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ON A TENSOR FIELD f OF TYPE (1, 1) SATISFYING 

f k :1:f =0, (k르2r) 

By S. C. Rastogi and V. C. Gupta 

1. fk i:. fr =0 struetures 

Consider Mn to be an ,z-dimensional differentiab1e manifoId of c1ass c∞ and let 

there be given a tensor field j~O of type (1, 1) and of class C∞ satisfying 

(1. 1) fk j:f =0, (k르2r)， 
such that 

(2 rank j - rank jk-r) =dim M n• 

Let us define the operators 1 and m by 

(1.2) 1복뜩후fk-r， m복똥I±fk-r， 

1 denoting the identity operator, then we have: 

THEOREM 1. 1. For a tensor jield j~O， satz'sjyz'ng (1. 1), the oþerators 1, m 

dζfz'ned by (1. 2) and atJP!z"ed to the tangent space at a po쩌t oj the manijold are 
comþleηzentary projectz'on oþerators. 

PROOF. We have 

1 2=(주jk-r)2=j2k-2r =jk. jk-2r = (후jr)jk-2r = 주fk-r =1, 
2 

and similarly we can show that m"'=m, Im= 1'Il1=0 and l+m=I. Thus the theo-
rem is proved. 

Let L and M be the complementary distributions corresponding to the projection 

operators 1 and m respectively and let the rank of j be equal to p (a constant), 
then dim L=(2p-n) and dim M=(2n-2p) , (n드2þ드2n). 

A structure with the above properties is called an j(k, i:. r)-structure of rank Þ 
and the manifold M n with this structure is called an j(k, i:. r)-manifold. 

THEOREM 1.2. For a tensor jield j satisjyz'ng (1. 1) and the operators 1, m 

dζfined by (1.2) , 1 acts on jr as an z'dentity operator and m acts on both jr and 
f(k-r)/2 (k-r)/2 as a null operator. Also j'''-'J/ ú acts on L either as an almost complex 

strμcture φerator or as an ,almost product structure operator, according as 



43 S. O. Rastogi and V. G. Gupta 

μle take f(k. r) or (k. - r) structμre. 

PROOF. It can be easily proved that t' l=fr• fr m=O. f “ -r)/2 m=O, 
Ck-r) 

f'" ./ 1= 후1， which is the contention of our theorem. 

THEOREM 1. 3. If F=fα-r)/2， then F(k, -:t r)-strμctμreof ηtax-ηtal rank z's an 

almost comPlex structure (almost þroduct structχre) ， reφectψely. 

PROOF. If the rank of F is maximal p=n, therefore dim L=n and dim M=O. 

Thus m=O, which implies theorem 1.3. 

_ "Ck-r)/2 THEOREM 1.4. lf F=f'n-，.II~， then F (k, + r)-strμcture of m쩌imal rank t's 

an almost tangent strμctμre. 

PROOF. If the rank of F is minimaI. 2þ=n, therefore dim L=O and 

dim M=n, Thus 1=0, which shows that f Ck- r) =0. Hence the theorem is proved. 

THEOREM 1. 5. For a tensor field f satisfy쩌g f (k, r)-strμctκre (m_/k- r)/2)) 

(m+/k- r)/2)=I and satisfying f(k , -r)-strμcture (1-f Ck-r)/2) (1 + f (k-r)/2) =0. 

PROOF. We can prove this theorem by simple caIculation. 

THEOREM 1. 6. If in M n there is given a tensor field f ,pO, f(k-r)낯I of class 

c∞ satisfyz'ng f(k , -r)-strμcture， 
(k-r) 

then M n admtÏs an almost product structure η= 
2f'~-" -I. 

(k-r) 
PROOF. Since η=2f -I, therefore we can easily prove 

proves the theorem. 

THEOREM 1. 7. Let p and q be tensors dαfz.ned by 

p뿔:(m-fk-7〕， q폭(m+fk-r)， 

then 

i) for an f(k , r)-strμctμre we have 

that v2=I, which 

2 2 ~. ..3. 3 
þ~=q~=I， pq=qp, F :tqv=tJi:. q, pl=l, ll=l. Þηz=%， p2m=m, ql= -l, q2J=l, 

qm=%, q2m=m, pql= -l, pqm=m. 

ii) for an f(k , -r)-structμre we have 
3_ .... ..L~ ... 1 _ _ "Ck-r) p-=q-=q. þq=p, pV :tqv=P :tq, þl=-f'n-" , b~l=l， pm=m, P2%=m, ql=l, q2I 

=l, qm=m, q2%=%· 

PROOF. These results can be proved by simple caIculation. 
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2. Metrie for f(k, :tr)-struetures 

THEOREM 2. 1. 1/ z'n an n-dimf}nsional mamfold M n, there is given a tensor 

jz"eld 1=p0 01 rank p and sa!z"sjz"es above structures, then there exz"st comPlementary 

distributions L 01 dz'meηsion (2ψ -n) and M 01 dimension (2n-2p) and a posüive 

dαfz"nite Riemannian metric g μ，ith respect to which L ani M are orthogonal sμch that 
(k-r)/2 def 

진 hi gts +mji=gji' ψhere f'~-'/I~ U~. h. 

Also we have 

i) For I(k, r)-strμctμre hji = - h치 and the rank p 01 1 is even, 

ii) For I(k, -r)-structμre hji=hij' and the rank p 01 f is odd. 

,.h .h h 
PROOF. Let 1';' , l; , m;~ be the local components of the tensors I.l. m r않pec-

tively. Let 강 (a , b, c, ".=1.2, …,2p-n) be 갱 - n mutually orthogo때 UI따 vectors 

in L and u~ (A.B.C, "'=2p-n+1, "', n) be 2n-2p mutually orthogonal unit vectors 

in M , then we have 

(2. 1) l~ i 
μb I 

h .. h ,,' ..... 

=μb ' t i u'B =u. 
h 1 

ηz . μb 2 
=0, ??z? x g =μ 

B -B ’ 

Since we know that /k-r)/2m=0, therefore we find 

(2.2) k; μ$=o. 

Let 야 . V셋 be the matrix inverse of (샤 , μ$)， then 칸 and 텅 are both com 

ponents of linearly independent covariant vectors which satisfy 

(2.3)a 

(2.3)b 

(2.3)c 

Using (2.3) in (2.1) 

(2.4) 

which yields 

(2.5)a) 

b) 

~ 

at ~a a z.", 
Vz ub = Ob ’ 깐 UB=U. 

u? %1 =o, ”션 μ2 -aA i "'h -v, Vi ""B- V B’ 
ah , Ah .,.h 

Ui μa十Ui μA=Oi 

we easily obtain 
h a a ,h A 
i vh =Vi ’ 1'; v~=O. 
h Il ^ mi vh =u. 

t A h". v:'=O. 
Z ‘ -

h A A 
m. ν =v h -Vi ’ 

lt =νt 강， 
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h A h 
ηzz =νi uA. 

Now foIIowing Yano [2J we have a globaIly defined positive definite Riemannian 
h h 

metric with respect to which (u; , μ~) form an orthogonal frame such that 

where 

(2.6) 

a t 
V ,=a ... u .. 1 - jt .. a ’ 

A 
U. =a .. 

1 -1' 

a a , AA a .. =v. ι +V': v::. Jt 1 ,. 1 ., 

μA’ 

By Putting 강션긴 ati’ %ji=썩 ati’ we easily get 

(2.7) l·;+%·;:·a .. 
J' .J' JI 

AIso we can easily verify the foIIowing relations: 

l~ t ι =l .. , lt. η강 ι =0, %t· ”강 a =%·· t IZ ’ i "'ì -ts ’ j ""i -ts - ""j1. 

By Putting 

(2.8) g .. =」-(g +ht. hs a +??Z··) 
2 '-ji 

we have a globaIly defined positive definite Riemannian metric which satisfies 

(2.9) A i I 
Vj =gji μA' mji=mj gti. 

From (2.9) we can see that the distributions L and M which are orthogonaI 

with respect to aji are stiIl orthogonal with respect to gji and 째， which are 

mutuaIIy orthogonal unit vectors with respect to a;; are aIso mutuaIIy orthogonaJ 
J' 

with respect to gji. Thus it is easy to verify that the tensor gji satisfies 

(2.10) 션 쩍 gts + mji = gji’ 
which proves first part of the theorem. 

i) Since for an f(k , r )-structure we ha ve -k2=I-m, 

(2.11) - -h: h~ +ηt! =δ? . 
i .. '{ ""j - j 

therefore we can write 

Now putting hit =쩍 gst’ 
we get from (2. 10) and (2. 11) the foIIowing equations 

(2.12) 껴 hit+ η2jz = gji 

and 

(2.13) -칙 hti+껴ji=gj'. 
Substracting (2.13) from (2. 12), we get 

(2. 14) 씩 (hit+hti) =0. 



On a Tensor Field 1 01 Type (1.1) Satisfying 1':1:.1'=0 (k르2r) 51 

Since 딴 o. equation (2.14) shows that h“ is a skew-symmetric tensor of rank 

p and p must be even. 

i i) For 

(2.15) 

2 
f(k , -r)-structure we have h<-=I -m, which sim iIarly implies 

껴 (hit - hti) =0, 

showing that hit is symmetric tensor of rank p and p must be odd. 

3. Some properties of f(k, r )-structure 

A THEOREM 3.1. 1/ L is z.ntegrable. then the subspace vL1=constant 10γ a I(k, r)-

st1.μctμre admz"ts an almost comPlex structμre. 

PROOF. If ~~ are local coordinates in the original manifold then the distribu

tion L is defined locally by 

(3.1) m?d쉰=0 or 원 dt=O. 
The integrability condition of (3. 1) can be given by 

(3.2) 낀 l;(8tmt -asmf] =o,

where at =a/aFt, 

Let the distribution L be integrable then denoting by vAC용) =constant, the eq

uations of integral manifolds we can choose vt in such a way that 

(3.3) A ‘ A 
깐 =1 

If ηa are the parameters and the parametric equations of one of the integral 

manifolds are 안=암(ηa) ， then we have 

떠.4) B: 않=0. 

where BZ =ab’~h (òb=ò/å꺼. 

Thus we can choose u~ in such a way that the matrix inverse to (햄 , 랬) is (B? , 

,?) such that we have 

(3.5) 

and 

(3.6) 

BF BI =δa 
b -Vb ’ Bt %&=o, 

·Bi=0, uA ￡ =δA B- V B 

l? =Bt BZ , h A h 
mf =”, %A· 
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If we put 

(3.7) 

we can easily verify that 

(3.8) 

which proves theorem 3. 1. 

s.c. Rastogiand V.G. Gupta 

'h~=B: B~ h~ b -~b ~l U'i 

'h~ 'h:=-야， 

Let 'Vj and ''Vc be the covariant derivatives in the enveloping space and the sub-

space respectively, then the Nijenhuis tensor for the almost complex str따ure '탬 is 

(3.9) 'N;b ='행 7d rhZ - # ?d rhr - (7c /h$ - Tb /객 )'h~ . 
Substituting (3.7) in (3.9) we get 

(3.10) 

where 

(3.11) 

’N~c=B~ B! B~ N~ b ~ h ... " ji’ 

DEFlNITION 3.1. When the distribution L is integrable and the almost complex 

structure induced on the integral manifold is also integrable, we say that the 

f(k , r)-structure is partz"ally z"ntegrable. 

THEOREM 3. 2. A necessary and sμfficieηt condition for an f (k, r)-strμctμre 
to be parUally integrable is that the N치enhuz's tensor satisfies: 

PROOF. When f(k , r)-structure is partiaIly integrable we have 

(3.12) B~ B~ B: N;i=O. 

From (3.11) we have 

(3.13) 

which in case of the distribution L being integrable yields 

(3. 14) NLm? = o. 

If we contract equation (3. 12) with B; B~ B~ we get 

(3.15) 

Conversely suppose that f(k, r)-structure satisfies (3.15), then from (3.12) we 

have 

긴 l~ ('Vt h~ - 'Vs 씨 ) hf = 0, 
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which is equivalent to 

(3.16) 긴 li (7tmt -안싸)= O. 

Thus the distribution L is integrable and we can i!lduce an almost complex str

ucture ’캠 on the integral manifold. For the Nijenhuis tensor of this almost com
plex structure we have 

(3.17) /N$ = o, 

which proves the theorem. 

THEOREM 3. 3. A necessary and sμiffz'cz'ent condz"Uon lor an n-dz"mensional 

manilold M’I to αdmz"t a tensor lield 1 ~ 0 01 typ~ (1, 1) and 01 rank Þ sμch that 

i HT + I T =0, (r odd) is that p be eνen and the grouþ 01 tangent bundle 01 the 

mamfold be reduced to gro때 S(2s=2tq)XO(n-2s). 

PROOF. Let 
t i 1 .1 i 1.1 

(3. 18) u~+l =hi ui , u~+2=까 μ2 , ---, μ2s=까 μs ’ 

be 2s mutually orthogonal unit vectors in L then with respect to the orthogonaI 
I 1 

frame (U~ ， μ~) 

(3. 19) 

the tensors gji and hji have components 

Es 0 0 \ / 0 
‘ Ik-T\ 

, h=l\τ)=1 -Es = g 0 Es 0 

0 0 En-2s 0 

ea 

E 

o 
o 

0 

o 1, 
0 

where Es denotes the sXS unit matrix. 

Let 1 be a structure (f, k) such that þ=2s and k=2q+r then following Kim 

[lJ it is observed that ITUl~Ul and s is divisible by q_ Let S=tq. If we put jT 싼 

=ui+ t and jT μ i+2s-rt= -Ui, for i=l , 2, "-, s then hμ，=fqXi=ztt+tq=zti+s and h2깐 

=/
2q

;깐=IT깐+(2q-r)1 = I
T

깐+2s-rt = -깐· 

Thus we can write 

o 

O) 
O 

Now we take another adapted frame (챔 , 챔) with respect to which the metric 

tensor gji and hji have the same components as (3.19) and put 캠 = 채감， a$= 
A h r; u~ ， then following Yano [2J , the orthogonal matrix 

(3.20) 
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S 0 
F=(r~)= 0 

On-2s 
, 

where 

S11 S12 

S= S21 ~22 
• 
• 

• 
• 

• • 

Sq1 Sq2 

••• S1; 

S2q ••• 

••• 
---

••• Sqq 

Let S be the tangent group defined by S in (3.21), then the group of tangent 

bundle of the manifold can be reduced to SXO(n-2s) , then we can define a posi

tive definite Riemannian metric g and tensors! and h=!q of type (1, 1) and of 

rank 2s as tensors having (3.19) and (3.20) as components with respect to adap
ted frames. Then we ha ve 

0 

Es 

O 

O 3)’ f2q=l ; 

0 

-Es 

0 

nU 

nU 

nU 

o 
fq=l -Es 

and i q 
+r + f = 0, which proves theorem 3. 3. 

REMARKS 1. Similar results can be established for the structure f(k , -1") also. 

2. Integrability conditions and some other properties of these structures are being 
studied in a subsequent paper. 
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