ON SASAKIAN MANIFOLDS WITH VANISHING C-BOCHNER CURVATURE TENSOR

By Jin Suk Pak

Recently, S.I. Goldberg [1] proved

THEOREM A. Let M be an n-dimensional $(n \ge 3)$ compact conformally flat Riemannian manifold with constant scalar curvature. If the length of the Ricci tensor is less than $K/\sqrt{n-1}$, then M is a space of constant curvature.

Also, S.I. Goldberg and M. Okumura [2] proved

THEOREM B. Let M be an n-dimensional $(n\geq 3)$ compact conformally flat Riemannian manifold. If the length of the Ricci tensor is constant and less than $K/\sqrt{n-1}$, then M is a space of constant curvature.

In 1976, Y. Kubo [3] proved the following theorems corresponding to those of Golderg-Okumura, replacing the vanishing of the Weyl conformal curvature tensor of a Riemannian manifold by that of the Bochner curvature tensor of a Kaehlerian manifold.

THEOREM C. Let M be a Kaehlerian manifold of real dimension $n(n \ge 4)$ with constant scalar curvature whose Bochner curvature tensor vanishes. If the length of the Ricci tensor is not greater than $K/\sqrt{n-2}$, then M is a space of constant holomorphic sectional curvature.

THEOREM D. Let M be a Kaehlerian manifold of real dimension $n(n \ge 4)$ whose Bochner curvature tensor vanishes. If the length of the Ricci tensor is constant and not greater than $K/\sqrt{n-2}$ then M is a space of constant holomorphic sectional curvature.

The purpose of the present paper is to prove the following theorems corresponding to Theorem C and D, replacing the vanishing of the Weyl conformal curvature tensor or Bochner curvature tensor by that of C-Bochner curvature tensor (See [5]) in a Sasakian manifold.

THEOREM 1. Let Mⁿ be a Sasakian manifold of dimension n with constant

scalar curvature K whose C-Bochner curvature tensor vanishes. If the square of the length of the Ricci tensor is less than $K^2/n-1$, then M^n is locally C-Fubinian.

THEOREM 2. Let M^n be a compact Sasakian manifold of dimension n whose C-Bochner curvature tensor vanishes. If the square of the length of the Ricci tensor is constant and less than $K^2/n-1$, then M^n is locally C-Fubinian.

1. Introduction

$$(1.1) \quad B_{kji}^{\ \ h} = K_{kji}^{\ \ h} + \frac{1}{n+3} (K_{ki} \delta_j^{\ \ h} - K_{ji} \delta_k^{\ \ h} + g_{ki} K_j^{\ \ h} - g_{ji} K_k^{\ \ h}$$

$$+ S_{ki} \phi_j^{\ \ h} - S_{ji} \phi_k^{\ \ h} + \phi_{ki} S_j^{\ \ h} - \phi_{ji} S_k^{\ \ h} + 2 S_{kj} \phi_i^{\ \ h} + 2 S_i^{\ \ h} \phi_{kj}$$

$$- K_{ki} \eta_j \eta^h + K_{ji} \eta_k \eta^h - \eta_k \eta_i K_j^{\ \ h} + \eta_j \eta_i K_k^{\ \ h})$$

$$- \frac{k+n-1}{n+3} (\phi_{ki} \phi_j^{\ \ h} - \phi_{ji} \phi_k^{\ \ h} + 2 \phi_{kj} \phi_i^{\ \ h})$$

$$- \frac{k-4}{n+3} (g_{ki} \delta_j^{\ \ h} - g_{ji} \delta_k^{\ \ h})$$

$$+ \frac{k}{n+3} (g_{ki} \eta_j \eta^h + \eta_k \eta_i \delta_i^{\ \ h} - g_{ji} \eta_k \eta^h - \eta_j \eta_i \delta_k^{\ \ h}),$$

where ϕ_j^i is the structure tensor, η^i the structure vector, \mathbf{g}_{ji} the Riemannian metric tensor, $\eta^i = \mathbf{g}_{ih} \eta^h$, K_{kji}^h the curvature tensor, $K_{ji} = K_{hji}^h$ the Ricci tensor, $K = \mathbf{g}^{ji} K_{ji}$ the scalar cuvature, $(\mathbf{g}_{ji}) = (\mathbf{g}_{ji})^{-1}$, and $S_{kj} = \phi_k^h K_{hj}$, $S_k^i = S_{ki} \mathbf{g}^{ji}$ and k = (K + n - 1)/(n + 1). They called it C-Bochner curvature tensor and obtained the following identities concerning with this tensor field:

(1.2)
$$B_{kji}^{\ \ h} = -B_{jki}^{\ \ h}, \ B_{kjih} = B_{ihkj}^{\ \ h},$$
 $B_{kji}^{\ \ h} + B_{jik}^{\ \ h} + B_{ikj}^{\ \ h} = 0, \ B_{kji}^{\ \ h} = 0,$ $B_{kji}^{\ \ h} = 0, \ \phi_k^{\ \ s} B_{sji}^{\ \ h} = \phi_j^{\ s} B_{ski}^{\ \ h}, \ \phi^{kj} B_{kji}^{\ \ h} = 0,$ where $B_{kii}^{\ \ s} g_{sh}^{\ \ h}, \ \phi^{kj} = \phi_s^{\ j} g^{sk}.$

$$U_{kii}^{h} = K_{kii}^{h} - (\rho+1)(g_{ii}\delta_{k}^{h} - g_{ki}\delta_{i}^{h})$$

$$-\rho(g_{ki}\eta_j\eta^h + \eta_k\eta_i\delta_j^h - g_{ji}\eta_k\eta^h - \eta_j\eta_i\delta_k^h + \phi_{ji}\phi_k^h - \phi_{ki}\phi_j^h - 2\phi_{kj}\phi_i^h),$$

 $\rho+1=rac{k}{n-1}$, which is an analogy of the concircular curvature tensor in a Kaehlerian manifold. A Sasakian manifold M^n is called *locally C-Fubinian* [11] when the tensor field $U_{kji}^{\quad \ \ \, h}$ vanishes identically on M^n . When a Sasakian manifold M^n is locally C-Fubinian, its Ricci tensor satisfies

$$K_{ii} = ag_{ii} + b\eta_i\eta_i$$

where $a = \frac{K}{n-1} - 1$ and $b = -\frac{K}{n-1} + n$. In this case the manifold M^n is called C-Einstein [8]. Hence if a Sasakian manifold is locally C-Fubinian, then it is C-Einstein. Using this relation, Matsumoto and Chūman [5] proved

THEOREM E. The C-Bochner curvature tensor $B_{kji}^{\ \ \ \ \ \ \ }$ coincides with $U_{kji}^{\ \ \ \ \ \ \ }$ if and only if M^n is a C-Einstein space.

By meanns of this theorem a Sasakian manifold M^n with vanishing C-Bochner curvature sensor is locally C-Fubinian if M^n is a C-Einstein space.

The present anthor [9] proved by using Theorem E the following theorem:

THEOREM F. Let M^n be an n-dimensional Sasakian manifold with constant scalar curvature whose C-Bochner curvature tensor vanishes identically. If the Ricci tensor is positive semi-definite, then M^n is locally C-Fubinian.

In section 2, we shall recall fundamental properties of a Sasakian manifold with vanishing C-Bochner curvature tensor and in section 3 prove that the Laplacian

$$\frac{1}{2} \Delta(Z_{ji}Z^{ji}) = g^{ji}(\nabla_j \nabla_i Z_{st}) Z^{st} + (\nabla_k Z_{ji})(\nabla^k Z^{ji})$$

of the tensor Z_{ii} defined by

$$(1.3) Z_{ji} = K_{ji} - \left(\frac{K}{n-1} - 1\right) g_{ji} + \left(\frac{K}{n-1} - n\right) \eta_j \eta_i,$$

 $Z^{ji} = Z_{st} g^{sj} g^{ti}$, ∇_i being the operator of covariant differentiation with respect to the Riemannian connection of M^n and $\nabla^k Z^{ji} = g^{ks} \nabla_s Z^{ji}$, is zero in a Sasakian manifold with constant scalar curvature whose C-Bochner curvature tensor vanishes identically.

In the last section 4 we shall prove the main theorems stated as before by using

Theorem A and Lemma 2.

2. Some properties of a Sasakian manifold with vanishing C-Bochner curvature tensor

Let M^n be an *n*-dimensional Sasakian manifold $(n \ge 3)$. Then we can easily verify that the following relations hold on M^n :

$$\begin{cases} S_{ji} = -S_{ij}, & \nabla_k S_j^k = \frac{1}{2} \phi_j^k \nabla_k K + (K - n + 1) \eta_j , \\ \nabla_k S_{ji} = \eta_j K_{ik} - (n - 1) g_{jk} \eta_i + \phi_j^t \nabla_k K_{ti}, \\ \phi_j^t \nabla_t S_{ik} = -\eta_i S_{kj} + (n - 1) \phi_{ij} \eta_k + \phi_j^r \phi_i^s \nabla_r K_{sk} \end{cases}$$

with the help of $K_{ji}\eta^j = (n-1)\eta^j$ (See[8]). On the other hand the differential form $S = \frac{1}{2} S_{ji} dx^j \wedge dx^i$ is closed, that is,

$$\nabla_{k}S_{ii} + \nabla_{i}S_{ik} + \nabla_{i}S_{kj} = 0,$$

from which and (2.1), we also find

(2.2)
$$\nabla_k K_{ji} - \nabla_j K_{ki} = -\phi_i^r \nabla_r S_{kj} - 2S_{kj} \eta_i + (n-1)(\phi_{ki} \eta_j - \phi_{ji} \eta_k + 2\phi_{kj} \eta_i).$$
 Differentiating (1.1) covariantly and using (2.1), we have

$$\begin{split} (2.3) \qquad & (n+3)\nabla_{t}B_{kji}^{\quad t} = (n+2)(\nabla_{k}K_{ji} - \nabla_{j}K_{ki}) - \phi_{k}^{\ r}\phi_{j}^{\ s}(\nabla_{r}K_{si} - \nabla_{s}K_{ri}) + 2\phi_{i}^{\ s}\phi_{k}^{\ r}\nabla_{s}K_{rj} \\ & + \eta^{r}(\eta_{k}\nabla_{r}K_{ji} - \eta_{j}\nabla_{r}K_{ki}) - (n+2)\eta_{k}S_{ji} + n\eta_{j}S_{ki} + 2(n+1)\eta_{i}S_{kj} \\ & + \frac{1}{n+1}(g_{ki}\eta_{i} - g_{ji}\eta_{k})\eta^{r}\nabla_{r}K + \frac{n-1}{2(n+1)}\{(g_{ki} - \eta_{k}\eta_{i})\nabla_{j}K - (g_{ji} - \eta_{j}\eta_{i})\nabla_{k}K \\ & + (\phi_{ki}^{\ \ r} - \phi_{ji}\phi_{k}^{\ r} + 2\phi_{kj}\phi_{i}^{\ r})\nabla_{r}K\} + (n-1)\{(n+2)\eta_{k}\phi_{ji} \\ & - n\eta_{j}\phi_{ki} - 2(n+1)\eta_{i}\phi_{kj}\}. \end{split}$$

Transvecting (2.3) with $\phi_a^k \phi_b^j$ and changing the indices a, b to j, k respectively in the equation thus obtained, we find by adding the resulting equation to (2.3)

$$\begin{split} &\nabla_t B_{kji}^{t} + \phi_j^{r} \phi_k^{s} \nabla_t B_{rsi}^{t} \\ = &(\nabla_k K_{ji} - \nabla_j K_{kj}) - \phi_k^{r} \phi_j^{s} (\nabla_r K_{si} - \nabla_s K_{ri}) + (n-1)(\eta_k \phi_{ji} - \eta_j \phi_{ki}) - \eta_k S_{ji} + \eta_j S_{ki} \\ &+ \frac{1}{2(n+3)} (g_{ki} \eta_j - g_{ji} \eta_k) \, \eta^t \nabla_t K. \end{split}$$

On the other side, using (1.2), we have

$$\phi_{i}^{r}\phi_{k}^{s}\nabla_{t}B_{rsi}^{t} = -\nabla_{t}B_{kii}^{t},$$

from which and the last equation,

$$\begin{array}{ll} (2.4) & \nabla_{k}K_{ji} - \nabla_{j}K_{ki} - \phi_{k}^{\ r}\phi_{j}^{\ s}(\nabla_{r}K_{si} - \nabla_{s}K_{ri}) - \eta_{k}S_{ji} + \eta_{j}S_{ki} \\ & + \frac{1}{2(n+3)} (g_{ki}\eta_{j} - g_{ji}\eta_{k})\eta^{r}\nabla_{r}K + (n-1)(\eta_{k}\phi_{ji} - \eta_{j}\phi_{ki}) = 0. \end{array}$$

Contracting the last equation with η^k and $\eta^k g^{ji}$ respectively, we find

(2.5)
$$\eta^t \nabla_t K = 0, \quad \eta^t \nabla_t K_{ji} = 0.$$

Substituting (2.4) and (2.5) into (2.3), we obtain

$$\begin{split} \frac{n+3}{n-1} \nabla_{t} B_{kji}^{\ \ t} &= \nabla_{k} K_{ji} - \nabla_{j} K_{ki} - \eta_{k} \{S_{ji} - (n-1)\phi_{ji}\} \right. \\ &+ 2\eta_{i} \{S_{kj} - (n-1)\phi_{kj}\} + \frac{1}{2(n+1)} \{(g_{ki} - \eta_{k}\eta_{i})\delta_{j}^{\ t} - (g_{ji} - \eta_{j}\eta_{i})\delta_{k}^{\ t} \\ &+ \phi_{ki}\phi_{i}^{\ t} - \phi_{ii}\phi_{k}^{\ t} + 2\phi_{kj}\phi_{i}^{\ t}\} \nabla_{t} K. \end{split}$$

Thus, in a Sasakian manifold with vanishing C-Bochner curvature tensor, we get

$$\begin{aligned} (2.6) \quad \nabla_{k}K_{ji} - \nabla_{j}K_{ki} &= \eta_{k}\{S_{ji} - (n-1)\phi_{ji}\} - \eta_{j}\{S_{ki} - (n-1)\phi_{ki}\} \\ &- 2\eta_{i}\{S_{kj} - (n-1)\phi_{kj}\} - \frac{1}{2(n+1)}\{(g_{ki} - \eta_{k}\eta_{i})\delta_{j}^{t} \\ &- (g_{ji} - \eta_{j}\eta_{i})\delta_{k}^{t} + \phi_{ki}\phi_{j}^{t} - \phi_{ji}\phi_{k}^{t} + 2\phi_{kj}\phi_{i}^{t}\}\nabla_{t}K, \end{aligned}$$

$$(2.7) \quad \nabla_{k} S_{ji} = \eta_{j} K_{ki} - \eta_{i} K_{kj} + \frac{1}{2(n+1)} \{ \phi_{jk} \delta_{i}^{t} - \phi_{ik} \delta_{j}^{t} + 2\phi_{ik} \delta_{j}^{t} + (g_{ik} - \eta_{i} \eta_{k}) \phi_{i}^{t} - (g_{jk} - \eta_{i} \eta_{k}) \phi_{i}^{t} \} \nabla_{t} K$$

(See also [5], [9]).

In the rest of this section, we are going to compute $\nabla_k K_{ji}$ and $\nabla_k Z_{ji}$ by using (2.5), (2.6) and (2.7).

Differentiating $S_{ii} = \phi_i^t K_{ti}$ covariantly gives

$$\nabla_{k} S_{ji} = (\eta_{j} \delta_{k}^{t} - \eta^{t} g_{kj}) K_{ti} + \phi_{j}^{t} \nabla_{k} K_{ti} = \eta_{j} K_{ki} - (n-1) \eta_{i} g_{kj} + \phi_{j}^{t} \nabla_{k} K_{ti}$$

as already shown in (2.1), which together with (2.7) implies

$$(2.8) \quad \phi_{j}^{t} \nabla_{k} K_{ti} = (n-1) \eta_{i} g_{kj} - \eta_{i} K_{kj} + \frac{1}{2(n+1)} \{ \phi_{jk} \delta_{i}^{t} - \phi_{ik} \delta_{j}^{t} + 2 \phi_{ji} \delta_{k}^{t} + (g_{ik} - \eta_{i} \eta_{k}) \phi_{j}^{t} - (g_{jk} - \eta_{j} \eta_{k}) \phi_{i}^{t} \} \nabla_{t} K.$$

Transvecting (2.8) with ϕ_1^{j} and using (2.5) and (2.6) give

$$\begin{split} (2.9) \quad \nabla_{k}K_{ji} &= -\eta_{j}\{S_{ki} - (n-1)\phi_{ki}\} - \eta_{i}\{S_{kj} - (n-1)\phi_{kj}\} \\ &+ \frac{1}{2(n+1)}\{(g_{jk} - \eta_{j}\eta_{k})\delta_{i}^{\ t} + \phi_{ik}\phi_{j}^{\ t} + (g_{ik} - \eta_{i}\eta_{k})\delta_{j}^{\ t} \\ &+ \phi_{jk}\phi_{i}^{\ t} + 2(g_{ji} - \eta_{j}\eta_{i})\delta_{i}^{\ k}\}\nabla_{t}K, \end{split}$$

which and (1.3) also implies

$$\begin{aligned} (2.10) \quad \nabla_{k} Z_{ji} &= -\eta_{j} \Big\{ S_{ki} - \Big(\frac{K}{n-1} - 1 \Big) \phi_{ki} \Big\} - \eta_{i} \Big\{ S_{kj} - \Big(\frac{K}{n-1} - 1 \Big) \phi_{kj} \Big\} - \frac{1}{n-1} (\nabla_{k} K) g_{ji} \\ &+ \frac{1}{n-1} (\nabla_{k} K) \eta_{j} \eta_{i} + \frac{1}{2(n+1)} \{ (g_{jk} - \eta_{j} \eta_{k}) \delta_{i}^{\ t} + \phi_{ik} \phi_{j}^{\ t} + (g_{ik} - \eta_{i} \eta_{k}) \delta_{j}^{\ t} \\ &+ \phi_{jk} \phi_{i}^{\ t} + 2 (g_{ji} - \eta_{j} \eta_{i}) \delta_{k}^{\ t} \Big\} \nabla_{t} K. \end{aligned}$$

3. Laplacian $\Delta(Z_{ii}Z^{ji})$

In order to compute the Laplacian

(3.1)
$$\frac{1}{2} \Delta(Z_{ji}Z^{ji}) = g^{kj}(\nabla_k \nabla_j Z_{ih})Z^{ih} + (\nabla_k Z_{ji})(\nabla^k Z^{ji}),$$

where the tensor Z_{ji} is defined by (1.3), in a Sasakian manifold with vanishing C-Bochner curvature tensor, we first consider the first term $g^{kj}(\nabla_k\nabla_jZ_{ih})Z^{ih}$ in the right hand side of (3.1).

Taking account of (2.7) and (2.10), we obtain

$$\begin{array}{ll} (3.2) & \nabla_{k}\nabla_{j}Z_{ih} = -\phi_{ki}\Big\{S_{jh} - \Big(\frac{K}{n-1} - 1\Big)\phi_{jh}\Big\} - \eta_{i}\nabla_{k}\big\{S_{jh} - \Big(\frac{K}{n-1} - 1\Big)\phi_{jh}\big\} \\ & -\phi_{kh}\Big\{S_{ji} - \Big(\frac{K}{n-1} - 1\Big)\phi_{ji}\big\} - \eta_{h}\nabla_{k}\Big\{S_{ji} - \Big(\frac{K}{n-1} - 1\Big)\phi_{ji}\Big\} \\ & - \frac{1}{n-1}(\nabla_{k}\nabla_{j}K)g_{ih} + \frac{1}{n-1}(\nabla_{k}\nabla_{j}K)\eta_{i}\eta_{h} + \frac{1}{n-1}(\nabla_{j}K)(\phi_{ki}\eta_{h} + \eta_{i}\phi_{kh}) \\ & - \frac{1}{2(n+1)}\{(\phi_{kj}\eta_{i} + \eta_{j}\phi_{ki})\delta_{h}^{t} - (\eta_{h}g_{kj} - \eta_{j}g_{kh})\phi_{i}^{t} - \phi_{hj}(\eta_{i}\delta_{k}^{t} - \eta_{i}^{t}g_{ki}) + 2(\phi_{ki}\eta_{h} + \eta_{i}\phi_{kh})\delta_{j}^{t} + (\phi_{kh}\eta_{j} + \eta_{h}\phi_{kj})\delta_{i}^{t} - (\eta_{i}g_{kj} - \eta_{j}g_{ki})\phi_{h}^{t} - \phi_{ij}(\eta_{h}\delta_{k}^{t} - \eta_{g}^{t}g_{hk})\}\nabla_{t}K \\ & + \frac{1}{2(n+1)}\{(g_{ji} - \eta_{j}\eta_{i})\delta_{h}^{t} + \phi_{hj}\phi_{i}^{t} + (g_{hj} - \eta_{h}\eta_{j})\delta_{i}^{t} + \phi_{ij}\phi_{h}^{t} + 2(g_{ih} - \eta_{i}\eta_{h})\delta_{j}^{t}\}\nabla_{k}\nabla_{t}K. \end{array}$$

Transvecting (3.2) with $g^{kj}Z^{ih}$ and making use of $Z_{ji}\eta^i=0$ and $Z_i^i=0$, we can easily verify that

$$(3.3) g^{kj}(\nabla_k \nabla_j Z_{ih}) Z^{ih} = -2\phi_{si} S_h^{s} Z^{ih} + \frac{1}{n+1} \{ Z_h^{t} + \phi_{hk} \phi_i^{t} Z^{ih} \} \nabla^k \nabla_t K.$$

On the other hand, taking account of the skew-symmetry of S_{ii} , we have

$$\phi_{si} S_h^{s} Z^{ih} = K_{ih} Z^{ih}$$

$$= K_{ih} K^{ih} - \left(\frac{K}{n-1} - 1\right) K + (n-1) \left(\frac{K}{n-1} - n\right)$$

and

$$\phi_{hk}\phi_i^t Z^{ih} = Z_k^t$$
.

Substituting the last two equations into (3.3) implies

$$(3.4) \quad g^{kj}(\nabla_{k}\nabla_{j}Z_{ih})Z^{ih} = -2K_{ih}K^{ih} + 2\left(\frac{K}{n-1} - 1\right)K$$

$$-2(n-1)\left(\frac{K}{n-1} - n\right) + \frac{2}{n+1} \left\{\nabla_{k}(Z^{kt}\nabla_{t}K) - (\nabla_{k}Z_{t}^{k})\nabla^{t}K\right\}.$$

Next we consider the second term in the right hand side of (3.1). Taking account of (1.3), we have by a straightforward computation

$$\begin{split} (\nabla_k Z_{ji})(\nabla^k Z^{ji}) &= \{\nabla_k K_{ji} - \frac{1}{n-1} (\nabla_k K) g_{ji} + \frac{1}{n-1} (\nabla_k K) \eta_j \eta_i \\ &+ \Big(\frac{K}{n-1} - n\Big) (\phi_{kj} \eta_i + \eta_j \phi_{ki}) \} \ \{\nabla^k K^{ji} - \frac{1}{n-1} (\nabla^k K) g^{ji} \\ &+ \frac{1}{n-1} (\nabla^k K) \eta^j \eta^i + \Big(\frac{K}{n-1} - n\Big) (\phi^{kj} \eta^i + \eta^j \phi^{ki}) \}, \end{split}$$

which reduces to

$$(3.5) \quad (\nabla_{k} Z_{ji})(\nabla^{k} Z^{ji}) = (\nabla_{k} K_{ji})(\nabla^{k} K^{ji}) - \frac{1}{n-1} (\nabla_{k} K)(\nabla^{k} K) + 4\left(\frac{K}{n-1} - n\right) \{-K + n(n-1)\} + 2(n-1)\left(\frac{K}{n-1} - n\right)^{2}$$

because of $\phi_{kj} \eta_i \nabla^k K^{ji} = -K + n(n-1)$ which is a consequence of $K_{ji} \eta^i = (n-1) \eta_{ji}$. On the other hand we can also find by using (2.9)

$$\begin{split} (3.6) \quad & (\nabla_{k}K_{ji})(\nabla^{k}K^{ji}) \\ & = [\eta_{j}\{S_{ki} - (n-1)\phi_{ki}\} + \eta_{i}\{S_{kj} - (n-1)\phi_{kj}\} + \frac{1}{2(n+1)} \Big\{\{(-g_{jk} + \eta_{j}\eta_{k})\delta^{t}_{i} \\ & -\phi_{ik}\phi_{j}^{t} + (-g_{ik} + \eta_{i}\eta_{k})\delta^{t}_{j} - \phi_{jk}\phi_{i}^{t} + 2(-g_{ji} + \eta_{j}\eta_{i})\delta^{t}_{k}\}\nabla_{t}K] \quad [\eta j \{S^{ki} - (n-1)\phi^{ki}\} \\ & + \eta^{i}\{S^{kj} - (n-1)\phi^{kj}\} + \frac{1}{2(n+1)} \{(-g^{jk} + \eta^{j}\eta^{k})g^{is} - \phi^{ik}\phi^{js} + (-g^{ji} + \eta^{j}\eta^{i})g^{ks} \\ & -\phi^{jk}\phi^{is} + 2(-g^{ji} + \eta^{j}\eta^{i})g^{ks}\}\nabla_{s}K] \\ & = 2K_{ji}K^{ji} - 4(n-1)K + 2n(n-1)^{2} + \frac{2}{n+1} (\nabla_{t}K)(\nabla^{t}K), \end{split}$$

where we have used (2.5), $S_{ji}S^{ji}=K_{ji}K^{ji}-(n-1)^2$ and $\phi_{ji}S^{ji}=K-(n-1)$. Finally contracting (2.10) with g^{kj} and using (2.5), we get

(3.7)
$$(\nabla_k Z_i^k) \nabla^i K = \frac{n-3}{2(n-1)} (\nabla_t K) (\nabla^t K).$$

Substituting (3.6) and (3.7) into (3.5) and (3.4) respectively and substituting the resulting equations into (3.1), we obtain

$$(3.8) \qquad \frac{1}{2} \Delta(Z_{ji}Z^{ji}) = \frac{2}{n+1} \nabla_k(Z^{kt}\nabla_t K),$$

which implies

LEMMA 1. In a Sasakian manifold with constant scalar curvature whose C-Bochner curvature tensor vanishes identically, we have $\Delta(Z_{ii}Z^{ji})=0$.

4. Proof of main theorems

In a Sasakian manifold with constant scalar curvature whose C-Bochner curvature tensor vanishes, we have

$$\begin{split} &\frac{1}{2} \varDelta(Z_{ji} Z^{ji}) = g^{kj} (\nabla_k \nabla_j Z_{ih}) Z^{ih} + (\nabla_k Z_{ji}) (\nabla^k Z^{ji}) \\ &= g^{kj} \nabla_k [\nabla_i Z_{jh} + \eta_j \{S_{ih} - \left(\frac{K}{n-1} - 1\right) \phi_{ih}\} - \eta_i \{S_{jh} - \left(\frac{K}{n-1} - 1\right) \phi_{jh}\} \\ &- 2\eta_h \{S_{ji} - \left(\frac{K}{n-1} - 1\right) \phi_{ji}\}] Z^{ih} + (\nabla_k Z_{ji}) (\nabla^k Z^{ji}) = 0 \end{split}$$

by using (2.10), $\nabla_k K=0$ and Lemma 1. Applying the Ricci's identity to the last equation and taking account of $Z_i^i=0$ and $Z_{ji}\eta^i=0$, we can easily see that

$$(4 \cdot 1) \quad K_{i}^{t} Z_{th} Z^{ih} - K_{sih}^{t} Z_{t}^{s} Z^{ih} - 3Z_{ih} Z^{ih} + (\nabla_{k} Z_{ji})(\nabla^{k} Z^{ji}) = 0$$

with the help of $\nabla^t Z_{th} = 0$ and $\phi_{si} S_h^s Z^{ih} = Z_{ih} Z^{ih}$. On the other hand, using (1.1) with $B_{ki}^h = 0$ directly, we get

$$(4.2) \quad K_{i}^{t} Z_{th} Z^{ih} - K_{sih}^{t} Z_{t}^{s} Z^{ih} = \frac{n-1}{n+3} Z_{i}^{t} Z_{th} Z^{ih}$$

$$+ \frac{1}{n+3} \left\{ \frac{n+3}{n+1} K + \frac{2(n-1)}{n+1} + 2n+2 \right\} Z_{ji} Z^{ji}.$$

Also using (3.5) and (3.6), we have

$$(4.3) \qquad (\nabla_k Z_{ji})(\nabla^k Z^{ji}) = 2Z_{ji}Z^{ji}$$

because of

(4.4)
$$Z_{ji}Z^{ji} = K_{ji}K^{ji} - \frac{1}{n-1}K^2 + 2K - n(n-1).$$

Substituting (4.2) and (4.3) into (4.1), we have

(4.5)
$$\frac{n-1}{n+3} Z_i^t Z_{th} Z^{ih} + \frac{1}{n+1} \{K+n-1\} Z_{ji} Z^{ji} = 0.$$

Now we assume that

$$(4.6) K_{ji}K^{ji} \leq \frac{K^2}{n-1}$$

and then consider the following two cases:

(i)
$$K \le 0$$
, (ii) $K > 0$

In the first case, using (4.4) and (4.5), we have

$$Z_{ii}Z^{ji} \leq 2K - n(n-1) < 0$$
,

which implies

$$Z_{ii}=0.$$

Hence, taking account of (1.3), we find

$$K_{ji} = \left(\frac{K}{n-1} - 1\right)g_{ji} - \left(\frac{K}{n-1} - n\right)\eta_{i}\eta_{i},$$

which means that the Sasakian manifold is C-Einstein, and consequently locally C-Fubinian with the help of Theorem A.

In the second case we need the following lemma.

LEMMA 2. (Okumura [7]) Let a_i ($i=1, \dots, n$) be real numbers such that $\sum_{i=1}^n a_i = 0$.

If we put
$$k^2 = \sum_{i=1}^n a_i^2$$
, i.e. $k = \sqrt{\sum_{i=1}^n a_i^2}$,

then the inequalities

$$-\frac{n-2}{\sqrt{n(n-1)}}k^{3} \le \sum_{i=1}^{n} a_{i}^{3} \le \frac{n-2}{\sqrt{n(n-1)}}k^{3}$$

hold good.

By means of Lemma 2, since $Z_i^i = 0$, (4.5) reduces to

$$0 = \frac{n-1}{n+3} Z_{i}^{t} Z_{th} Z^{ih} + \left\{ \frac{K}{n+1} + \frac{n-1}{n+1} \right\} Z_{ji} Z^{ji}$$

$$\geq \left\{ \frac{K+n-1}{n+1} - \frac{(n-2)\sqrt{n-1}}{(n+3)\sqrt{n}} \sqrt{2K-n(n-1)} \right\} Z_{ji} Z^{ji},$$

from which, putting $Q = \sqrt{2K - n(n-1)}$, we have

$$0 \ge \left\{ \left(\frac{Q}{\sqrt{2(n+1)}} - \frac{(n-2)\sqrt{n^2-1}}{(n+3)\sqrt{2n}} \right)^2 + \frac{2(n-1)}{n(n+1)(n+3)^2} (2n+1)(n^2+n-1) \right\} Z_{ji} Z^{ji},$$

and consequently

$$Z_{ii}=0.$$

Therefore we complete the proof of Theorem 1.

Next, we prepare a lemma in order to prove Theorem 2.

LEMMA 3. (Okumura[6]) Let a_1 , ..., a_n , b be n+1 (n>1) real numbers satisfying the following inequality.

$$(\sum_{i=1}^{n} a_i)^2 \ge (n-1) \sum_{i=1}^{n} (a_i)^2 + b \ (resp. >).$$

Then, for any distinct i and j, we have

$$2a_i a_j \ge \frac{b}{n-1} (resp. >).$$

First of all, replacing the quantities about Z_{ji} by those of K_{ji} in (3.8), we can see

$$(4.7) \quad \frac{1}{2} \nabla (K_{ji} K^{ji}) = \left(\frac{2}{n+1} K_{ji} + \frac{K - (n-1)}{n-1} g_{ji}\right) \nabla^j \nabla^i K + \frac{2}{n+1} \|\nabla_j K\|^2.$$

Let a_i ($i=1, \dots, n$) be the eigenvalues of K_j^i . Then the assumption $K_{ji}K^{ji} =$ const. $<\frac{K^2}{n-1}$ implies

$$a_i a_j > 0 \ (i \rightleftharpoons j)$$

by means of Lemma 3. On the other hand $K_{ji}\eta^i=(n-1)\eta_j$, and consequently we can assume $a_n=n-1$.

Hence $a_i > 0$ ($i=1, \dots, n$), which means $A_{ji} = \frac{2}{n+1} K_{ji} + \frac{K - (n-1)}{n-1} g_{ji}$ is positive definite. Therefore (4.7) yields

$$A^{ji}\nabla_{i}\nabla_{i}K<0$$

for a positive definite quadratic form $A_{ji}dx^jdx^i$, where $A^{ji}=A_{ts}g^{tj}g^{si}$, Hence by means of E. Hopf's theorem [12] K is constant. Therefore Theorem 1 implies Theorem 2.

Kyungpook University

REFERENCES

[1] S.I. Goldberg, On conformally flat space with definite Ricci curvature, to

appear.

- [2] S.I. Goldberg and M.Okumura, Conformally flat Riemannian manifolds and a pinching problem on the Ricci tensor, to appear.
- [3] Y. Kubo, Kaehlerian manifolds with vanishing Bochner curvature tensor, Kōdai Math. Sem. Rep. 28(1976), 85-89.
- [4] M. Matsumoto, On Kaehlerian space with parallel or vanishing Bochner curvature tensor, Tensor, N.S., 20 (1969), 25-28.
- [5] M. Matsumoto and G. Chūman, On the C-Bochner curvature tensor, TRU, 5(1969), 21-30.
- [6] M. Okumura, Submanifolds and a pinching problem on second fundamental tensors, Transaction of Amer. Math. Soc., 178(1973), 285-291.
- [7] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. Math. Jour. Math., 906(1974) 207-212.
- [8] M. Okumura, Some remarks on space with certain contact structure, Tôhoku Math. Jour., 14(1962), 135-145.
- [9] J.S. Pak, A note on Sasakian manifolds with vanishing C-Bochner curvature tensor, Kōdai Math. Sem. Rep. 28(1976), 19-27.
- [10] P. J. Ryan, A note on conformally flat spaces with constant scalar curvature, to appear.
- [11] Y. Tashiro and S. Tachibana, On Fubinian and C-Fubinian manifolds, Ködai Math. Sem. Rep., 15(1933), 176-183.
- [12] K. Yano and S. Bochner, Curvature and Betti numbers, Princeton Univ. Press, 1953.