a set, Canad. Math. Bull., 9(1966), 73-77.
[4] Montague, J.S.and Plemmons, R. J., Maximal subgroups of the semigroup of relations, J. Algebra, 13(1969), 575-587.
[5] Plemmons, R. J. and Schein, B. M., Groups of binary relations, Semigroup Forum, Vol. 1 (1970), 267-271.

