ON A TENSOR FIELD f OF TYPE (1,1) SATISFYING

$$
f^{k} \pm f^{r}=0, \quad(k \geq 2 r)
$$

By S.C. Rastogi and V.C. Gupta

1. $\boldsymbol{f}^{\boldsymbol{k}} \pm \boldsymbol{f}^{\boldsymbol{\gamma}}=0$ structures

Consider M^{n} to be an n-dimensional differentiable manifold of class C^{∞} and let there be given a tensor field $f \neq 0$ of type (1,1) and of class C^{∞} satisfying

$$
\begin{equation*}
f^{k} \pm f^{\gamma}=0, \quad(k \geq 2 r) \tag{1.1}
\end{equation*}
$$

such that

$$
\left(2 \operatorname{rank} f-\operatorname{rank} f^{k-r}\right)=\operatorname{dim} M^{n} .
$$

Let us define the operators l and m by

$$
\begin{equation*}
l \xlongequal{\text { def }} \mp f^{k-r}, m \xlongequal{\text { def }} I \pm f^{k-\tau}, \tag{1.2}
\end{equation*}
$$

I denoting the identity operator, then we have:
THEOREM 1.1. For a tensor field $f \neq 0$, satisfying (1.1), the operators l, m defined by (1.2) and applied to the tangent space at a point of the manifold are complementary projection operators.

Proof. We have

$$
l^{2}=\left(\mp f^{k-r}\right)^{2}=f^{2 k-2 r}=f^{k} \cdot f^{k-2 r}=\left(\mp f^{r}\right) f^{k-2 r}=\mp f^{k-r}=l,
$$

and similarly we can show that $m^{2}=m, l m=m l=0$ and $l+m=I$. Thus the theorem is proved.

Let L and M be the complementary distributions corresponding to the projection operators l and m respectively and let the rank of f be equal to p (a constant), then $\operatorname{dim} L=(2 p-n)$ and $\operatorname{dim} M=(2 n-2 p),(n \leq 2 p \leq 2 n)$.

A structure with the above properties is called an $f(k, \pm r)$-structure of rank p and the manifold M^{n} with this structure is called an $f(k, \pm r)$-manifold.

THEOREM 1.2. For a tensor field f satisfying (1.1) and the operators l, m defined by (1.2), lacts on f^{r} as an identity operator and m acts on both f^{r} and $f^{(k-r) / 2}$ as a null operator. Also $f^{(k-r) / 2}$ acts on L either as an almost complex structure operator or as an , almost product structure operator, according as
we take $f(k, r)$ or $(k,-r)$ structure.
PROOF. It can be easily proved that $f^{r} l=f^{r}, f^{r} m=0, f^{(k-r) / 2} m=0$, $f^{(k-r)} l=\mp l$, which is the contention of our theorem.

THEOREM 1.3. If $F=f^{(k-r) / 2}$, then $F(k, \pm r)$-structure of maximal rank is an almost complex structure (almost product structure), respectively.

PROOF. If the rank of F is maximal $p=n$, therefore $\operatorname{dim} L=n$ and $\operatorname{dim} M=0$. Thus $m=0$, which implies theorem 1.3.

THEOREM 1.4. If $F=f^{(k-r) / 2}$, then $F(k,+r)$-structure of minimal rank is an almost tangent structure.

PROOF. If the rank of F is minimal, $2 p=n$, therefore $\operatorname{dim} L=0$ and $\operatorname{dim} M=n$, Thus $l=0$, which shows that $f^{(k-r)}=0$. Hence the theorem is proved.

THEOREM 1.5. For a tensor field f satisfying $f(k, r)$-structure ($m-f^{(k-r) / 2)}$) $\left(m+f^{(k-r) / 2}\right)=I$ and satisfying $f(k,-r)$-structure $\left(l-f^{(k-r) / 2}\right)\left(l+f^{(k-r) / 2}\right)=0$.

PROOF. We can prove this theorem by simple calculation.
THEOREM 1.6. If in M^{n} there is given a tensor field $f \neq 0, f^{(k-r)} \neq I$ of class C^{∞} satisfying $f(k,-r)$-structure, then M^{n} admits an almost product structure $\eta=$ $2 f^{(k-r)}-I$.
PROOF. Since $\eta=2 f^{(k-r)}-I$, therefore we can easily prove that $\eta^{2}=I$, which proves the theorem.

THEOREM 1.7. Let p and q be tensors defined by

$$
p \xlongequal{\text { def }}\left(m-f^{k-r}\right), \quad q \xlongequal{\text { def }}\left(m+f^{k-r}\right),
$$

then
i) for an $f(k, r)$-structure we have
$p^{2}=q^{2}=I, p q=q p, p^{3} \pm q^{3}=t \pm q, \quad p l=l, \quad p^{2} l=l, \quad p m=m, p^{2} m=m, \quad q l=-l, \quad q^{2} l=l$, $q m=m, q^{2} m=m, p q l=-l, \quad p q m=m$.
ii) for an $f(k,-r)$-structure we have
$p^{2}=q^{2}=q, \quad p q=p, p^{3} \pm q^{3}=p \pm q, \quad p l=-f^{(k-r)}, \quad p^{2} l=l, \quad p m=m, \quad p^{2} m=m, \quad q l=l, \quad q^{2} l$ $=l, \quad q m=m, q^{2} m=m$.

PROOF. These results can be proved by simple calculation.

2. Metric for $\boldsymbol{f}(\boldsymbol{k}, \pm \boldsymbol{r})$-structures

THEOREM 2.1. If in an n-dimensional manifold M^{n}, there is given a tensor field $f \neq 0$ of rank p and satisfies above structures, then there exist complementary distributions L of dimension $(2 p-n)$ and M of dimension ($2 n-2 p$) and a positive definite Riemannian metric g with respect to which L and M are orthogonal such that

$$
\begin{array}{lll}
h_{j}^{t} & h_{i}^{s} & g_{t s}+m_{j i}=g_{j i}, \text { where } f^{(k-r) / 2} \xlongequal{\text { def }} h . ~
\end{array}
$$

Also we have
i) For $f(k, r)$-structure $h_{j i}=-h_{i j}$ and the rank p of f is even,
ii) For $f(k,-r)$-structure $h_{j i}=h_{i j}$, and the rank p of f is odd.

PROOF. Let $f_{i}^{h}, l_{i}^{h}, m_{i}^{h}$ be the local components of the tensors f, l, m respectively. Let $u_{a}^{h}(a, b, c, \cdots=1,2, \cdots, 2 p-n)$ be $2 p-n$ mutually orthogonal unit vectors in L and $u_{A}^{h}(A, B, C, \cdots=2 p-n+1, \cdots, n)$ be $2 n-2 p$ mutually orthogonal unit vectors in M, then we have

$$
\begin{align*}
& l_{i}^{h} u_{b}^{i}=u_{b}^{h}, l_{i}^{h} u_{B}^{i}=0, \tag{2.1}\\
& m_{i}^{h} u_{b}^{i}=0, m_{i}^{h} u_{B}^{i}=u_{B}^{h},
\end{align*}
$$

Since we know that $f^{(k-r) / 2} m=0$, therefore we find

$$
\begin{equation*}
h_{i}^{l} u_{B}^{i}=0 . \tag{2.2}
\end{equation*}
$$

Let $\left(v_{i}^{a}, v_{i}^{A}\right)$ be the matrix inverse of $\left(u_{b}^{h}, u_{B}^{h}\right)$, then v_{i}^{a} and v_{i}^{A} are both components of linearly independent covariant vectors which satisfy

$$
\begin{align*}
& v_{\imath}^{a} u_{b}^{i}=\delta_{b}^{a}, v_{i}^{a} u_{B}^{i}=0, \tag{2.3}\\
& v_{i}^{A} u_{b}^{i}=0, v_{i}^{A} u_{B}^{i}=\delta_{B}^{A}, \\
& v_{i}^{a} u_{a}^{h}+v_{i}^{A} u_{A}^{h}=\delta_{i}^{h} .
\end{align*}
$$

Using (2.3) in (2.1) we easily obtain

$$
\begin{align*}
& l_{i}^{h} v_{h}^{a}=v_{i}^{a}, l_{i}^{h} v_{h}^{A}=0, \tag{2.4}\\
& m_{i}^{h} v_{h}^{a}=0, m_{i}^{h} v_{h}^{A}=v_{i}^{A},
\end{align*}
$$

which yields

$$
\begin{aligned}
(2.5) \mathrm{a}) & h_{i}^{l} v_{l}^{A}=0, \\
\mathrm{~b}) & \\
& l_{i}^{h}=v_{i}^{a} u_{a}^{h},
\end{aligned}
$$

c)

$$
m_{i}^{h}=v_{i}^{A} u_{A}^{h} .
$$

Now following Yano [2] we have a globally defined positive definite Riemannian metric with respect to which $\left(u_{b}^{h}, u_{B}^{h}\right)$ form an orthogonal frame such that

$$
v_{j}^{a}=a_{j i} u_{a}^{i}, v_{j}^{A}=a_{j i} u_{A}^{i},
$$

where

$$
\begin{equation*}
a_{j i}=v_{j}^{a} v_{i}^{a}+v_{j}^{A} v_{i}^{A} \tag{2.6}
\end{equation*}
$$

By Putting $l_{j i}=l_{j}^{t} \quad a_{t i}, m_{j i}=m_{j}^{t} a_{t i}$, we easily get

$$
\begin{equation*}
l_{j i}+m_{j i}=a_{j i} \tag{2.7}
\end{equation*}
$$

Also we can easily verify the following relations:

$$
l_{j}^{t} l_{i}^{s} a_{t s}=l_{j i}, l_{j}^{t} m_{i}^{s} a_{t s}=0, m_{j}^{t} m_{i}^{s} a_{t s}=m_{j i}
$$

By Putting

$$
\begin{equation*}
g_{j i}=\frac{1}{2}\left(a_{j i}+h_{j}^{t} h_{i}^{s} a_{t s}+m_{j i}\right), \tag{2.8}
\end{equation*}
$$

we have a globally defined positive definite Riemannian metric which satisfies

$$
\begin{equation*}
v_{j}^{A}=g_{j i} u_{A}^{i}, \quad m_{j i}=m_{j}^{t} g_{t i \cdot} \tag{2.9}
\end{equation*}
$$

From (2.9) we can see that the distributions L and M which are orthogonal with respect to $a_{j i}$ are still orthogonal with respect to $g_{j i}$ and u_{A}^{h}, which are mutually orthogonal unit vectors with respect to $a_{j i}$ are also mutually orthogonal with respect to $g_{j i}$. Thus it is easy to verify that the tensor $g_{j i}$ satisfies

$$
\begin{equation*}
h_{j}^{t} h_{i}^{s} g_{t s}+m_{j i}=g_{j i} \tag{2.10}
\end{equation*}
$$

which proves first part of the theorem.
i) Since for an $f(k, r)$-structure we have $-h^{2}=I-m$, therefore we can write

$$
\begin{equation*}
-h_{j}^{t} h_{t}^{i}+m_{j}^{i}=\delta_{j}^{i} . \tag{2.11}
\end{equation*}
$$

Now putting $h_{i t}=h_{i}^{s} g_{s t}$, we get from (2.10) and (2.11) the following equations

$$
\begin{equation*}
h_{j}^{t} h_{i t}+m_{j i}=g_{j i} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
-h_{j}^{t} h_{t i}+m_{j i}=g_{j i} \tag{2.13}
\end{equation*}
$$

Substracting (2.13) from (2.12), we get

$$
\begin{equation*}
h_{j}^{t}\left(h_{i t}+h_{t i}\right)=0 \tag{2.14}
\end{equation*}
$$

Since $h_{j}^{t} \neq 0$, equation (2.14) shows that $h_{i t}$ is a skew-symmetric tensor of rank p and p must be even.
ii) For $f(k,-\gamma)$-structure we have $h^{2}=I-m$, which similarly implies

$$
\begin{equation*}
h_{j}^{t}\left(h_{i t}-h_{t i}\right)=0, \tag{2.15}
\end{equation*}
$$

showing that $h_{i t}$ is symmetric tensor of rank p and p must be odd.

3. Some properties of $f(k, r)$-structure

THEOREM 3.1. If L is integrable, then the subspace $v^{A}=$ constant for a $f(k, r)$ structure admits an almost complex structure.

PROOF. If ξ^{i} are local coordinates in the original manifold then the distribution L is defined locally by

$$
\begin{equation*}
m_{i}^{h} d \xi^{i}=0 \quad \text { or } v_{i}^{A} d \xi^{i}=0 \tag{3.1}
\end{equation*}
$$

The integrability condition of (3.1) can be given by

$$
\begin{equation*}
l_{j}^{t} l_{i}^{s}\left(\partial_{t} m_{s}^{h}-\partial_{s} m_{t}^{h}\right)=0, \tag{3.2}
\end{equation*}
$$

where $\partial_{t}=\partial / \partial \xi^{t}$,
Let the distribution L be integrable then denoting by $v^{A}(\xi)=$ constant, the equations of integral manifolds we can choose v_{i}^{A} in such a way that

$$
\begin{equation*}
v_{i}^{A}=\partial_{i} v^{A} . \tag{3.3}
\end{equation*}
$$

If η^{a} are the parameters and the parametric equations of one of the integral manifolds are $\xi^{h}=\xi^{h}\left(\eta^{a}\right)$, then we have

$$
\begin{equation*}
B_{b}^{h} v_{h}^{A}=0, \tag{3.4}
\end{equation*}
$$

where

$$
B_{b}^{h}=\partial_{b}^{\prime} \xi^{h}\left(\partial_{b}=\partial / \partial \eta^{b}\right) .
$$

Thus we can choose u_{A}^{h} in such a way that the matrix inverse to $\left(B_{b}^{h}, u_{A}^{h}\right)$ is $\left(B_{i}^{a}\right.$, v_{i}^{A}) such that we have

$$
\begin{align*}
& B_{i}^{a} B_{b}^{i}=\delta_{b}^{a}, \quad B_{i}^{a} u_{B}^{i}=0, \tag{3.5}\\
& v_{i}^{A} B_{b}^{i}=0, \quad v_{i}^{A} u_{B}^{i}=\delta_{B}^{A}
\end{align*}
$$

and

$$
\begin{equation*}
l_{i}^{h}=B_{i}^{a} B_{a}^{h}, m_{i}^{h}=v_{i}^{A} u_{A}^{h} . \tag{3.6}
\end{equation*}
$$

If we put

$$
\begin{equation*}
' h_{b}^{a}=B_{b}^{i} B_{l}^{a} h_{i}^{l}, \tag{3.7}
\end{equation*}
$$

we can easily verify that

$$
\begin{equation*}
\prime_{b}^{a} h_{c}^{b}=-\delta_{c}^{a}, \tag{3.8}
\end{equation*}
$$

which proves theorem 3.1.
Let ∇_{j} and ∇_{c} be the covariant derivatives in the enveloping space and the subspace respectively, then the Nijenhuis tensor for the almost complex structure ' h_{b}^{a} is
(3.9) $\quad N_{c b}^{a}=h_{c}^{d} \nabla_{d} \prime_{b}^{a}-h_{b}^{d} \nabla_{d} \prime_{c}^{a}-\left(\nabla_{c}^{\prime} h_{b}^{d}-\nabla_{b}^{\prime} h_{c}^{d}\right)^{\prime} h_{d}^{a}$.

Substituting (3.7) in (3.9) we get

$$
\begin{equation*}
' N_{c b}^{a}=B_{c}^{j} B_{b}^{i} B_{h}^{a} N_{j i}^{h} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{j i}^{b}=h_{j}^{l} \nabla_{l} h_{i}^{p}-h_{i}^{l} \nabla_{l} h_{j}^{p}-\left(\nabla_{j} h_{i}^{l}-\nabla_{i} h_{j}^{l}\right) h_{l}^{p} . \tag{3.11}
\end{equation*}
$$

DEFINITION 3.1. When the distribution L is integrable and the almost complex structure induced on the integral manifold is also integrable, we say that the $f(k, r)$-structure is partially integrable.

THEOREM 3.2. A necessary and sufficient condition for an $f(k, r)$-structure to be partially integrable is that the Nijenhuis tensor satisfies:

$$
N_{p q}^{h} l_{j}^{p} l_{i}^{q}=0
$$

PROOF. When $f(k, r)$-structure is partially integrable we have

$$
\begin{equation*}
B_{c}^{j} B_{b}^{i} B_{h}^{a} N_{j i}^{h}=0 \tag{3.12}
\end{equation*}
$$

From (3.11) we have

$$
\begin{equation*}
N_{j i}^{l} m_{l}^{p}=-h_{j}^{k} h_{i}^{l}\left(\nabla_{k} m_{l}^{p}-\nabla_{l} m_{k}^{p}\right), \tag{3.13}
\end{equation*}
$$

which in case of the distribution L being integrable yields

$$
\begin{equation*}
N_{j i}^{l} m_{l}^{p}=0 \tag{3.14}
\end{equation*}
$$

If we contract equation (3.12) with $B_{j}^{c} B_{i}^{b} B_{a}^{\dot{h}}$ we get

$$
\begin{equation*}
N_{p q}^{h} l_{j}^{p} l_{i}^{q}=0 \tag{3.15}
\end{equation*}
$$

Conversely suppose that $f(k, r)$-structure satisfies (3.15), then from (3.12) we have

$$
l_{j}^{t} l_{i}^{s}\left(\nabla_{t} h_{s}^{l}-\nabla_{s} h_{t}^{l}\right) h_{l}^{p}=0
$$

which is equivalent to

$$
\begin{equation*}
l_{j}^{t} l_{i}^{s}\left(\nabla_{t} m_{s}^{h}-\nabla_{s} m_{t}^{h}\right)=0 \tag{3.16}
\end{equation*}
$$

Thus the distribution L is integrable and we can induce an almost complex structure ' h_{b}^{a} on the integral manifold. For the Nijenhuis tensor of this almost complex structure we have

$$
\begin{equation*}
' N_{c b}^{a}=0 \tag{3.17}
\end{equation*}
$$

which proves the theorem.
THEOREM 3.3. A necessary and sufficient condition for an n-dimensional manifold M^{n} to admit a tensor field $f \neq 0$ of type $(1,1)$ and of rank p such that $f^{2 q+r}+f^{r}=0$, (r odd $)$ is that p be even and the group of tangent bundle of the manifold be reduced to group $S(2 s=2 t q) \times 0(n-2 s)$.

PROOF. Let

$$
\begin{equation*}
u_{s+1}^{t}=h_{i}^{t} u_{1}^{i}, u_{s+2}^{t}=h_{i}^{t} u_{2}^{i}, \cdots, u_{2 s}^{t}=h_{i}^{t} u_{s}^{i}, \tag{3.18}
\end{equation*}
$$

be $2 s$ mutually orthogonal unit vectors in L then with respect to the orthogonal frame (u_{b}^{t}, u_{B}^{t}) the tensors $g_{j i}$ and $h_{j i}$ have components

$$
g=\left(\begin{array}{ccc}
E_{s} & 0 & 0 \tag{3.19}\\
0 & E_{s} & 0 \\
0 & 0 & E_{n-2 s}
\end{array}\right), h=f^{\left(\frac{k-r}{2}\right)}=\left(\begin{array}{ccc}
0 & E_{s} & 0 \\
-E_{s} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

where E_{s} denotes the $s \times s$ unit matrix.
Let f be a structure (f, k) such that $p=2 s$ and $k=2 q+r$ then following Kim [1] it is observed that $f^{r} u_{1} \neq u_{1}$ and s is divisible by q. Let $s=t q$. If we put $f^{r} u_{i}$ $=u_{i+t}$ and $f^{r} u_{i+2 s-r t}=-u_{i}$, for $i=1,2, \cdots, s$ then $h u_{i}=f^{q} u_{i}=u_{i+t q}=u_{i+s}$ and $h^{2} u_{i}$ $=f^{2 q} u_{i}=f^{r} u_{i+(2 q-r) t}=f^{r} u_{i+2 s-r t}=-u_{i}$.
Thus we can write

$$
f^{\gamma}=\left(\begin{array}{ccc}
0 & E_{2 s-r t} & 0 \tag{3.20}\\
-E_{r t} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Now we take another adapted frame (u_{b}^{h}, a_{B}^{h}) with respect to which the metric tensor $g_{j i}$ and $h_{j i}$ have the same components as (3.19) and put $\eta_{b}^{h}=\gamma_{b}^{a} u_{a}^{h}, u_{B}^{h}=$ $\gamma_{B}^{A} u_{A}^{h}$, then following Yano [2], the orthogonal matrix

$$
F=\left(r_{b}^{a}\right)=\left(\begin{array}{ll}
S & 0 \\
0 & 0_{n-2 s}
\end{array}\right),
$$

where

$$
S=\left(\begin{array}{cccc}
S_{11} & S_{12} & \cdots & S_{1 q} \\
S_{21} & S_{22} & \cdots & S_{2 q} \\
\vdots & \vdots & \cdots & \vdots \\
S_{q 1} & S_{q 2} & \cdots & S_{q q}
\end{array}\right)
$$

and $S_{i j}$ is a $t \times t$ matrix, takes the form

$$
F=\left(\begin{array}{ll}
\bar{S} & 0 \tag{3.21}\\
0 & 0_{n-2 s}
\end{array}\right),
$$

where

$$
\bar{S}=\left(\begin{array}{cccc}
S_{11} & S_{12} & \cdots & S_{1 q} \\
-S_{1 q} & S_{11} & \cdots & S_{1 q-1} \\
\vdots & \vdots & \cdots & \vdots \\
-S_{12} & -S_{13} & \cdots & S_{11}
\end{array}\right)
$$

Let S be the tangent group defined by \bar{S} in (3.21), then the group of tangent bundle of the manifold can be reduced to $S \times 0(n-2 s)$, then we can define a positive definite Riemannian metric g and tensors f and $h=f^{q}$ of type (1,1) and of rank $2 s$ as tensors having (3.19) and (3.20) as components with respect to adapted frames. Then we have

$$
f^{q}=\left(\begin{array}{ccc}
0 & E_{s} & 0 \\
-E_{s} & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f^{2 q}=\left(\begin{array}{ccc}
-E_{s} & 0 & 0 \\
0 & -E_{s} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and $f^{2 q+r}+f^{r}=0$, which proves theorem 3.3.
REMARKS 1. Similar results can be established for the structure $f(k,-r)$ also.
2. Integrability conditions and some other properties of these structures are being studied in a subsequent paper.

University of Nigeria
Nsukka, Nigeria

Lucknow University
Lucknow, India

REFERENCES

[1] Kim, J. B., Notes on f-manifolds, Tensor (N.S), Vol. 29 (1975), pp. 299-302.
[2] Yano, K., On a structure defined dy a tensor field f of type (1,1) satisfying $f^{3}+f=0$, Tensor (N.S.), Vol. 14 (1963), pp. 99-109.
[3] Yano, K., Houh, C.S. and Chen, B. Y., Structures defined by a tensor field ϕ of type (1,1) satisfying $\phi^{4} \pm \phi^{2}=0$, Tensor (N.S.) Vol. 23, (1972), pp. 81-87.

