*-U-REGULAR RING

By V.N. Dixit

1. Preliminary definitions and results

DEFINITIONS 1. A ring R with unity 1 is called U-regular if for every a in R there exists a unit u in R such that $a u a=a$
2. A *-ring is a ring with an involution $x \longrightarrow x^{*}$:

$$
\left(x^{*}\right)^{*}=x,(x+y)^{*}=x^{*}+y^{*},(x y)^{*}=y^{*} x^{*} .
$$

3. An element e in R is called projection if $e=e^{*}$ and $e^{2}=e$.
4. The involution of a *-ring is said to be proper if $a^{*} a=0 \Longrightarrow a=0$.
5. An element a in R such that $a a^{*} a=a$ is called partial isometry.
6. A $*$ - U-regular ring is a U-regular ring with proper involution.
7. An idempotent e is called no rmal if $e^{*} e=e e^{*}$.

The main purpose of this paper is to prove the theorem:
"A Commutative U--regular ring R with a suitable involution is a*-U-regular ring if $a b=0$ and aua $=a v a, a, b$, units u, v in R."

Thus we make the conditions that R is *-ring and *-regular, superfluous, assumed in proposition 3 [1, pp. 229], which is as follows:

If R is a *-ring with unity, the following conditions are equivalent:
(i) R is *-regular
(ii) for each $x \in R$, there exists a projection e such that $R x=R e$.
(iii) R is regular and is a Rickart *-ring.

The notations and conventions are as in Sterling K-Berberian [1].
We shall prove few simple results, R will denote commutative U-regular ring.
$\mathrm{R}_{1} \cdot a u a=a v a, u, v$ units in R, then $a u=a v$.
The proof is trivial.
$\mathrm{R}_{2} . \quad(a+1-a u)$ is invertible in R .
PROOF. There are units w in R such that $(a+1-a u) w(a+1-a u)=a+1-a u$. Multiplying the above equations by $a u$ and (1-au) we get $a w a=a$ and $w(1-a u)$ $=1-a u$ respectively. From R_{1} we get $a u=a w$. Also $w(a+1-a u)=w a+1-a u=1$.
Define $*: R \longrightarrow R$ by $a \longrightarrow a^{*}$, where $a^{*}=a u(a+1-a u)^{-1}$, $a u a=a$.

The mapping is well defined from R_{1} and R_{2}. $\mathrm{R}_{3} \cdot a^{*} a u=a^{*}$, since $a u$ is idempotent.
$\mathrm{R}_{4} . a a^{*} a=a$, since $a^{*}(a+1-a u)=a u$ and so $a^{*} a=a u$. Hence the result.
$\mathrm{R}_{5} \cdot a^{*}=a u(a+1-a u)^{-1}=a^{*} a\left(a+1-a^{*} a\right)^{-1}\left(\right.$ from $\left.\mathrm{R}_{4}\right)$.
$\mathrm{R}_{6} . a^{*} v=a u$ if $a^{*} v a^{*}=a^{*}$. since $a^{*} v=\left(a^{*} a u\right) v=\left(a^{*} a^{*} a\right) v=\left(a^{*} v a^{*}\right) a=a^{*} a=a u$ (from R_{3} and R_{4}).

From the above results we deduce
(i) $a^{* *}=a$ (ii) $(a+b)^{*}=a^{*}+b^{*}$ if $a b=0, a u a=a v a=a$
(iii) $(a b)^{*}=a^{*} b^{*}$ (iv) $a^{*} a=0 \Longrightarrow a=0$.
R is U-regular, so $a^{*} v a=a^{*}, a^{*} \in R$.
$a\left(a^{*}+1-a^{*} v\right)=a\left(a^{*}+1-a u\right)\left(\right.$ from $\left.R_{6}\right), a a^{*}=a u\left(\right.$ from $\left.\mathrm{R}_{4}\right)=a^{*} v\left(\right.$ from $\left.R_{6}\right)$
Hence $a=a^{*} v\left(a^{*}+1-a^{*} v\right)^{-1}=\left(a^{*}\right)^{*}$.
For (ii):
Since $a b=0$ implies $a^{*} b=0=a b^{*}$, from R_{4} we get

$$
(a+b)(a+b)^{*}(a+b)=(a+b)\left(a^{*}+b^{*}\right)(a+b)
$$

So R_{1} implies $(a+b)(a+b)^{*}=(a+b)\left(a^{*}+b^{*}\right)=a a^{*}+b b^{*}$

$$
\begin{equation*}
=a a^{*}\left(b+1-b b^{*}\right)+b b^{*}\left(a+1-a a^{*}\right) \tag{A}
\end{equation*}
$$

Also $(a+b)+1-(a+b)(a+b)^{*}=\left(b+1-b b^{*}\right)\left(a+1-a a^{*}\right)$
From (A) and (B) we get $(a+b)^{*}=a^{*}+b^{*}$.
For (iii):

$$
(a b)\left(a^{*} b^{*}\right)(a b)=\left(a a^{*} a\right)\left(b b^{*} b\right)=a b=a b(a b)^{*}(a b)
$$

Hence $a b a^{*} b^{*}=a b(a b)^{*}$ from $\mathrm{R}_{1} .=(a b)^{*}\left\{a b+1-(a b)(a b)^{*}\right\}$ from $\left(\mathrm{R}_{5}\right)$
Now $a b=(a b)(a b)^{*}(a b)=(a b)(a b)^{*}\left\{a b+1-(a b)(a b)^{*}\right\}=a b a^{*} b^{*}\left\{a b+1-(a b)(a b)^{*}\right\}$

$$
=a b(a b)^{*}\left(a+1-a a^{*}\right)\left(b+1-b b^{*}\right)
$$

So $(a b)\left(a^{*} b^{*}\right)\left\{a b+1-(a b)(a b)^{*}\right\}=a b(a b)^{*}\left(a+1-a a^{*}\right)\left(b+1-b b^{*}\right)$
$\Longrightarrow a^{*} b^{*}=a b a^{*} b^{*}\left(a+1-a a^{*}\right)^{-1}\left(b+1-b b^{*}\right)^{-1}=(a b)(a b)^{*}\left\{a b+1-(a b)(a b)^{*}\right\}^{-1}=a b$.
Therefore U-regular ring with an involution $a \rightarrow a^{*}=a u(a+1-a u)^{-1}$ is ${ }^{*}-U$-regular ring, since involution is proper from (iv), because

$$
a^{*} a=0 \Longrightarrow a a^{*} a=0 \Longrightarrow a=0\left(\text { from } \mathrm{R}_{4}\right) .
$$

Hence we get the follwing theorem:
In a commutative U-regular ring R with $a b=0$, aua $=a v a=a$ and $*: R \rightarrow R$ defined by $a \rightarrow a^{*}=a u(a+1-a u)^{-1}$, the following results are true.
(i) R is *-U-regular ring.
(ii) every element it is partial isometry (from R_{4})

Thus Prop. 2 [1, pp. 10] "In a^{*}-ring with proper involution, b is a partial isometry $\Rightarrow b^{*} b$ is a projection" becomes trivial here.
(iii) A normal idempotent is projection.
i.e. to prove $e=e^{*}$, it suffices to prove $e=e^{*} e$.
$\left(e^{*} e-e\right)^{*}\left(e^{*} e-e\right)=0 \Longrightarrow e^{*} e-e=0 \Longrightarrow e^{*} e=e$ (from iv).

University of Delhi
Delhi-110007
India

REFERENCE

[1] Sterling K-Berberian, Bae *-ring, Springer-Verlag, Band 195, (1971)

